lstm-transformer 代码
时间: 2025-04-18 22:28:25 浏览: 37
### LSTM-Transformer 混合模型代码实现
为了构建LSTM-Transformer混合模型,可以先利用LSTM来提取局部时间特征,再通过Transformer捕捉更复杂的长期依赖关系。下面是一个简单的PyTorch框架下的实现例子。
#### 导入库并定义辅助函数
```python
import torch
from torch import nn, optim
import torch.nn.functional as F
```
#### 定义LSTM模块
创建一个基于LSTM的编码器用于初步的信息抽取:
```python
class LSTMEncoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers=1):
super(LSTMEncoder, self).__init__()
self.lstm = nn.LSTM(input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True)
def forward(self, x):
output, (h_n, c_n) = self.lstm(x)
return h_n[-1].unsqueeze(0), c_n[-1].unsqueeze(0)
```
#### 构建Transformer部分
接着设计带有自注意力机制的Transformer组件,它能够进一步处理由LSTM传递过来的数据流:
```python
class TransformerDecoder(nn.Module):
def __init__(self, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward):
super(TransformerDecoder, self).__init__()
self.transformer = nn.Transformer(d_model=d_model,
nhead=nhead,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
dim_feedforward=dim_feedforward)
def forward(self, src, tgt):
memory = self.transformer.encoder(src.permute(1, 0, 2))
out = self.transformer.decoder(tgt.permute(1, 0, 2), memory).permute(1, 0, 2)
return out
```
#### 组合成完整的网络结构
最后组合上述两个主要部件形成最终的混合模型架构:
```python
class HybridModel(nn.Module):
def __init__(self, lstm_input_dim, lstm_hidden_dim, trans_d_model, trans_nhead,
trans_num_encoders, trans_num_decoders, trans_ffn_dim):
super(HybridModel, self).__init__()
self.lstm_encoder = LSTMEncoder(lstm_input_dim, lstm_hidden_dim)
self.transformer_decoder = TransformerDecoder(trans_d_model, trans_nhead,
trans_num_encoders, trans_num_decoders,
trans_ffn_dim)
def forward(self, inputs_lstm, inputs_transformer):
_, last_state = self.lstm_encoder(inputs_lstm)
outputs = self.transformer_decoder(last_state.repeat(1,inputs_transformer.size()[1],1),
inputs_transformer)
return outputs
```
此段代码展示了如何将两种不同类型的神经元连接起来工作,在实践中可能还需要根据具体应用场景调整细节参数配置[^2]。
阅读全文
相关推荐


















