python的回测框架代码
时间: 2024-12-29 20:27:14 浏览: 86
### Python 回测框架概述
对于希望利用Python进行金融市场交易策略回测的研究者和开发者来说,多个框架可供选择。其中PyBacktest[^1] 和 Backtrader[^2] 是两个备受欢迎的选择。
#### PyBacktest 示例代码
PyBacktest 基于 pandas 构建,允许用户高效地处理数据并实现复杂交易逻辑。下面展示了一个简单的移动平均交叉策略示例:
```python
import numpy as np
import pandas as pd
from pybacktest import Backtest, Strategy
# 创建一个简单的时间序列作为例子
dates = pd.date_range('20230101', periods=6)
data = {'Close': [9, 8, 7, 6, 5, 4]}
df = pd.DataFrame(data=data, index=dates)
class MovingAverageCrossStrategy(Strategy):
def __init__(self, short_window=40, long_window=100):
self.short_window = short_window
self.long_window = long_window
def initialize(self):
pass
def handle_data(self):
if 'short_mavg' not in locals():
self['short_mavg'] = df['Close'].rolling(window=self.short_window).mean()
self['long_mavg'] = df['Close'].rolling(window=self.long_window).mean()
buy_signal = (self['short_mavg'][-1] > self['long_mavg'][-1]) and \
(self['short_mavg'][-2] <= self['long_mavg'][-2])
sell_signal = (self['short_mavg'][-1] < self['long_mavg'][-1]) and \
(self['short_mavg'][-2] >= self['long_mavg'][-2])
if buy_signal:
return ('buy',)
elif sell_signal:
return ('sell',)
else:
return ()
bt = Backtest(df, MovingAverageCrossStrategy(short_window=2, long_window=4))
print(bt.run())
```
此段代码定义了一种基于短期与长期移动均线交叉点发出买卖信号的策略,并通过 `pybacktest` 进行测试运行。
#### Backtrader 示例代码
Backtrader 提供更广泛的特性和灵活性,在实际应用中更为常见。这里给出一段同样采用双均线交叉思路的例子:
```python
import backtrader as bt
import datetime
class SmaCross(bt.Strategy):
params = dict(
pfast=10,
pslow=30
)
def __init__(self):
sma1 = bt.ind.SMA(period=self.params.pfast)
sma2 = bt.ind.SMA(period=self.params.pslow)
self.crossover = bt.ind.CrossOver(sma1, sma2)
def next(self):
if not self.position:
if self.crossover > 0:
self.buy(size=100)
elif self.crossover < 0:
self.close()
cerebro = bt.Cerebro(stdstats=False)
data = bt.feeds.YahooFinanceData(dataname='AAPL',
fromdate=datetime.datetime(2020, 1, 1),
todate=datetime.datetime(2020, 12, 31))
cerebro.adddata(data)
cerebro.addstrategy(SmaCross)
cerebro.broker.setcash(10000.0)
cerebro.run()
print(f"Final Portfolio Value: {cerebro.broker.getvalue():,.2f}")
```
这段脚本展示了如何设置参数、初始化指标以及根据条件执行买入卖出操作的过程。
阅读全文
相关推荐


















