ValueError: "len" is not a supported function

时间: 2025-03-09 22:13:47 浏览: 27
`ValueError: "len" is not a supported function` 这个错误通常出现在尝试使用 `pandas.DataFrame.query()` 方法时,因为 `query()` 内部并不直接支持一些 Python 的内置函数,比如 `len()` 函数。这是因为 `query()` 使用的是 ParsedQuery 引擎,它有自己的语法限制。 当你想在 `association_rules` 或其他 DataFrame 操作中过滤行数或元素长度时,应该避免在 `.query()` 中使用 `len()`。你可以通过以下几种替代方案解决这个问题: ### 替代方案一:使用 apply 和 lambda 表达式 这种方法允许你在整个数据框上应用自定义逻辑来进行筛选。 ```python import pandas as pd from mlxtend.frequent_patterns import association_rules, fpgrowth # 假设 all_frequent_sets 已经是你得到的频繁项集DataFrame rules = association_rules(all_frequent_sets, metric="confidence", min_threshold=0.3) # 使用apply和lambda表达式来检查consequents的长度大于1的情况 multi_item_rules = rules[rules['consequents'].apply(lambda x: len(x)) > 1] print("Generated Association Rules Involving More Than Two Items with Confidence >= 0.3") display(multi_item_rules[['antecedents', 'consequents', 'support', 'confidence']]) strongest_based_on_lift = multi_item_rules.nlargest(5, 'lift') print("\nTop 5 Strongest Related Multi-item Rules based on Lift:") display(strongest_based_on_lift[['antecedents', 'consequents', 'support', 'confidence', 'lift']]) ``` ### 替代方案二:提前过滤频繁项集 如果你只需要考虑某些特定大小的项集(例如只关心3-项集),可以在生成关联规则前就对其进行初步筛选。 ```python # 只选择itemsets长度为3的频繁项集 three_items_frequents = all_frequent_sets[all_frequent_sets.itemsets.apply(len) == 3] # 然后再生成基于这三个物品集的规则 rules_from_three_items = association_rules(three_items_frequents, metric="confidence", min_threshold=0.3) print("Association Rules from Frequent Three-Item Sets with Confidence >= 0.3") display(rules_from_three_items[['antecedents', 'consequents', 'support', 'confidence']]) ``` ### 解释为什么会出现这个错误 `query()` 方法是为了让 Pandas 用户能够更方便地编写类似 SQL 查询的语言而设计的功能。然而,并不是所有的 Python 自带功能都能在这个上下文中正常工作,特别是像字符串操作、列表解析等功能都不适用于 `query()` 的环境内。因此,在遇到这种情况时,我们应该转向更为传统但也更加灵活的数据帧处理手段——如上面提到的应用 `apply()` 方法结合 Lambda 表达式的做法。
阅读全文

相关推荐

(vllm) zhzx@zhzx-S2600WF-LS:/media/zhzx/ssd2/Qwen3-32B$ vllm serve "/media/zhzx/ssd2/Qwen3-32B" --host 0.0.0.0 --port 8060 --dtype bfloat16 --tensor-parallel-size 2 --cpu-offload-gb 20 --gpu-memory-utilization 0.8 --max-model-len 8126 --api-key token-abc123 --enable-prefix-caching --trust-remote-code \ > INFO 05-10 20:06:33 [__init__.py:239] Automatically detected platform cuda. INFO 05-10 20:06:36 [api_server.py:1043] vLLM API server version 0.8.5.post1 INFO 05-10 20:06:36 [api_server.py:1044] args: Namespace(subparser='serve', model_tag='/media/zhzx/ssd2/Qwen3-32B', config='', host='0.0.0.0', port=8060, uvicorn_log_level='info', disable_uvicorn_access_log=False, allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key='token-abc123', lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='/media/zhzx/ssd2/Qwen3-32B', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, allowed_local_media_path=None, load_format='auto', download_dir=None, model_loader_extra_config={}, use_tqdm_on_load=True, config_format=<ConfigFormat.AUTO: 'auto'>, dtype='bfloat16', max_model_len=8126, guided_decoding_backend='auto', reasoning_parser=None, logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=2, data_parallel_size=1, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, disable_custom_all_reduce=False, block_size=None, gpu_memory_utilization=0.8, swap_space=4, kv_cache_dtype='auto', num_gpu_blocks_override=None, enable_prefix_caching=True, prefix_caching_hash_algo='builtin', cpu_offload_gb=20.0, calculate_kv_scales=False, disable_sliding_window=False, use_v2_block_manager=True, seed=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_token=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config={}, limit_mm_per_prompt={}, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=None, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=None, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', speculative_config=None, ignore_patterns=[], served_model_name=None, qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, max_num_batched_tokens=None, max_num_seqs=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, num_lookahead_slots=0, scheduler_delay_factor=0.0, preemption_mode=None, num_scheduler_steps=1, multi_step_stream_outputs=True, scheduling_policy='fcfs', enable_chunked_prefill=None, disable_chunked_mm_input=False, scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, additional_config=None, enable_reasoning=False, disable_cascade_attn=False, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False, dispatch_function=<function ServeSubcommand.cmd at 0x7f625a071bc0>) WARNING 05-10 20:06:36 [config.py:2972] Casting torch.float16 to torch.bfloat16. INFO 05-10 20:06:42 [config.py:717] This model supports multiple tasks: {'reward', 'embed', 'generate', 'classify', 'score'}. Defaulting to 'generate'. WARNING 05-10 20:06:42 [arg_utils.py:1658] Compute Capability < 8.0 is not supported by the V1 Engine. Falling back to V0. INFO 05-10 20:06:42 [config.py:1770] Defaulting to use mp for distributed inference INFO 05-10 20:06:42 [api_server.py:246] Started engine process with PID 73230 INFO 05-10 20:06:45 [__init__.py:239] Automatically detected platform cuda. INFO 05-10 20:06:47 [llm_engine.py:240] Initializing a V0 LLM engine (v0.8.5.post1) with config: model='/media/zhzx/ssd2/Qwen3-32B', speculative_config=None, tokenizer='/media/zhzx/ssd2/Qwen3-32B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=8126, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='auto', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=/media/zhzx/ssd2/Qwen3-32B, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=False, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":[],"compile_sizes":[],"cudagraph_capture_sizes":[256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":256}, use_cached_outputs=True, WARNING 05-10 20:06:48 [multiproc_worker_utils.py:306] Reducing Torch parallelism from 16 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed. INFO 05-10 20:06:48 [cuda.py:240] Cannot use FlashAttention-2 backend for Volta and Turing GPUs. INFO 05-10 20:06:48 [cuda.py:289] Using XFormers backend. INFO 05-10 20:06:50 [__init__.py:239] Automatically detected platform cuda. (VllmWorkerProcess pid=73270) INFO 05-10 20:06:53 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks (VllmWorkerProcess pid=73270) INFO 05-10 20:06:53 [cuda.py:240] Cannot use FlashAttention-2 backend for Volta and Turing GPUs. (VllmWorkerProcess pid=73270) INFO 05-10 20:06:53 [cuda.py:289] Using XFormers backend. ERROR 05-10 20:06:53 [engine.py:448] Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your Quadro RTX 6000 GPU has compute capability 7.5. You can use float16 instead by explicitly setting the dtype flag in CLI, for example: --dtype=half. ERROR 05-10 20:06:53 [engine.py:448] Traceback (most recent call last): ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 436, in run_mp_engine ERROR 05-10 20:06:53 [engine.py:448] engine = MQLLMEngine.from_vllm_config( ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 128, in from_vllm_config ERROR 05-10 20:06:53 [engine.py:448] return cls( ERROR 05-10 20:06:53 [engine.py:448] ^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 82, in __init__ ERROR 05-10 20:06:53 [engine.py:448] self.engine = LLMEngine(*args, **kwargs) ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 275, in __init__ ERROR 05-10 20:06:53 [engine.py:448] self.model_executor = executor_class(vllm_config=vllm_config) ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 286, in __init__ ERROR 05-10 20:06:53 [engine.py:448] super().__init__(*args, **kwargs) ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 52, in __init__ ERROR 05-10 20:06:53 [engine.py:448] self._init_executor() ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 124, in _init_executor ERROR 05-10 20:06:53 [engine.py:448] self._run_workers("init_device") ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 185, in _run_workers ERROR 05-10 20:06:53 [engine.py:448] driver_worker_output = run_method(self.driver_worker, sent_method, ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/utils.py", line 2456, in run_method ERROR 05-10 20:06:53 [engine.py:448] return func(*args, **kwargs) ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker_base.py", line 604, in init_device ERROR 05-10 20:06:53 [engine.py:448] self.worker.init_device() # type: ignore ERROR 05-10 20:06:53 [engine.py:448] ^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker.py", line 177, in init_device ERROR 05-10 20:06:53 [engine.py:448] _check_if_gpu_supports_dtype(self.model_config.dtype) ERROR 05-10 20:06:53 [engine.py:448] File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker.py", line 546, in _check_if_gpu_supports_dtype ERROR 05-10 20:06:53 [engine.py:448] raise ValueError( ERROR 05-10 20:06:53 [engine.py:448] ValueError: Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your Quadro RTX 6000 GPU has compute capability 7.5. You can use float16 instead by explicitly setting the dtype flag in CLI, for example: --dtype=half. Process SpawnProcess-1: ERROR 05-10 20:06:53 [multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 73270 died, exit code: -15 INFO 05-10 20:06:53 [multiproc_worker_utils.py:124] Killing local vLLM worker processes Traceback (most recent call last): File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 450, in run_mp_engine raise e File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 436, in run_mp_engine engine = MQLLMEngine.from_vllm_config( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 128, in from_vllm_config return cls( ^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 82, in __init__ self.engine = LLMEngine(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 275, in __init__ self.model_executor = executor_class(vllm_config=vllm_config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 286, in __init__ super().__init__(*args, **kwargs) File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 52, in __init__ self._init_executor() File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 124, in _init_executor self._run_workers("init_device") File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/mp_distributed_executor.py", line 185, in _run_workers driver_worker_output = run_method(self.driver_worker, sent_method, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/utils.py", line 2456, in run_method return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker_base.py", line 604, in init_device self.worker.init_device() # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker.py", line 177, in init_device _check_if_gpu_supports_dtype(self.model_config.dtype) File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/worker/worker.py", line 546, in _check_if_gpu_supports_dtype raise ValueError( ValueError: Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your Quadro RTX 6000 GPU has compute capability 7.5. You can use float16 instead by explicitly setting the dtype flag in CLI, for example: --dtype=half. Traceback (most recent call last): File "/home/zhzx/miniconda3/envs/vllm/bin/vllm", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/cli/main.py", line 53, in main args.dispatch_function(args) File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/cli/serve.py", line 27, in cmd uvloop.run(run_server(args)) File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/uvloop/__init__.py", line 109, in run return __asyncio.run( ^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/asyncio/runners.py", line 195, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/uvloop/__init__.py", line 61, in wrapper return await main ^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 1078, in run_server async with build_async_engine_client(args) as engine_client: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/contextlib.py", line 210, in __aenter__ return await anext(self.gen) ^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 146, in build_async_engine_client async with build_async_engine_client_from_engine_args( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/contextlib.py", line 210, in __aenter__ return await anext(self.gen) ^^^^^^^^^^^^^^^^^^^^^ File "/home/zhzx/miniconda3/envs/vllm/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 269, in build_async_engine_client_from_engine_args raise RuntimeError( RuntimeError: Engine process failed to start. See stack trace for the root cause.

import tensorflow as tf import os import matplotlib.pyplot as plt from time import time # 定义标签字典(根据实际类别修改) label_dict = { 'electrodrill': 0, 'headphones': 1, 'keyboard': 2, 'mobile_phone': 3, 'monitor': 4, 'mouse': 5, 'multimeter': 6, 'number': 7, 'oscillograph': 8, 'pliers': 9, 'printer': 10, 'screwdriver': 11, 'soldering_iron': 12, 'speaker': 13, 'tape_measure': 14, 'wrench': 15 } def data_load(data_dir, test_data_dir, img_height, img_width, batch_size): def process_image(image_path): image = tf.io.read_file(image_path) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [img_height, img_width]) image = (image / 127.5) - 1.0 # MobileNet标准化 return image def parse_path(path): # 转换为numpy字符串处理路径 path_str = path.numpy().decode('utf-8') # 获取类别文件夹名 class_name = tf.strings.split(path_str, os.path.sep)[-2].numpy().decode('utf-8') # 从预定义的字典获取标签索引 label_idx = label_dict.get(class_name, -1) # -1表示未知类别 if label_idx == -1: raise ValueError(f"未知类别: {class_name}") return process_image(path), label_idx def map_fn(path): # 使用py_function包装Python逻辑 image, label = tf.py_function( func=parse_path, inp=[path], Tout=[tf.float32, tf.int32] ) # 设置明确的Tensor形状 image.set_shape([img_height, img_width, 3]) label.set_shape([]) # 将标签转换为one-hot编码 label = tf.one_hot(label, depth=len(label_dict)) return image, label def load_dataset(directory): # 获取所有图片路径 dataset = tf.data.Dataset.list_files(directory + '/*/*.jpg', shuffle=True) # 应用处理函数 dataset = dataset.map( map_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE ) return dataset # 加载数据集 train_ds = load_dataset(data_dir) val_ds = load_dataset(test_data_dir) # 批处理和预取 train_ds = train_ds.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE) val_ds = val_ds.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE) # 验证数据预处理是否正确 for images, labels in train_ds.take(1): # 检查图像标准化是否正确 min_value = tf.reduce_min(images) max_value = tf.reduce_max(images) print(f"图像标准化检查: 最小值 = {min_value.numpy()}, 最大值 = {max_value.numpy()}") assert min_value >= -1 and max_value <= 1, "图像标准化错误,范围应为[-1, 1]" # 检查标签是否为one-hot编码且正确 print("标签示例:", labels[0].numpy()) # 应为one-hot如[0,0,1,...,0] assert tf.reduce_sum(labels[0]).numpy() == 1, "标签应该是one-hot编码,其中只有一个值为1,其余为0" return train_ds, val_ds def model_load(IMG_SHAPE=(224, 224, 3), class_num=16, learning_rate=0.01): # 添加learning_rate参数 base_model = tf.keras.applications.MobileNetV2( input_shape=IMG_SHAPE, include_top=False, weights='imagenet' ) base_model.trainable = False model = tf.keras.Sequential([ base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(class_num, activation='softmax') ]) # 显式设置学习率的优化器 optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) model.compile( optimizer=optimizer, # 使用自定义优化器 loss='categorical_crossentropy', metrics=['accuracy'] ) model.summary() return model def show_loss_acc(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] plt.figure(figsize=(8, 8)) plt.subplot(2, 1, 1) plt.plot(acc, label='Training Accuracy') plt.plot(val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.ylabel('Accuracy') plt.ylim([min(plt.ylim()), 1]) plt.title('Training and Validation Accuracy') plt.subplot(2, 1, 2) plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.ylabel('Cross Entropy') plt.title('Training and Validation Loss') plt.xlabel('epoch') plt.savefig('results/results_mobilenet.png', dpi=100) def train(epochs): begin_time = time() # 创建必要目录 os.makedirs("models", exist_ok=True) os.makedirs("results", exist_ok=True) try: print("加载数据集中...") train_ds, val_ds = data_load( "C:/Users/dll20/Desktop/vegetables_tf2.3-master/new_data/train", "C:/Users/dll20/Desktop/vegetables_tf2.3-master/new_data/val", 224, 224, 16 ) # 验证数据加载 for images, labels in train_ds.take(1): print(f"图像形状: {images.shape}, 标签形状: {labels.shape}") print(f"标签示例: {labels[0].numpy()}") print("类别数量:", len(label_dict)) print("类别映射:", label_dict) model = model_load(class_num=len(label_dict)) print("开始训练...") history = model.fit( train_ds, validation_data=val_ds, epochs=epochs, verbose=1 ) model.save("models/mobilenet_engineer.h5") show_loss_acc(history) except Exception as e: print(f"训练出错: {str(e)}") import traceback traceback.print_exc() finally: print(f"总耗时: {time() - begin_time:.2f}秒") if __name__ == '__main__': # 配置TensorFlow tf.config.run_functions_eagerly(False) physical_devices = tf.config.list_physical_devices('GPU') if physical_devices: tf.config.experimental.set_memory_growth(physical_devices[0], True) 图像标准化检查: 最小值 = -1.0, 最大值 = 1.0 标签示例: [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] 图像形状: (16, 224, 224, 3), 标签形状: (16, 16) 标签示例: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] 类别数量: 16 类别映射: {'electrodrill': 0, 'headphones': 1, 'keyboard': 2, 'mobile_phone': 3, 'monitor': 4, 'mouse': 5, 'multimeter': 6, 'number': 7, 'oscillograph': 8, 'pliers': 9, 'printer': 10, 'screwdriver': 11, 'soldering_iron': 12, 'speaker': 13, 'tape_measure': 14, 'wrench': 15} Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= mobilenetv2_1.00_224 (Functi (None, 7, 7, 1280) 2257984 _________________________________________________________________ global_average_pooling2d (Gl (None, 1280) 0 _________________________________________________________________ dense (Dense) (None, 16) 20496 ================================================================= Total params: 2,278,480 Trainable params: 20,496 Non-trainable params: 2,257,984 _________________________________________________________________ 开始训练... Epoch 1/100 2025-05-17 20:14:57.943383: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll 2025-05-17 20:16:05.881342: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudnn64_7.dll 2025-05-17 20:19:28.437448: W tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only Relying on driver to perform ptx compilation. Modify $PATH to customize ptxas location. This message will be only logged once. 1024/1024 [==============================] - 53s 52ms/step - loss: 9.9016 - accuracy: 0.0606 - val_loss: 9.3069 - val_accuracy: 0.0701 Epoch 2/100 1024/1024 [==============================] - 77s 75ms/step - loss: 10.5672 - accuracy: 0.0642 - val_loss: 10.8782 - val_accuracy: 0.0718 Epoch 3/100 1024/1024 [==============================] - 80s 78ms/step - loss: 10.6035 - accuracy: 0.0639 - val_loss: 10.8998 - val_accuracy: 0.0658 Epoch 4/100 1024/1024 [==============================] - 78s 76ms/step - loss: 10.4597 - accuracy: 0.0658 - val_loss: 9.5053 - val_accuracy: 0.0581 Epoch 5/100 1024/1024 [==============================] - 77s 75ms/step - loss: 10.1673 - accuracy: 0.0596 - val_loss: 12.2643 - val_accuracy: 0.0620 Epoch 6/100 1024/1024 [==============================] - 81s 79ms/step - loss: 10.1886 - accuracy: 0.0628 - val_loss: 9.2048 - val_accuracy: 0.0641 Epoch 7/100 1024/1024 [==============================] - 78s 76ms/step - loss: 10.2992 - accuracy: 0.0630 - val_loss: 10.0681 - val_accuracy: 0.0658 Epoch 8/100 1024/1024 [==============================] - 65s 63ms/step - loss: 10.2812 - accuracy: 0.0665 - val_loss: 12.2382 - val_accuracy: 0.0645 Epoch 9/100 1024/1024 [==============================] - 76s 74ms/step - loss: 11.4436 - accuracy: 0.0637 - val_loss: 9.5845 - val_accuracy: 0.0697 Epoch 10/100 1024/1024 [==============================] - 55s 54ms/step - loss: 10.2822 - accuracy: 0.0664 - val_loss: 9.9871 - val_accuracy: 0.0632 Epoch 11/100 1024/1024 [==============================] - 56s 55ms/step - loss: 10.9518 - accuracy: 0.0647 - val_loss: 12.8353 - val_accuracy: 0.0603 Epoch 12/100 1024/1024 [==============================] - 57s 55ms/step - loss: 10.7480 - accuracy: 0.0646 - val_loss: 10.8068 - val_accuracy: 0.0607 Epoch 13/100 1024/1024 [==============================] - 56s 54ms/step - loss: 10.3040 - accuracy: 0.0618 - val_loss: 11.6900 - val_accuracy: 0.0628 Epoch 14/100 1024/1024 [==============================] - 54s 52ms/step - loss: 10.5912 - accuracy: 0.0630 - val_loss: 14.3563 - val_accuracy: 0.0778 Epoch 15/100 1024/1024 [==============================] - 53s 52ms/step - loss: 10.7772 - accuracy: 0.0635 - val_loss: 11.0138 - val_accuracy: 0.0641 Epoch 16/100 1024/1024 [==============================] - 53s 52ms/step - loss: 10.1329 - accuracy: 0.0651 - val_loss: 11.0438 - val_accuracy: 0.0632 Epoch 17/100 1024/1024 [==============================] - 54s 52ms/step - loss: 10.4157 - accuracy: 0.0617 - val_loss: 11.4240 - val_accuracy: 0.0662 Epoch 18/100 1024/1024 [==============================] - 57s 55ms/step - loss: 10.4042 - accuracy: 0.0635 - val_loss: 11.6729 - val_accuracy: 0.0624 train(epochs=100) 我上述代码运行输出 一共16个类 正确率一直这么低 基本没变化 感觉就是没用上这个模型的感觉 不是微调的问题 我的目的是图像分类出16个种类 帮我检查这个代码 帮我找找原因

最新推荐

recommend-type

Java算法:二叉树的前中后序遍历实现

在深入探讨如何用Java实现二叉树及其三种基本遍历(前序遍历、中序遍历和后序遍历)之前,我们需要了解一些基础知识。 首先,二叉树是一种被广泛使用的数据结构,它具有以下特性: 1. 每个节点最多有两个子节点,分别是左子节点和右子节点。 2. 左子树和右子树都是二叉树。 3. 每个节点都包含三个部分:值、左子节点的引用和右子节点的引用。 4. 二叉树的遍历通常用于访问树中的每个节点,且访问的顺序可以是前序、中序和后序。 接下来,我们将详细介绍如何用Java来构建这样一个树结构,并实现这些遍历方式。 ### Java实现二叉树结构 要实现二叉树结构,我们首先需要一个节点类(Node.java),该类将包含节点值以及指向左右子节点的引用。其次,我们需要一个树类(Tree.java),它将包含根节点,并提供方法来构建树以及执行不同的遍历。 #### Node.java ```java public class Node { int value; Node left; Node right; public Node(int value) { this.value = value; left = null; right = null; } } ``` #### Tree.java ```java import java.util.Stack; public class Tree { private Node root; public Tree() { root = null; } // 这里可以添加插入、删除等方法 // ... // 前序遍历 public void preOrderTraversal(Node node) { if (node != null) { System.out.print(node.value + " "); preOrderTraversal(node.left); preOrderTraversal(node.right); } } // 中序遍历 public void inOrderTraversal(Node node) { if (node != null) { inOrderTraversal(node.left); System.out.print(node.value + " "); inOrderTraversal(node.right); } } // 后序遍历 public void postOrderTraversal(Node node) { if (node != null) { postOrderTraversal(node.left); postOrderTraversal(node.right); System.out.print(node.value + " "); } } // 迭代形式的前序遍历 public void preOrderTraversalIterative() { Stack<Node> stack = new Stack<>(); stack.push(root); while (!stack.isEmpty()) { Node node = stack.pop(); System.out.print(node.value + " "); if (node.right != null) { stack.push(node.right); } if (node.left != null) { stack.push(node.left); } } System.out.println(); } // 迭代形式的中序遍历 public void inOrderTraversalIterative() { Stack<Node> stack = new Stack<>(); Node current = root; while (current != null || !stack.isEmpty()) { while (current != null) { stack.push(current); current = current.left; } current = stack.pop(); System.out.print(current.value + " "); current = current.right; } System.out.println(); } // 迭代形式的后序遍历 public void postOrderTraversalIterative() { Stack<Node> stack = new Stack<>(); Stack<Node> output = new Stack<>(); stack.push(root); while (!stack.isEmpty()) { Node node = stack.pop(); output.push(node); if (node.left != null) { stack.push(node.left); } if (node.right != null) { stack.push(node.right); } } while (!output.isEmpty()) { System.out.print(output.pop().value + " "); } System.out.println(); } } ``` ### Java实现的二叉树遍历详细解析 #### 前序遍历(Pre-order Traversal) 前序遍历是先访问根节点,然后递归地前序遍历左子树,接着递归地前序遍历右子树。遍历的顺序是:根 -> 左 -> 右。 #### 中序遍历(In-order Traversal) 中序遍历是先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。对于二叉搜索树来说,中序遍历可以按从小到大的顺序访问所有节点。遍历的顺序是:左 -> 根 -> 右。 #### 后序遍历(Post-order Traversal) 后序遍历是先递归地后序遍历左子树,然后递归地后序遍历右子树,最后访问根节点。遍历的顺序是:左 -> 右 -> 根。 ### 迭代形式的遍历 在上述`Tree.java`类中,我们还实现了迭代形式的遍历,通过使用栈来模拟递归过程。这种方法在处理大型树结构时,可以避免递归导致的栈溢出问题,并且可以提高效率。 ### 总结 通过上述代码和解释,我们可以看到,使用Java实现二叉树及其遍历方法相对直接。核心在于理解二叉树节点的结构和递归逻辑,以及如何使用栈来模拟递归过程。在实践中,了解并掌握这些基本算法对于解决复杂问题是非常有用的。此外,理解这些基本概念后,可以进一步探索更高级的二叉树算法,如平衡二叉树(AVL树)、红黑树等。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

grant usage on ** to bcc@*%

<think>我们正在处理一个关于MySQL权限授予的问题。用户的具体需求是:为数据库用户'bcc'@'%'授予对所有数据库的使用权限(USAGE)。根据引用[1]和引用[4],我们知道在MySQL中,使用GRANT语句来授予权限。注意:USAGE权限实际上是一个“无权限”的权限,它仅仅表示用户存在,但没有任何实际权限(除了连接数据库)。如果用户只想允许用户连接数据库而不做任何操作,那么授予USAGE是合适的。但是,用户要求的是“使用权限”,我们需要确认用户是否真的只需要USAGE权限,还是需要其他权限?根据问题描述,用户明确说“使用权限”,并且指定了USAGE(在问题中提到了grantusa
recommend-type

Nokia手机通用密码计算器:解锁神器

根据给定的文件信息,我们可以了解到一个关于诺基亚(Nokia)手机解锁密码生成工具的知识点。在这个场景中,文件标题“Nokia手机密码计算器”表明了这是一个专门用于生成Nokia手机解锁密码的应用程序。描述中提到的“输入手机串号,就可得到10位通用密码,用于解锁手机”说明了该工具的使用方法和功能。 知识点详解如下: 1. Nokia手机串号的含义: 串号(Serial Number),也称为序列号,是每部手机独一无二的标识,通常印在手机的电池槽内或者在手机的设置信息中可以查看。它对于手机的售后维修、技术支持以及身份识别等方面具有重要意义。串号通常由15位数字组成,能够提供制造商、型号、生产日期和制造地点等相关信息。 2. Nokia手机密码计算器的工作原理: Nokia手机密码计算器通过特定的算法将手机的串号转换成一个10位的数字密码。这个密码是为了帮助用户在忘记手机的PIN码(个人识别码)、PUK码(PIN解锁码)或者某些情况下手机被锁定时,能够解锁手机。 3. 通用密码与安全性: 这种“通用密码”是基于一定算法生成的,不是随机的。它通常适用于老型号的Nokia手机,因为这些手机在设计时通常会采用固定的算法来生成密码。然而,随着科技的发展和安全需求的提高,现代手机通常不会提供此类算法生成的通用密码,以防止未经授权的解锁尝试。 4. Nokia手机的安全机制: 老型号的Nokia手机在设计时,通常会考虑到用户可能忘记密码的情况。为了保证用户在这种情况下的手机依然能够被解锁使用,制造商设置了一套安全机制,即通用密码系统。但这同时也带来了潜在的安全风险,因为如果算法被破解,那么任何知道串号的人都可能解锁这部手机。 5. MasterCode.exe文件的作用: 文件列表中的“MasterCode.exe”很可能就是上述“Nokia手机密码计算器”的可执行文件。用户需要运行这个程序,并按照程序的指示输入手机的串号,程序便会根据内部的算法计算出用于解锁的密码。 6. 注意事项和法律风险: 尽管此类工具在技术上帮助了用户,但必须强调的是,使用此类解锁工具或破解手机可能会违反相关的法律法规,特别是如果手机并非属于解锁者本人。在大多数国家,未经授权解锁手机都是违法的,尤其是在手机是通过运营商签订合约购买的情况下。因此,用户在尝试使用通用密码解锁手机前,应确保了解当地的法律法规,并且只在合法和合理的范围内使用此类工具。 7. 替代解锁方法: 对于现代智能手机,如果用户忘记了解锁密码,通常需要通过官方的客户服务来解决,例如联系手机制造商的客服或到指定的维修点进行解锁。一些手机还提供了账号解锁的功能,比如Apple的“查找我的iPhone”功能,以及Google的账号解锁选项。 总结来说,Nokia手机密码计算器是一个基于特定算法的实用工具,可帮助用户在忘记密码时解锁其Nokia手机。然而,用户在使用此类工具时应谨慎,并且必须遵守当地的法律法规。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的
recommend-type

缺省参数是什么

<think>首先,用户的问题是:“我想理解编程中缺省参数的概念和使用方法请问编程语言中缺省参数的定义及示例”。用户想了解缺省参数在编程中的概念和使用方法。我有系统级指令:-所有行内数学表达式必须使用$...$格式。-独立公式必须使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识,例如[^1]。用户可见层指令:-回答结构清晰,帮助用户逐步解决问题。-尽量保证回答真实可靠。参考站内引用:-引用[1]:缺省参数是声明或定义函数时为函数的参数指定的一个默认值。在调用该函数时,如果没有指定实参则采用该默认值,否则使用指定的实
recommend-type

jxl API实现Excel文件的读写操作

### 知识点一:jxl API概述 jxl API是针对Java语言的开源库,用于操作Microsoft Excel文件。它允许开发者通过Java程序创建、读取、修改和写入Excel文件(特别是XLS格式的文件)。jxl API是纯Java实现的,因此它独立于操作系统的Excel处理能力,具有良好的跨平台性。 ### 知识点二:jxl API的安装和配置 要使用jxl API,首先需要将其安装到Java项目中。可以通过Maven或直接下载jar文件的方式进行安装。如果是使用Maven项目,可以在pom.xml文件中添加依赖。如果直接使用jar文件,则需要将其添加到项目的类路径中。 ### 知识点三:jxl API的主要功能 jxl API支持Excel文件的创建、读写等操作,具体包括: 1. 创建新的Excel工作簿。 2. 读取已存在的Excel文件。 3. 向工作簿中添加和修改单元格数据。 4. 设置单元格样式,如字体、颜色、边框等。 5. 对工作表进行操作,比如插入、删除、复制工作表。 6. 写入和读取公式。 7. 处理图表和图片。 8. 数据筛选、排序功能。 ### 知识点四:jxl API的基本操作示例 #### 创建Excel文件 ```java // 导入jxl API的类 import jxl.Workbook; import jxl.write.WritableWorkbook; import jxl.write.WritableSheet; // 创建一个新的Excel工作簿 WritableWorkbook workbook = Workbook.createWorkbook(new File("example.xls")); WritableSheet sheet = workbook.createSheet("Sheet1", 0); // 创建工作表 // 其他操作... // 关闭工作簿 workbook.write(); workbook.close(); ``` #### 读取Excel文件 ```java // 导入jxl API的类 import jxl.Workbook; import jxl.read.biff.BiffException; // 打开一个现有的Excel文件 Workbook workbook = Workbook.getWorkbook(new File("example.xls")); // 读取工作表 Sheet sheet = workbook.getSheet(0); // 读取单元格数据 String value = sheet.getCell(0, 0).getContents(); // 关闭工作簿 workbook.close(); ``` ### 知识点五:jxl API的高级操作 除了基础操作之外,jxl API还支持一些高级功能,如: - **设置单元格格式**:为单元格设置字体大小、颜色、对齐方式等。 - **批量修改**:一次性修改大量单元格的数据。 - **数据透视表**:创建和操作数据透视表。 - **图表**:在工作表中插入图表,并进行修改。 ### 知识点六:错误处理 使用jxl API时,可能会遇到一些错误,例如: - `BiffException`:当打开一个损坏的Excel文件时会抛出此异常。 - `WriteException`:在写入Excel文件时出现问题会抛出此异常。 正确处理这些异常对于确保程序的健壮性至关重要。 ### 知识点七:兼容性问题 由于jxl API主要处理XLS格式的Excel文件,它可能与新版本的Excel(如Excel 2007及以上版本的XLSX格式)不完全兼容。如果需要操作XLSX格式的文件,可能需要寻找其他的库,如Apache POI。 ### 知识点八:最佳实践 当使用jxl API进行读写操作时,应该遵循一些最佳实践: - 尽量在读取或写入少量数据时打开和关闭工作簿,以节省资源。 - 对于需要大量数据操作的场景,建议使用jxl API的批量写入和批量读取功能。 - 注意线程安全问题。jxl API不是线程安全的,因此在多线程环境下操作Excel文件时需要特别注意。 - 在处理大量数据时,可能需要考虑性能优化,例如缓存读取的数据或使用更高效的文件操作方法。 以上就是jxl API在读写Excel文件时的详细知识点,涵盖了jxl API的基本概念、安装配置、主要功能、操作示例、高级操作、错误处理、兼容性问题以及最佳实践。掌握这些知识点将有助于开发者高效、稳定地处理Excel文件。
recommend-type

【故障恢复策略】:RK3588与NVMe固态硬盘的容灾方案指南

# 1. RK3588处理器与NVMe固态硬盘的概述 ## 1.1 RK3588处理器简介 RK3588是Rockchip推出的一款高端处理器,具备强大的性能和多样的功能,集成了八核CPU和六核GPU,以及专用的AI处理单元,主要用于高端移动设备、边缘计算和
recommend-type

python 设置webview的浏览器版本

<think>我们正在处理用户关于在Python中设置WebView的浏览器版本的问题。根据用户提供的引用信息,似乎涉及PyQT和QtWebView。引用中提到了将KWebView更改为QtWebView,以及设置浏览器版本。在PyQt中,WebView组件通常是QWebView(在Qt4中)或QWebEngineView(在Qt5及以后)。QtWebEngineView是基于Chromium的,因此它有自己的浏览器引擎版本。要设置WebView的浏览器版本,实际上我们无法直接设置一个任意的版本,因为它是基于QtWebEngine模块的,而QtWebEngine模块本身绑定了一个特定的Chro
recommend-type

TMPGEnc汉化免装版下载:视频压缩与转换工具

从给定文件信息中,可以提取出以下知识点: 标题解析: "TMPGEnc.4.0.XPress.V4.7.1.284.汉化免装版" 是对一款软件的命名,其中每个部分都有特定的含义。 - TMPGEnc:是一个著名的视频编码软件系列,由日本Pegasys公司开发。 - 4.0.XPress:指的是该软件系列中的4.0版本的XPress套件,XPress通常表示该版本为面向专业或高级用户的简化版。 - V4.7.1.284:这代表着软件的版本号,4.7.1是主版本号,284可能是修订号或构建号。 - 汉化免装版:意味着这个特定版本已经汉化,即已经翻译成中文,方便中文用户使用;并且是一个免安装版本,可能指解压后即可运行,无需安装过程。 描述: 此处描述重复标题信息,未提供更多细节。但从标题可以推断,该软件是TMPGEnc的4.0版本的XPress套件的4.7.1.284版本的汉化免装版。 标签: - 汉化免装版:表明用户可以直接使用,无需安装和语言障碍。 文件名称列表: 这些文件名称可能代表软件运行所需的核心组件或者插件。虽然文件名本身并不直接提供详细信息,但可以通过其命名来推测它们的功能。 1. mch264vout.001:该文件可能是一个视频输出模块,用于H.264编码格式的视频内容输出。 2. mcmpgdmx.ax:该文件名中"mpg"可能表示它是处理MPEG格式视频的相关模块。 3. DivXEnc.ax、DivXDec.ax:这两个文件名中的"DivX"指代了著名的DivX视频编码技术。"Enc"代表编码器,"Dec"代表解码器。 4. mcmp4mux.ax、mcmp4demux.ax:这两个文件可能与MPEG-4格式的数据封装与解封装有关,"mux"代表封装,"demux"代表解封装。 5. mch264ve.ax:该文件名中的"ve"可能表示视频编码器,专门针对H.264视频编码。 6. mcm4vd.ax:推测是MPEG-4视频解码器。 7. mcamre.ax:这个文件名不太明确,但可能是指某种格式的音视频混合解码器。 8. mcm4ve.ax:推测为MPEG-4视频编码器。 结合标题和文件列表可以推测,这个软件包可能包括了处理和编码H.264、MPEG、DivX等多种视频格式的功能,特别为中文用户提供了一个无需安装的便利版本。该版本可能包含了视频编码器、解码器、输出模块、封装和解封装模块等,为视频编辑和转换提供了全面的解决方案。需要注意的是,上述文件名的具体功能和用途需要结合实际软件使用环境和官方文档进行详细解读。此外,由于该版本是汉化免装版,用户在使用时应考虑软件的合法性及软件更新、技术支持等问题。