yolov5车牌识别python代码
时间: 2025-01-04 21:34:16 浏览: 73
### 使用YOLOv5进行车牌识别的Python代码
对于使用YOLOv5实现车牌识别的任务,可以通过调用官方提供的`detect.py`脚本并适当修改来完成。下面是一个简化版的Python代码示例,展示了如何加载预训练好的YOLOv5模型并对图片中的车牌位置进行预测。
```python
import torch
from pathlib import Path
from PIL import Image
import cv2
import numpy as np
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords
from utils.torch_utils import select_device
from utils.datasets import letterbox
def detect_license_plate(image_path='data/images/license.jpg', weights='yolov5s.pt'):
"""
对输入图像执行车牌检测操作。
参数:
image_path (str): 输入待检测的图片路径,默认为'data/images/license.jpg'.
weights (str): 预训练权重文件的位置,默认为'yolov5s.pt'.
返回:
results (list of dict): 包含每个检测到的对象的信息列表,每项字典中有'xyxy'(边界框坐标), 'conf'(置信度分数) 和 'cls'(类别ID).
"""
device = select_device('') # 自动选择可用设备(CPU/GPU)
model = attempt_load(weights, map_location=device) # 加载模型
img_size = 640 # 图像大小(像素),保持不变以匹配网络输入尺寸
# 处理单张测试图片
source_image = Image.open(image_path).convert('RGB')
original_shape = source_image.size[::-1]
processed_img, ratio, pad = letterbox(np.array(source_image), new_shape=img_size)[:3]
processed_img = processed_img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, HWC to CHW
processed_img = np.ascontiguousarray(processed_img)
processed_img = torch.from_numpy(processed_img).to(device)
processed_img = processed_img.float() / 255.0 # 归一化处理
if processed_img.ndimension() == 3:
processed_img = processed_img.unsqueeze(0)
pred = model(processed_img)[0] # 前向传播获取预测结果
det = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)[0] # NMS去除冗余边框
if det is not None and len(det):
det[:, :4] = scale_coords(processed_img.shape[2:], det[:, :4], original_shape).round()
result_list = []
for *xyxy, conf, cls in reversed(det):
xywh = (torch.tensor(xyxy).view(1, 4)).tolist()[0]
result_list.append({
"xyxy": list(map(int, xywh)),
"conf": float(conf),
"cls": int(cls)
})
return result_list
else:
print("No license plates detected.")
return []
if __name__ == "__main__":
detections = detect_license_plate()
for detection in detections:
print(f"Detected License Plate at {detection['xyxy']} with confidence score {detection['conf']:.2f}")
```
此段代码实现了基于YOLOv5的目标检测功能,专门针对车牌进行了优化设置[^1]。通过调整参数如`weights`指向特定于车牌的数据集上微调后的YOLOv5模型权重文件,可以进一步提高识别精度。此外,在实际应用中可能还需要考虑更多细节,比如不同光照条件下的鲁棒性等问题[^3]。
阅读全文
相关推荐


















