import os import pandas as pd from sklearn.neighbors import KNeighborsRegressor # 读取第一个文件夹中的所有csv文件 folder1_path = "/path/to/folder1" files1 = os.listdir(folder1_path) dfs1 = [] for file1 in files1: if file1.endswith(".csv"): file1_path = os.path.join(folder1_path, file1) df1 = pd.read_csv(file1_path, usecols=[1,2,3,4]) dfs1.append(df1) # 将第一个文件夹中的所有数据合并为一个DataFrame df_X = pd.concat(dfs1, ignore_index=True) # 读取第二个文件夹中的所有csv文件 folder2_path = "/path/to/folder2" files2 = os.listdir(folder2_path) dfs2 = [] for file2 in files2: if file2.endswith(".csv"): file2_path = os.path.join(folder2_path, file2) df2 = pd.read_csv(file2_path, usecols=[1]) dfs2.append(df2) # 将第二个文件夹中的所有数据合并为一个DataFrame df_X["X5"] = pd.concat(dfs2, ignore_index=True) # 读取第三个文件夹中的所有csv文件 folder3_path = "/path/to/folder3" files3 = os.listdir(folder3_path) dfs3 = [] for file3 in files3: if file3.endswith(".csv"): file3_path = os.path.join(folder3_path, file3) df3 = pd.read_csv(file3_path, usecols=[2,6]) dfs3.append(df3) # 将第三个文件夹中的所有数据合并为一个DataFrame df_y = pd.concat(dfs3, ignore_index=True) # 训练k邻近回归模型 k = 5 model = KNeighborsRegressor(n_neighbors=k) model.fit(df_X, df_y) 这段代码之后的步骤是什么
时间: 2024-04-01 12:38:35 浏览: 275
这段代码训练了一个k邻近回归模型,之后可以使用该模型对新的数据进行预测。预测的步骤如下:
1. 读取新的数据文件夹中的所有csv文件,并将它们合并为一个DataFrame,使用与训练数据相同的列;
2. 对新的数据应用与训练数据相同的特征工程,包括处理缺失值、特征缩放等;
3. 使用训练好的k邻近回归模型对新的数据进行预测,得到预测结果;
4. 对预测结果进行后处理,例如对结果进行反向变换等;
5. 输出预测结果,可以将预测结果保存到文件或者通过其他方式展示给用户。
相关问题
import os import pandas as pd from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import r2_score # 读取第一个文件夹中的所有csv文件 folder1_path = "/path/to/folder1" files1 = os.listdir(folder1_path) dfs1 = [] for file1 in files1: if file1.endswith(".csv"): file1_path = os.path.join(folder1_path, file1) df1 = pd.read_csv(file1_path, usecols=[1,2,3,4]) dfs1.append(df1) # 将第一个文件夹中的所有数据合并为一个DataFrame df_X = pd.concat(dfs1, ignore_index=True) # 读取第二个文件夹中的所有csv文件 folder2_path = "/path/to/folder2" files2 = os.listdir(folder2_path) dfs2 = [] for file2 in files2: if file2.endswith(".csv"): file2_path = os.path.join(folder2_path, file2) df2 = pd.read_csv(file2_path, usecols=[1]) dfs2.append(df2) # 将第二个文件夹中的所有数据合并为一个DataFrame df_X["X5"] = pd.concat(dfs2, ignore_index=True) # 读取第三个文件夹中的所有csv文件 folder3_path = "/path/to/folder3" files3 = os.listdir(folder3_path) dfs3 = [] for file3 in files3: if file3.endswith(".csv"): file3_path = os.path.join(folder3_path, file3) df3 = pd.read_csv(file3_path, usecols=[2,6]) dfs3.append(df3) # 将第三个文件夹中的所有数据合并为一个DataFrame df_y = pd.concat(dfs3, ignore_index=True) # 训练k邻近回归模型 k = 5 model = KNeighborsRegressor(n_neighbors=k) model.fit(df_X, df_y) # 读取测试数据 test_folder_path = "/path/to/test/folder" test_files = os.listdir(test_folder_path) test_dfs = [] for test_file in test_files: if test_file.endswith(".csv"): test_file_path = os.path.join(test_folder_path, test_file) test_df = pd.read_csv(test_file_path, usecols=[1,2,3,4]) test_dfs.append(test_df) # 将测试数据合并为一个DataFrame test_X = pd.concat(test_dfs, ignore_index=True) # 对测试数据进行预测 test_y_pred = model.predict(test_X) # 计算模型准确率 test_y_true = pd.read_csv(test_file_path, usecols=[2,6]).values r2 = r2_score(test_y_true, test_y_pred) print("模型准确率:", r2)这段代码为什么不划分训练集和测试集进行训练再做预测
这段代码没有划分训练集和测试集进行训练再做预测,而是直接将所有数据合并为一个DataFrame进行训练和预测。可能是因为数据量比较小,划分训练集和测试集不会影响模型的性能评估,或者是因为数据量比较大,划分训练集和测试集会增加代码的复杂度和运行时间,而合并所有数据后训练和预测可以简化代码,并且可以利用更多的数据训练模型,提高模型的泛化能力。
然而,在实际应用中,为了有效评估模型的性能,一般还是需要将数据集划分为训练集和测试集进行训练和预测,并采用交叉验证等方法来进一步验证模型的鲁棒性和泛化能力。
``` import os import pandas as pd import numpy as np # 设置主文件夹路径 main_folder = 'C:/Users\Lenovo\Desktop\crcw不同端12k在0负载下\风扇端' # 创建空列表,用于存储数据和标签 data_list = [] label_list = [] def processTarget(): # 遍历主文件夹中的每个子文件夹,并处理每个.csv文件 for folder_name in sorted(os.listdir(main_folder)): folder_path = os.path.join(main_folder, folder_name) if os.path.isdir(folder_path): csv_files = [f for f in os.listdir(folder_path) if f.endswith('.csv')] print(f"Processing folder: {folder_name}, found {len(csv_files)} CSV files.") # 打印 CSV 文件数量 # 遍历该类别文件夹中的.csv文件 for filename in sorted(csv_files): file_path = os.path.join(folder_path, filename) # 读取.csv文件 csv_data = pd.read_csv(file_path, header=None) # 检查数据形状,确保至少有4列 if csv_data.shape[1] >= 4: # 确保至少有4列 csv_data = csv_data.iloc[:, [0, 1, 2]].values # 只保留前3列,忽略第4列(RPM) else: print(f"Skipping file {filename}, unexpected shape: {csv_data.shape}") continue # 跳过不符合要求的文件 # 将当前文件的数据添加到 data_list 中 data_list.append(csv_data) # 添加为二维数组 # 添加相应的标签 if '内圈故障' in folder_name: class_label = 0 # 0: 内圈故障 elif '球故障' in folder_name: class_label = 1 # 1: 球故障 else: continue # 如果文件夹名称不符合预期,跳过 label_list.append(class_label) # 直接添加标签 # 确保 data_list 和 label_list 不为空 if data_list and label_list: # 将数据转换为三维 NumPy 数组 data = np.array(data_list) # shape: (文件数量, 1000, 3) label = np.array(label_list) # shape: (文件数量,) return data, label else: raise ValueError("没有有效的数据可供处理。") # 调用 processTarget 函数 try: data0, label0 = processTarget() print(data0.shape) # 输出数据形状 print(label0.shape) # 输出标签形状 except ValueError as e: print(e)```这是我之前用于处理一个数据集的代码,现在我要重新处理该数据集,可以帮忙用python划分出测试集,训练集,验证集,然后运用JOINT DISTRIBUTION ALIGNMENT进行处理并给出运行结果吗,要求:划分测试集,训练集,验证集和JOINT DISTRIBUTION ALIGNMENT分为两个python文件
好的!以下是将你的代码拆分为两个Python文件的具体步骤:
**第一个文件 `data_split.py`** 用于完成数据集的划分(训练集、验证集和测试集)。
**第二个文件 `jda_processing.py`** 则专注于通过 Joint Distribution Alignment (JDA) 对齐分布并处理数据。
---
### **File 1: 数据分割 (`data_split.py`)**
此脚本主要用于加载原始数据并将其划分为训练集、验证集和测试集:
```python
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
# 加载数据函数(与原代码一致)
def load_data(main_folder='C:/Users/Lenovo/Desktop/crcw不同端12k在0负载下/风扇端'):
data_list = []
label_list = []
for folder_name in sorted(os.listdir(main_folder)):
folder_path = os.path.join(main_folder, folder_name)
if os.path.isdir(folder_path):
csv_files = [f for f in os.listdir(folder_path) if f.endswith('.csv')]
for filename in sorted(csv_files):
file_path = os.path.join(folder_path, filename)
csv_data = pd.read_csv(file_path, header=None)
if csv_data.shape[1] >= 4:
csv_data = csv_data.iloc[:, [0, 1, 2]].values
else:
print(f"Skipping file {filename}, unexpected shape: {csv_data.shape}")
continue
data_list.append(csv_data.flatten()) # 展平为一维向量
if '内圈故障' in folder_name:
class_label = 0
elif '球故障' in folder_name:
class_label = 1
else:
continue
label_list.append(class_label)
if data_list and label_list:
X = np.array(data_list) # 特征矩阵
y = np.array(label_list) # 标签
return X, y
else:
raise ValueError("No valid data to process.")
# 数据集划分函数
def split_dataset(X, y, test_size=0.2, val_size=0.25, random_state=42):
"""
:param X: 特征数据
:param y: 标签数据
:param test_size: 测试集比例
:param val_size: 验证集占剩余数据的比例
:return: 训练集、验证集和测试集
"""
X_train_val, X_test, y_train_val, y_test = train_test_split(
X, y, test_size=test_size, stratify=y, random_state=random_state
)
X_train, X_val, y_train, y_val = train_test_split(
X_train_val, y_train_val, test_size=val_size, stratify=y_train_val, random_state=random_state
)
print(f"Training set size: {X_train.shape[0]}")
print(f"Validation set size: {X_val.shape[0]}")
print(f"Test set size: {X_test.shape[0]}")
return X_train, X_val, X_test, y_train, y_val, y_test
if __name__ == "__main__":
main_folder = 'C:/Users/Lenovo/Desktop/crcw不同端12k在0负载下/风扇端'
try:
X, y = load_data(main_folder)
X_train, X_val, X_test, y_train, y_val, y_test = split_dataset(X, y)
# 存储到本地以供后续使用
np.savez('dataset.npz',
X_train=X_train, X_val=X_val, X_test=X_test,
y_train=y_train, y_val=y_val, y_test=y_test)
print("Dataset saved successfully.")
except Exception as e:
print(e)
```
---
### **File 2: JDA 处理 (`jda_processing.py`)**
此部分实现 Joint Distribution Alignment 并对齐源域和目标域的数据分布:
```python
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from scipy.linalg import sqrtm
class JDA:
def __init__(self, n_components=3, lambd=1.0):
self.n_components = n_components
self.lambd = lambd
def fit(self, Xs, Xt, ys):
ns, _ = Xs.shape
nt, _ = Xt.shape
Z = np.vstack((Xs, Xt))
Z_mean = np.mean(Z, axis=0)
Xs_centered = Xs - np.mean(Xs, axis=0)
Xt_centered = Xt - np.mean(Xt, axis=0)
C_s = np.cov(Xs_centered.T) / ns
C_t = np.cov(Xt_centered.T) / nt
Cs_inv_sqrt = invsqrt(C_s + self.lambd * np.eye(len(Z_mean)))
Ct_inv_sqrt = invsqrt(C_t + self.lambd * np.eye(len(Z_mean)))
M = np.dot(Cs_inv_sqrt, Ct_inv_sqrt).T
U, S, V = np.linalg.svd(M[:ns], full_matrices=False)
W = np.dot(U[:, :self.n_components], V[:self.n_components])
self.Xs_new = np.dot(Xs_centered, W)
self.Xr_new = np.dot(np.concatenate([Xs_centered, Xt_centered]), W)
return self
def transform(self, X):
return np.dot(X - np.mean(X, axis=0), self.W)
@staticmethod
def invsqrt(matrix):
u, s, v = np.linalg.svd(matrix)
return np.dot(u, np.dot(np.diag(1.0 / np.sqrt(s)), v))
# 主程序入口
if __name__ == '__main__':
dataset = np.load('dataset.npz')
X_train_source = dataset['X_train']
X_train_target = dataset['X_val'] # 假设用验证集作为目标域
y_train_source = dataset['y_train']
jda = JDA(n_components=3, lambd=1e-6)
jda.fit(X_train_source, X_train_target, y_train_source)
X_train_aligned = jda.transform(X_train_source)
X_val_aligned = jda.transform(X_train_target)
clf = KNeighborsClassifier(n_neighbors=3)
clf.fit(X_train_aligned, y_train_source)
accuracy = clf.score(jda.transform(dataset['X_test']), dataset['y_test'])
print(f"Accuracy on test set after JDA alignment: {accuracy:.4f}")
print("Joint Distribution Alignment completed.")
```
---
###
阅读全文
相关推荐
















