print('[epoch %d] train_loss: %.3f test_loss: %.3f test_accuracy: %.3f' % (epoch + 1, running_loss / step, val_loss, val_accurate))

时间: 2024-01-25 15:03:48 浏览: 250
这段代码是用来输出每个epoch的训练损失、测试损失和测试准确率的。其中,epoch是当前的epoch数,running_loss是当前epoch的累计训练损失,step是当前epoch的训练步数,val_loss是当前epoch的测试损失,val_accurate是当前epoch的测试准确率。整个代码使用了字符串格式化输出,使用了%来代替变量的值。
相关问题

with torch.no_grad(): for val_data in validate_loader: val_images, val_labels = val_data outputs = net(val_images.to(device)) # eval model only have last output layer loss = loss_function(outputs, val_labels.to(device)) val_loss += loss.item() predict_y = torch.max(outputs, dim=1)[1] acc += (predict_y == val_labels.to(device)).sum().item() val_accurate = acc / val_num val_loss = val_loss /val_num if val_accurate > best_acc: best_acc = val_accurate torch.save(net.state_dict(), save_path) print('[epoch %d] train_loss: %.3f test_loss: %.3f test_accuracy: %.3f' % (epoch + 1, running_loss / step, val_loss, val_accurate)) print('Finished Training')

这段代码用于在验证集上评估模型的表现,并保存表现最好的模型。 首先,我们使用with torch.no_grad()语句块来关闭梯度计算,以便在验证过程中不产生梯度。然后,我们遍历验证集中的所有mini-batch,对每个mini-batch进行预测,并计算预测结果和标签数据之间的损失函数值。 接着,我们累加当前mini-batch中的损失函数值到val_loss中,并统计当前mini-batch中正确分类的样本数,并将其累加到acc中,以便后续计算平均准确率。 在验证过程中,我们使用torch.max函数找到模型输出中概率最大的类别,并将其作为预测结果。然后,我们将预测结果和标签数据进行比较,统计正确分类的样本数。 在每个epoch结束后,我们计算当前模型在验证集上的平均准确率val_accurate和平均损失val_loss,并将其输出到屏幕上。如果当前模型在验证集上的表现优于之前的最佳表现,则将当前模型保存到指定的路径save_path中。 最后,我们输出"Finished Training"表示训练过程结束。

with torch.no_grad(): # `validate_loader`迭代器对验证集进行迭代,每次迭代都会计算模型的输出和损失,并记录最佳的准确率和模型参数 val_bar = tqdm(validate_loader, file=sys.stdout) for val_data in val_bar: val_images, val_labels = val_data outputs = net(val_images.to(device)) predict_y = torch.max(outputs, dim=1)[1] acc += torch.eq(predict_y, val_labels.to(device)).sum().item() val_accurate = acc / val_num writer.add_scalar('Loss/test', running_loss / train_steps, epoch) writer.add_scalar('Accuracy/test', val_accurate, epoch) print('[epoch %d] val_loss: %.3f val_accuracy: %.3f' % (epoch + 1, running_loss / train_steps, val_accurate)) if val_accurate > best_acc: best_acc = val_accurate torch.save(net.state_dict(), save_path) writer.add_graph(mynet, input) writer.close() print('Finished Training') 请详细解释这段代码

这段代码实现了一个基于PyTorch的模型训练的过程,主要包括以下几个步骤: 1. 使用PyTorch提供的no_grad()上下文管理器,关闭自动求导功能,避免在验证集上浪费计算资源。 2. 使用PyTorch提供的tqdm库,对验证集数据进行迭代,每次迭代都计算模型的输出和损失,并记录最佳的准确率和模型参数。 3. 使用PyTorch提供的torch.max()函数,对输出结果进行argmax操作,得到预测的类别标签。 4. 使用PyTorch提供的torch.eq()函数,计算预测结果和真实标签相等的数量,并累加计算正确的样本数。 5. 计算验证集的准确率,即正确样本数除以总样本数。 6. 使用PyTorch提供的tensorboardX库,将训练过程中的损失和准确率记录到TensorBoard中,方便后续的可视化分析。 7. 使用PyTorch提供的torch.save()函数,保存最佳模型的参数。 8. 输出当前训练的epoch数、验证集损失和准确率等信息。 总体来说,这段代码实现了一个基本的模型训练流程,包括数据迭代、模型计算、损失计算、反向传播等步骤,并将训练过程中的关键信息保存到TensorBoard中,方便后续的分析和展示。同时,在验证集上使用最佳模型参数进行验证,并保存最佳模型参数,以便后续使用。
阅读全文

相关推荐

import torch import torchvision from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from model import *# 准备数据集 train_data = torchvision.datasets.CIFAR10( root="./data_taolu", train=True, transform=torchvision.transforms.ToTensor(), download=True ) test_data = torchvision.datasets.CIFAR10( root="./data_taolu", train=False, transform=torchvision.transforms.ToTensor(), download=True ) # 数据统计 train_data_size = len(train_data) test_data_size = len(test_data) print(f"训练数据集长度:{train_data_size}") print(f"测试数据集长度:{test_data_size}") # 数据加载器 train_dataloader = DataLoader(train_data, batch_size=64, shuffle=True) test_dataloader = DataLoader(test_data, batch_size=64) device = torch.device('cuda') # 模型初始化 model = Jzh().to(device) # 确保模型类已修改(见下方model.py)# 损失函数与优化器 loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-2) # 训练参数 total_train_step = 0 total_test_step = 0 epochs = 10 writer = SummaryWriter("./logs_train") # 训练循环 for epoch in range(epochs): print(f"------第 {epoch + 1} 轮训练开始------") # 训练模式 model.train() for batch, (imgs, targets) in enumerate(train_dataloader): outputs = model(imgs) loss = loss_fn(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() total_train_step += 1 if total_train_step % 100 == 0: print(f"训练次数: {total_train_step}, Loss: {loss.item():.4f}") writer.add_scalar("train_loss", loss.item(), total_train_step) # 评估模式 model.eval() total_test_loss = 0 total_accuracy = 0 with torch.no_grad(): for imgs, targets in test_dataloader: outputs = model(imgs) loss = loss_fn(outputs, targets) total_test_loss += loss.item() accuracy = (outputs.argmax(1) == targets).sum().item() total_accuracy += accuracy avg_test_loss = total_test_loss / len(test_dataloader) test_accuracy = total_accuracy / test_data_size print(f"测试集平均Loss: {avg_test_loss:.4f}") print(f"测试集准确率: {test_accuracy:.4f}") writer.add_scalar("test_loss", avg_test_loss, epoch) writer.add_scalar("test_accuracy", test_accuracy, epoch) # 保存模型 torch.save(model.state_dict(), f"jzh_{epoch}.pth") print(f"模型已保存: jzh_{epoch}.pth") writer.close()告诉我应该在何处添加哪些代码?

这个代码里用所有的数据输入GCN模型,得到output,然后根据idx_train,idx_val,idx_test分别测试训练、验证和测试精度,但这些数据都已经被模型学习了,会不会存在不合理的情况?之前用unet验证时都是把三个数据集分开的,代码如下:def train(epoch): t = time.time() model.train() optimizer.zero_grad() output = model(features, adj) loss_train = torch.nn.functional.binary_cross_entropy(output[idx_train], labels[idx_train]) # 使用二分类交叉熵损失 acc_train = accuracy(output[idx_train], labels[idx_train]) loss_train.backward() optimizer.step() if not args.fastmode: # Evaluate validation set performance separately, # deactivates dropout during validation run. model.eval() output = model(features, adj) loss_val = torch.nn.functional.binary_cross_entropy(output[idx_val], labels[idx_val]) acc_val = accuracy(output[idx_val], labels[idx_val]) print('Epoch: {:04d}'.format(epoch+1), 'loss_train: {:.4f}'.format(loss_train.item()), 'acc_train: {:.4f}'.format(acc_train.item()), 'loss_val: {:.4f}'.format(loss_val.item()), 'acc_val: {:.4f}'.format(acc_val.item()), 'time: {:.4f}s'.format(time.time() - t)) def test(): model.eval() output = model(features, adj) loss_test = torch.nn.functional.binary_cross_entropy(output[idx_test], labels[idx_test]) acc_test = accuracy(output[idx_test], labels[idx_test]) print("Test set results:", "loss= {:.4f}".format(loss_test.item()), "accuracy= {:.4f}".format(acc_test.item())) # Train model t_total = time.time() for epoch in range(args.epochs): train(epoch) print("Optimization Finished!") print("Total time elapsed: {:.4f}s".format(time.time() - t_total)) # Testing test()

import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import torch.nn.functional as F from sklearn.metrics import accuracy_score train_dataset = torchvision.datasets.MNIST( root=r'./datasets', train=True, download=False, transform=transforms.ToTensor() ) test_dataset=torchvision.datasets.MNIST( root=r'./datasets', train=True, download=False, transform=transforms.ToTensor() ) train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False) class CNN(nn.Module): def init__(self): model = CNN() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) epochs = 20 train_losses = [] test_losses = [] accuracies = [] for epoch in range(epochs): model.train() epoch_loss = 0 for X_batch, y_batch in train_loader: optimizer.zero_grad() outputs = model(X_batch) loss = criterion(outputs, y_batch) loss.backward() optimizer.step() epoch_loss += loss.item() * len(y_batch) avg_loss = epoch_loss / len(train_dataset) train_losses.append(avg_loss) model.eval() test_loss = 0 y_true, y_pred = [], [] with torch.no_grad(): for X_batch, y_batch in test_loader: outputs = model(X_batch) loss = criterion(outputs, y_batch) test_loss += loss.item() * len(y_batch) preds = torch.argmax(outputs, dim=1) y_pred.extend(preds.cpu().numpy()) y_true.extend(y_batch.cpu().numpy()) avg_test_loss = test_loss / len(test_dataset) acc = accuracy_score(y_true, y_pred) test_losses.append(avg_test_loss) accuracies.append(acc) print(f"Epoch [{epoch+1}/{epochs}] => " f"Train Loss: {avg_loss:.4f}, "

Global: debug: false use_gpu: true epoch_num: 50 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/rec_ppocr_v4 save_epoch_step: 10 eval_batch_step: - 0 - 2000 cal_metric_during_train: true pretrained_model: D:\AI图片快速朔源\paddleOCR\PaddleOCR-release-2.8\pretrain_modles\en_PP-OCRv4_rec_train\best_accuracy.pdparams ignore_weights: ["Head.fc.weight", "Head.fc.bias"] checkpoints: null save_inference_dir: null use_visualdl: false infer_img: D:\AI图片快速朔源\paddleOCR\PaddleOCR-release-2.8\train_data\rec\train\20250311160809.jpg character_dict_path: ppocr/utils/en_dict.txt max_text_length: 30 infer_mode: false use_space_char: false distributed: false save_res_path: ./output/rec/predicts_ppocrv3.txt Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: Cosine learning_rate: 0.0005 warmup_epoch: 5 regularizer: name: L2 factor: 3.0e-05 Architecture: model_type: rec algorithm: SVTR_LCNet Transform: null Backbone: name: PPLCNetV3 scale: 0.95 Head: name: CTCHead num_classes: 39 Neck: name: svtr dims: 480 depth: 2 hidden_dims: 480 kernel_size: - 1 - 3 use_guide: true Head: fc_decay: 1.0e-05 Loss: name: CTCLoss PostProcess: name: CTCLabelDecode Metric: name: RecMetric main_indicator: acc ignore_space: false Train: dataset: name: SimpleDataSet data_dir: D:\AI图片快速朔源\paddleOCR\PaddleOCR-release-2.8 label_file_list: - D:\AI图片快速朔源\paddleOCR\PaddleOCR-release-2.8\train_data\rec\train.txt transforms: - DecodeImage: img_mode: BGR channel_first: false - RecResizeImg: image_shape: [3, 48, 320] padding: true - KeepKeys: keep_keys: - image - label loader: shuffle: true batch_size_per_card: 96 drop_last: true num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: D:\AI图片快速朔源\paddleOCR\Pad

import tensorflow as tf import os import matplotlib.pyplot as plt from time import time # 定义标签字典(根据实际类别修改) label_dict = { 'electrodrill': 0, 'headphones': 1, 'keyboard': 2, 'mobile_phone': 3, 'monitor': 4, 'mouse': 5, 'multimeter': 6, 'number': 7, 'oscillograph': 8, 'pliers': 9, 'printer': 10, 'screwdriver': 11, 'soldering_iron': 12, 'speaker': 13, 'tape_measure': 14, 'wrench': 15 } def data_load(data_dir, test_data_dir, img_height, img_width, batch_size): def process_image(image_path): image = tf.io.read_file(image_path) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [img_height, img_width]) image = (image / 127.5) - 1.0 # MobileNet标准化 return image def parse_path(path): # 转换为numpy字符串处理路径 path_str = path.numpy().decode('utf-8') # 获取类别文件夹名 class_name = tf.strings.split(path_str, os.path.sep)[-2].numpy().decode('utf-8') # 从预定义的字典获取标签索引 label_idx = label_dict.get(class_name, -1) # -1表示未知类别 if label_idx == -1: raise ValueError(f"未知类别: {class_name}") return process_image(path), label_idx def map_fn(path): # 使用py_function包装Python逻辑 image, label = tf.py_function( func=parse_path, inp=[path], Tout=[tf.float32, tf.int32] ) # 设置明确的Tensor形状 image.set_shape([img_height, img_width, 3]) label.set_shape([]) # 将标签转换为one-hot编码 label = tf.one_hot(label, depth=len(label_dict)) return image, label def load_dataset(directory): # 获取所有图片路径 dataset = tf.data.Dataset.list_files(directory + '/*/*.jpg', shuffle=True) # 应用处理函数 dataset = dataset.map( map_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE ) return dataset # 加载数据集 train_ds = load_dataset(data_dir) val_ds = load_dataset(test_data_dir) # 批处理和预取 train_ds = train_ds.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE) val_ds = val_ds.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE) # 验证数据预处理是否正确 for images, labels in train_ds.take(1): # 检查图像标准化是否正确 min_value = tf.reduce_min(images) max_value = tf.reduce_max(images) print(f"图像标准化检查: 最小值 = {min_value.numpy()}, 最大值 = {max_value.numpy()}") assert min_value >= -1 and max_value <= 1, "图像标准化错误,范围应为[-1, 1]" # 检查标签是否为one-hot编码且正确 print("标签示例:", labels[0].numpy()) # 应为one-hot如[0,0,1,...,0] assert tf.reduce_sum(labels[0]).numpy() == 1, "标签应该是one-hot编码,其中只有一个值为1,其余为0" return train_ds, val_ds def model_load(IMG_SHAPE=(224, 224, 3), class_num=16, learning_rate=0.01): # 添加learning_rate参数 base_model = tf.keras.applications.MobileNetV2( input_shape=IMG_SHAPE, include_top=False, weights='imagenet' ) base_model.trainable = False model = tf.keras.Sequential([ base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(class_num, activation='softmax') ]) # 显式设置学习率的优化器 optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) model.compile( optimizer=optimizer, # 使用自定义优化器 loss='categorical_crossentropy', metrics=['accuracy'] ) model.summary() return model def show_loss_acc(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] plt.figure(figsize=(8, 8)) plt.subplot(2, 1, 1) plt.plot(acc, label='Training Accuracy') plt.plot(val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.ylabel('Accuracy') plt.ylim([min(plt.ylim()), 1]) plt.title('Training and Validation Accuracy') plt.subplot(2, 1, 2) plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.ylabel('Cross Entropy') plt.title('Training and Validation Loss') plt.xlabel('epoch') plt.savefig('results/results_mobilenet.png', dpi=100) def train(epochs): begin_time = time() # 创建必要目录 os.makedirs("models", exist_ok=True) os.makedirs("results", exist_ok=True) try: print("加载数据集中...") train_ds, val_ds = data_load( "C:/Users/dll20/Desktop/vegetables_tf2.3-master/new_data/train", "C:/Users/dll20/Desktop/vegetables_tf2.3-master/new_data/val", 224, 224, 16 ) # 验证数据加载 for images, labels in train_ds.take(1): print(f"图像形状: {images.shape}, 标签形状: {labels.shape}") print(f"标签示例: {labels[0].numpy()}") print("类别数量:", len(label_dict)) print("类别映射:", label_dict) model = model_load(class_num=len(label_dict)) print("开始训练...") history = model.fit( train_ds, validation_data=val_ds, epochs=epochs, verbose=1 ) model.save("models/mobilenet_engineer.h5") show_loss_acc(history) except Exception as e: print(f"训练出错: {str(e)}") import traceback traceback.print_exc() finally: print(f"总耗时: {time() - begin_time:.2f}秒") if __name__ == '__main__': # 配置TensorFlow tf.config.run_functions_eagerly(False) physical_devices = tf.config.list_physical_devices('GPU') if physical_devices: tf.config.experimental.set_memory_growth(physical_devices[0], True) 图像标准化检查: 最小值 = -1.0, 最大值 = 1.0 标签示例: [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] 图像形状: (16, 224, 224, 3), 标签形状: (16, 16) 标签示例: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] 类别数量: 16 类别映射: {'electrodrill': 0, 'headphones': 1, 'keyboard': 2, 'mobile_phone': 3, 'monitor': 4, 'mouse': 5, 'multimeter': 6, 'number': 7, 'oscillograph': 8, 'pliers': 9, 'printer': 10, 'screwdriver': 11, 'soldering_iron': 12, 'speaker': 13, 'tape_measure': 14, 'wrench': 15} Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= mobilenetv2_1.00_224 (Functi (None, 7, 7, 1280) 2257984 _________________________________________________________________ global_average_pooling2d (Gl (None, 1280) 0 _________________________________________________________________ dense (Dense) (None, 16) 20496 ================================================================= Total params: 2,278,480 Trainable params: 20,496 Non-trainable params: 2,257,984 _________________________________________________________________ 开始训练... Epoch 1/100 2025-05-17 20:14:57.943383: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll 2025-05-17 20:16:05.881342: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudnn64_7.dll 2025-05-17 20:19:28.437448: W tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only Relying on driver to perform ptx compilation. Modify $PATH to customize ptxas location. This message will be only logged once. 1024/1024 [==============================] - 53s 52ms/step - loss: 9.9016 - accuracy: 0.0606 - val_loss: 9.3069 - val_accuracy: 0.0701 Epoch 2/100 1024/1024 [==============================] - 77s 75ms/step - loss: 10.5672 - accuracy: 0.0642 - val_loss: 10.8782 - val_accuracy: 0.0718 Epoch 3/100 1024/1024 [==============================] - 80s 78ms/step - loss: 10.6035 - accuracy: 0.0639 - val_loss: 10.8998 - val_accuracy: 0.0658 Epoch 4/100 1024/1024 [==============================] - 78s 76ms/step - loss: 10.4597 - accuracy: 0.0658 - val_loss: 9.5053 - val_accuracy: 0.0581 Epoch 5/100 1024/1024 [==============================] - 77s 75ms/step - loss: 10.1673 - accuracy: 0.0596 - val_loss: 12.2643 - val_accuracy: 0.0620 Epoch 6/100 1024/1024 [==============================] - 81s 79ms/step - loss: 10.1886 - accuracy: 0.0628 - val_loss: 9.2048 - val_accuracy: 0.0641 Epoch 7/100 1024/1024 [==============================] - 78s 76ms/step - loss: 10.2992 - accuracy: 0.0630 - val_loss: 10.0681 - val_accuracy: 0.0658 Epoch 8/100 1024/1024 [==============================] - 65s 63ms/step - loss: 10.2812 - accuracy: 0.0665 - val_loss: 12.2382 - val_accuracy: 0.0645 Epoch 9/100 1024/1024 [==============================] - 76s 74ms/step - loss: 11.4436 - accuracy: 0.0637 - val_loss: 9.5845 - val_accuracy: 0.0697 Epoch 10/100 1024/1024 [==============================] - 55s 54ms/step - loss: 10.2822 - accuracy: 0.0664 - val_loss: 9.9871 - val_accuracy: 0.0632 Epoch 11/100 1024/1024 [==============================] - 56s 55ms/step - loss: 10.9518 - accuracy: 0.0647 - val_loss: 12.8353 - val_accuracy: 0.0603 Epoch 12/100 1024/1024 [==============================] - 57s 55ms/step - loss: 10.7480 - accuracy: 0.0646 - val_loss: 10.8068 - val_accuracy: 0.0607 Epoch 13/100 1024/1024 [==============================] - 56s 54ms/step - loss: 10.3040 - accuracy: 0.0618 - val_loss: 11.6900 - val_accuracy: 0.0628 Epoch 14/100 1024/1024 [==============================] - 54s 52ms/step - loss: 10.5912 - accuracy: 0.0630 - val_loss: 14.3563 - val_accuracy: 0.0778 Epoch 15/100 1024/1024 [==============================] - 53s 52ms/step - loss: 10.7772 - accuracy: 0.0635 - val_loss: 11.0138 - val_accuracy: 0.0641 Epoch 16/100 1024/1024 [==============================] - 53s 52ms/step - loss: 10.1329 - accuracy: 0.0651 - val_loss: 11.0438 - val_accuracy: 0.0632 Epoch 17/100 1024/1024 [==============================] - 54s 52ms/step - loss: 10.4157 - accuracy: 0.0617 - val_loss: 11.4240 - val_accuracy: 0.0662 Epoch 18/100 1024/1024 [==============================] - 57s 55ms/step - loss: 10.4042 - accuracy: 0.0635 - val_loss: 11.6729 - val_accuracy: 0.0624 train(epochs=100) 我上述代码运行输出 一共16个类 正确率一直这么低 基本没变化 感觉就是没用上这个模型的感觉 不是微调的问题 我的目的是图像分类出16个种类 帮我检查这个代码 帮我找找原因

if args.flag_test == 'test': model.eval() model.load_state_dict(torch.load('./results/model.pkl')) pre_u = test_epoch(model, label_true_loader) prediction_matrix = np.zeros((height, width), dtype=float) for i in range(total_pos_true.shape[0]): prediction_matrix[total_pos_true[i,0], total_pos_true[i,1]] = pre_u[i] + 1 savemat('matrix.mat',{'P':prediction_matrix, 'label':label}) else: print("start training") tic = time.time() min_val_obj, best_OA = 0.5, 0 for epoch in range(args.epoches): scheduler.step() # train model model.train() train_acc, train_obj, tar_t, pre_t = train_epoch(model, label_train_loader, criterion, optimizer) OA1, AA_mean1, Kappa1, AA1 = output_metric(tar_t, pre_t) print("Epoch: {:03d} train_loss: {:.4f} train_acc: {:.4f}" .format(epoch+1, train_obj, train_acc)) if 'unmix' in args.model_name: # regularize unmix decoder model.unmix_decoder.apply(apply_nonegative) if (epoch % args.test_freq == 0) | (epoch == args.epoches - 1): model.eval() tar_v, pre_v = valid_epoch(model, label_test_loader, criterion, optimizer) OA2, AA_mean2, Kappa2, AA2 = output_metric(tar_v, pre_v) print("OA: {:.4f} AA: {:.4f} Kappa: {:.4f}" .format(OA2, AA_mean2, Kappa2)) print("*************************") if OA2 > min_val_obj and epoch > 10: model_save_path = os.path.join('./results/', args.dataset+'_'+args.model_name+'_p'+str(args.patches)+ '_'+str(round(OA2*100, 2))+'_epoch'+str(epoch)+'.pkl') torch.save(model.state_dict(), model_save_path) min_val_obj = OA2 best_epoch = epoch best_OA = OA2 best_AA = AA_mean2 best_Kappa = Kappa2 best_each_AA = AA2 toc = time.time() 这是后续的训练测试

最新推荐

recommend-type

基于PLC的电机控制系统设计.doc

基于PLC的电机控制系统设计.doc
recommend-type

高中生物《基因工程的原理》教案.docx

高中生物《基因工程的原理》教案.docx
recommend-type

基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇附Matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

飞思OA数据库文件下载指南

根据给定的文件信息,我们可以推断出以下知识点: 首先,从标题“飞思OA源代码[数据库文件]”可以看出,这里涉及的是一个名为“飞思OA”的办公自动化(Office Automation,简称OA)系统的源代码,并且特别提到了数据库文件。OA系统是用于企事业单位内部办公流程自动化的软件系统,它旨在提高工作效率、减少不必要的工作重复,以及增强信息交流与共享。 对于“飞思OA源代码”,这部分信息指出我们正在讨论的是OA系统的源代码部分,这通常意味着软件开发者或维护者拥有访问和修改软件底层代码的权限。源代码对于开发人员来说非常重要,因为它是软件功能实现的直接体现,而数据库文件则是其中的一个关键组成部分,用来存储和管理用户数据、业务数据等信息。 从描述“飞思OA源代码[数据库文件],以上代码没有数据库文件,请从这里下”可以分析出以下信息:虽然文件列表中提到了“DB”,但实际在当前上下文中,并没有提供包含完整数据库文件的下载链接或直接说明,这意味着如果用户需要获取完整的飞思OA系统的数据库文件,可能需要通过其他途径或者联系提供者获取。 文件的标签为“飞思OA源代码[数据库文件]”,这与标题保持一致,表明这是一个与飞思OA系统源代码相关的标签,而附加的“[数据库文件]”特别强调了数据库内容的重要性。在软件开发中,标签常用于帮助分类和检索信息,所以这个标签在这里是为了解释文件内容的属性和类型。 文件名称列表中的“DB”很可能指向的是数据库文件。在一般情况下,数据库文件的扩展名可能包括“.db”、“.sql”、“.mdb”、“.dbf”等,具体要看数据库的类型和使用的数据库管理系统(如MySQL、SQLite、Access等)。如果“DB”是指数据库文件,那么它很可能是以某种形式的压缩文件或包存在,这从“压缩包子文件的文件名称列表”可以推测。 针对这些知识点,以下是一些详细的解释和补充: 1. 办公自动化(OA)系统的构成: - OA系统由多个模块组成,比如工作流管理、文档管理、会议管理、邮件系统、报表系统等。 - 系统内部的流程自动化能够实现任务的自动分配、状态跟踪、结果反馈等。 - 通常,OA系统会提供用户界面来与用户交互,如网页形式的管理界面。 2. 数据库文件的作用: - 数据库文件用于存储数据,是实现业务逻辑和数据管理的基础设施。 - 数据库通常具有数据的CRUD(创建、读取、更新、删除)功能,是信息检索和管理的核心组件。 - 数据库文件的结构和设计直接关系到系统的性能和可扩展性。 3. 数据库文件类型: - 根据数据库管理系统不同,数据库文件可以有不同格式。 - 例如,MySQL数据库的文件通常是“.frm”文件存储表结构,“.MYD”存储数据,“.MYI”存储索引。 - 对于SQLite,数据库就是一个单独的“.sqlite”文件。 4. 数据库设计和管理: - 数据库设计需要遵循一定的规范和最佳实践,如范式化以减少数据冗余。 - 管理数据库包括数据备份、恢复、性能调优、安全性管理等。 5. OA系统开发及源代码维护: - 开发一个OA系统涉及需求分析、系统设计、编码实现、测试、部署和维护等多个阶段。 - OA系统源代码的维护工作包括代码审查、重构、版本控制和更新等。 综上所述,我们可以知道“飞思OA源代码[数据库文件]”所提供的信息包括了对飞思OA系统及其数据库文件的基础介绍和可能的获取途径。对于开发者而言,需要了解如何管理和操作这些数据库文件以确保系统的正常运行和数据的完整性。此外,对于那些希望进行系统定制或二次开发的用户,源代码的可访问性是非常重要的,这可以允许用户根据自己的需求来修改和增强系统功能。
recommend-type

Qt信号与槽优化:提升系统性能与响应速度的实战技巧

# 摘要 本文系统地探讨了Qt框架中信号与槽机制的原理、高级特性、性能优化以及在大型项目中的应用。首先,概述了信号与槽的基本概念和工作原理,包括信号的发射、槽函数的绑定与调用过程。随后,本文深入分析了信号与槽的内部机制,如数据类型兼容性和连接类型,并探讨了优化信
recommend-type

D8流向算法

<think>我们被要求解释或实现D8流向算法。D8流向算法是一种用于水文分析的数字高程模型(DEM)处理方法,用于确定地表水流的方向。每个像元的水流方向被指定为指向周围8个相邻像元中坡度最陡的那个方向。 ### 算法原理 在D8算法中,每个像元的水流方向被定义为指向其8个相邻像元(包括对角线方向)中坡度最大的方向。坡度由高程差除以距离计算,其中相邻像元的距离为1(水平和垂直方向)或√2(对角线方向)。具体步骤如下: 1. 对于中心像元,计算其与8个相邻像元的高程差(中心像元高程减去相邻像元高程,得到正值表示下坡)。 2. 计算每个相邻方向的坡度:坡度 = 高程差 / 距离(水平/垂直方向
recommend-type

精选36个精美ICO图标免费打包下载

在当今的软件开发和应用程序设计中,图标作为图形用户界面(GUI)的一个重要组成部分,承担着向用户传达信息、增加美观性和提高用户体验的重要角色。图标不仅仅是一个应用程序或文件的象征,它还是品牌形象在数字世界中的延伸。因此,开发人员和设计师往往会对默认生成的图标感到不满意,从而寻找更加精美和个性化的图标资源。 【标题】中提到的“精美ICO图标打包下载”,指向用户提供的是一组精选的图标文件,这些文件格式为ICO。ICO文件是一种图标文件格式,主要被用于Windows操作系统中的各种文件和应用程序的图标。由于Windows系统的普及,ICO格式的图标在软件开发中有着广泛的应用。 【描述】中提到的“VB、VC编写应用的自带图标很难看,换这些试试”,提示我们这个ICO图标包是专门为使用Visual Basic(VB)和Visual C++(VC)编写的应用程序准备的。VB和VC是Microsoft公司推出的两款编程语言,其中VB是一种主要面向初学者的面向对象编程语言,而VC则是更加专业化的C++开发环境。在这些开发环境中,用户可以选择自定义应用程序的图标,以提升应用的视觉效果和用户体验。 【标签】中的“.ico 图标”直接告诉我们,这些打包的图标是ICO格式的。在设计ICO图标时,需要注意其独特的尺寸要求,因为ICO格式支持多种尺寸的图标,例如16x16、32x32、48x48、64x64、128x128等像素尺寸,甚至可以包含高DPI版本以适应不同显示需求。此外,ICO文件通常包含多种颜色深度的图标,以便在不同的背景下提供最佳的显示效果。 【压缩包子文件的文件名称列表】显示了这些精美ICO图标的数量,即“精美ICO图标36个打包”。这意味着该压缩包内包含36个不同的ICO图标资源。对于软件开发者和设计师来说,这意味着他们可以从这36个图标中挑选适合其应用程序或项目的图标,以替代默认的、可能看起来不太吸引人的图标。 在实际应用中,将这些图标应用到VB或VC编写的程序中,通常需要编辑程序的资源文件或使用相应的开发环境提供的工具进行图标更换。例如,在VB中,可以通过资源编辑器选择并替换程序的图标;而在VC中,则可能需要通过设置项目属性来更改图标。由于Windows系统支持在编译应用程序时将图标嵌入到可执行文件(EXE)中,因此一旦图标更换完成并重新编译程序,新图标就会在程序运行时显示出来。 此外,当谈及图标资源时,还应当了解图标制作的基本原则和技巧,例如:图标设计应简洁明了,以传达清晰的信息;色彩运用需考虑色彩搭配的美观性和辨识度;图标风格要与应用程序的整体设计风格保持一致,等等。这些原则和技巧在选择和设计图标时都非常重要。 总结来说,【标题】、【描述】、【标签】和【压缩包子文件的文件名称列表】共同勾勒出了一个为VB和VC编程语言用户准备的ICO图标资源包。开发者通过下载和使用这些图标,能够有效地提升应用程序的外观和用户体验。在这一过程中,了解和应用图标设计与应用的基本知识至关重要。
recommend-type

【Qt数据库融合指南】:MySQL与Qt无缝集成的技巧

# 摘要 本文全面探讨了Qt数据库集成的基础知识与进阶应用,从Qt与MySQL的基础操作讲起,深入到Qt数据库编程接口的配置与使用,并详细介绍了数据模型和视图的实现。随着章节的深入,内容逐渐从基础的数据操作界面构建过渡到高级数据库操作实践,涵盖了性能优化、安全性策略和事务管理。本文还特别针对移动设备上的数据库集成进行了讨
recommend-type

Looking in links: https://shi-labs.com/natten/wheels/ WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='shi-labs.com', port=443): Read timed out. (read timeout=15)")': /natten/wheels/ WARNING: Retrying (Retry(total=3, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='shi-labs.com', port=443): Read timed out. (read timeout=15)")': /natten/wheels/ WARNING: Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='shi-labs.com', port=443): Read timed out. (read timeout=15)")': /natten/wheels/ WARNING: Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='shi-labs.com', port=443): Read timed out. (read timeout=15)")': /natten/wheels/ WARNING: Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='shi-labs.com', port=443): Read timed out. (read timeout=15)")': /natten/wheels/ ERROR: Ignored the following yanked versions: 0.14.1 ERROR: Could not find a version that satisfies the requirement natten==0.17.4+torch250cu121 (from versions: 0.14.2.post4, 0.14.4, 0.14.5, 0.14.6, 0.15.0, 0.15.1, 0.17.0, 0.17.1, 0.17.3, 0.17.4, 0.17.5, 0.20.0, 0.20.1) ERROR: No matching distribution found for natten==0.17.4+torch250cu121

<think>我们正在解决用户安装特定版本的natten包(0.17.4+torch250cu121)时遇到的ReadTimeoutError和版本未找到错误。 根据经验,这两个错误通常与网络问题和版本匹配问题有关。 步骤1: 分析问题 - ReadTimeoutError: 通常是由于网络连接不稳定或PyPI服务器响应慢导致下载超时。 - Version not found: 可能的原因包括: a) 指定的版本号在PyPI上不存在。 b) 指定的版本号与当前环境的Python版本或CUDA版本不兼容。 步骤2: 验证版本是否存在 我们可以通过访问PyP
recommend-type

精选教程分享:数据库系统基础学习资料

《世界著名计算机教材精选 数据库系统基础教程》这一标题揭示了该教材主要讨论的是数据库系统的基础知识。教材作为教学的重要工具,其内容往往涵盖某一领域的基本概念、原理、设计方法以及实现技术等。而该书被冠以“世界著名计算机教材精选”的标签,表明其可能源自世界范围内公认的、具有权威性的数据库系统教材,经过筛选汇编而成。 首先,从数据库系统的基础知识讲起,数据库系统的概念是在20世纪60年代随着计算机技术的发展而诞生的。数据库系统是一个集成化的数据集合,这些数据是由用户共享,且被组织成特定的数据模型以便进行高效的数据检索和管理。在数据库系统中,核心的概念包括数据模型、数据库设计、数据库查询语言、事务管理、并发控制和数据库系统的安全性等。 1. 数据模型:这是描述数据、数据关系、数据语义以及数据约束的概念工具,主要分为层次模型、网状模型、关系模型和面向对象模型等。其中,关系模型因其实现简单、易于理解和使用,已成为当前主流的数据模型。 2. 数据库设计:这是构建高效且能够满足用户需求的数据库系统的关键步骤,它包含需求分析、概念设计、逻辑设计和物理设计等阶段。设计过程中需考虑数据的完整性、一致性、冗余控制等问题,常用的工具有ER模型(实体-关系模型)和UML(统一建模语言)。 3. 数据库查询语言:SQL(Structured Query Language)作为标准的关系型数据库查询语言,在数据库系统中扮演着至关重要的角色。它允许用户对数据库进行查询、更新、插入和删除操作。SQL语言的熟练掌握是数据库系统学习者必须具备的能力。 4. 事务管理:在数据库系统中,事务是一系列的操作序列,必须作为一个整体执行,要么全部完成,要么全部不执行。事务管理涉及到数据库的可靠性、并发控制和恢复等关键功能,保证了数据的原子性、一致性、隔离性和持久性(ACID属性)。 5. 并发控制:由于多个用户可能同时对数据库进行操作,因此必须采取一定的并发控制机制以防止数据的不一致性,常用的技术包括封锁、时间戳、乐观控制等。 6. 数据库系统的安全性:安全性是保护数据库免受未授权访问和恶意攻击的措施,它包括身份验证、授权和审计等。 “数据库”这一标签说明了该教材专注于数据库领域,这个领域不仅限于理论知识,还包括了数据库的实际应用和解决方案的实现。教材内容可能涵盖数据库管理系统的使用和配置、数据库应用开发、数据库的维护和优化等。 教材的中文版形式表明它是为了方便中文读者而翻译或编写的,这使得中文世界的读者能够更加方便地学习和研究数据库系统的基础知识。同时,分享这一教材的行为,体现了知识传播的重要性以及人们对于知识共享的积极态度。 从给出的压缩包子文件的文件名称列表来看,“_世界著名计算机教材精选 数据库系统基础教程”显示了该压缩包中包含的文件内容。对于学习者来说,能够通过这样的压缩包文件获取到权威的数据库系统学习材料,无疑是一种宝贵的学习资源。