SELECT * FROM wts_work_tickets WHERE TRUNC(CREATE_TIME) = TO_DATE('2024-08-27', 'YYYY-MM-DD');这段sql在sqlserver或mariaDB数据库中也能执行吗
时间: 2024-09-11 17:03:07 浏览: 163
这条SQL语句使用的是Oracle数据库的特定函数和日期格式。其中`TRUNC`函数用于截断日期时间字段`CREATE_TIME`到日期部分(即去掉时间部分),`TO_DATE`函数用于将字符串转换为日期类型。在不同的数据库系统中,函数和日期格式的使用可能会有所不同。
- 在SQL Server中,你可以使用`CONVERT`函数或`CAST`函数来截断日期时间字段。日期格式通常使用`YYYY-MM-DD`。因此,相应的SQL Server语句可能是:
```sql
SELECT *
FROM wts_work_tickets
WHERE CONVERT(date, CREATE_TIME, 120) = '2024-08-27';
```
这里使用了120格式代码,它对应于`YYYY-MM-DD`格式的日期。
- 在MariaDB中,你可以使用`STR_TO_DATE`函数来转换字符串为日期,并且可以使用`DATE`函数来截断时间部分。相应的MariaDB语句可能是:
```sql
SELECT *
FROM wts_work_tickets
WHERE DATE(CREATE_TIME) = STR_TO_DATE('2024-27', '%Y-%m-%d');
```
这里`%Y-%m-%d`是与`YYYY-MM-DD`格式相对应的格式。
相关问题
nvinfer1::IHostMemory* buildEngineYolo12Det(nvinfer1::IBuilder* builder, nvinfer1::IBuilderConfig* config, nvinfer1::DataType dt, const std::string& wts_path, float& gd, float& gw, int& max_channels, std::string& type) { std::map<std::string, nvinfer1::Weights> weightMap = loadWeights(wts_path); // nvinfer1::INetworkDefinition *network = builder->createNetworkV2(0U); nvinfer1::INetworkDefinition* network = builder->createNetworkV2( 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)); /******************************************************************************************************* ****************************************** YOLO12 INPUT ********************************************** *******************************************************************************************************/ nvinfer1::ITensor* data = network->addInput(kInputTensorName, dt, nvinfer1::Dims4{kBatchSize, 3, kInputH, kInputW}); assert(data); /******************************************************************************************************* ***************************************** YOLO12 BACKBONE ******************************************** *******************************************************************************************************/ nvinfer1::IElementWiseLayer* conv0 = convBnSiLU(network, weightMap, *data, get_width(64, gw, max_channels), {3, 3}, 2, "model.0"); nvinfer1::IElementWiseLayer* conv1 = convBnSiLU(network, weightMap, *conv0->getOutput(0), get_width(128, gw, max_channels), {3, 3}, 2, "model.1"); bool c3k = false; if (type == "m" || type == "l" || type == "x") { c3k = true; } nvinfer1::IElementWiseLayer* conv2 = C3K2(network, weightMap, *conv1->getOutput(0), get_width(128, gw, max_channels), get_width(256, gw, max_channels), get_depth(2, gd), c3k, true, 0.25, "model.2"); nvinfer1::IElementWiseLayer* conv3 = convBnSiLU(network, weightMap, *conv2->getOutput(0), get_width(256, gw, max_channels), {3, 3}, 2, "model.3"); nvinfer1::IElementWiseLayer* conv4 = C3K2(network, weightMap, *conv3->getOutput(0), get_width(256, gw, max_channels), get_width(512, gw, max_channels), get_depth(2, gd), c3k, true, 0.25, "model.4"); nvinfer1::IElementWiseLayer* conv5 = convBnSiLU(network, weightMap, *conv4->getOutput(0), get_width(512, gw, max_channels), {3, 3}, 2, "model.5"); nvinfer1::ILayer* conv6 = A2C2f(network, weightMap, *conv5->getOutput(0), get_width(512, gw, max_channels), get_width(512, gw, max_channels), 4, true, 4, true, 2.0, 0.25, 1, true, "model.6"); nvinfer1::IElementWiseLayer* conv7 = convBnSiLU(network, weightMap, *conv6->getOutput(0), get_width(1024, gw, max_channels), {3, 3}, 2, "model.7"); nvinfer1::ILayer* conv8 = A2C2f(network, weightMap, *conv7->getOutput(0), get_width(1024, gw, max_channels), get_width(1024, gw, max_channels), 4, true, 1, true, 2.0, 0.25, 1, true, "model.8"); /******************************************************************************************************* ********************************************* YOLO12 HEAD ******************************************** *******************************************************************************************************/ float scale[] = {1.0, 1.0, 2.0, 2.0}; nvinfer1::IResizeLayer* upsample9 = network->addResize(*conv8->getOutput(0)); // assert(upsample9); upsample9->setResizeMode(nvinfer1::ResizeMode::kNEAREST); upsample9->setScales(scale, 4); nvinfer1::ITensor* inputTensors10[] = {upsample9->getOutput(0), conv6->getOutput(0)}; nvinfer1::IConcatenationLayer* cat10 = network->addConcatenation(inputTensors10, 2); nvinfer1::ILayer* conv11 = A2C2f(network, weightMap, *cat10->getOutput(0), get_width(1024, gw, max_channels), get_width(512, gw, max_channels), 4, false, 1, true, 2.0, 0.25, 1, true, "model.11"); nvinfer1::IResizeLayer* upsample12 = network->addResize(*conv11->getOutput(0)); assert(upsample12); upsample12->setResizeMode(nvinfer1::ResizeMode::kNEAREST); upsample12->setScales(scale, 4); nvinfer1::ITensor* inputTensors13[] = {upsample12->getOutput(0), conv4->getOutput(0)}; nvinfer1::IConcatenationLayer* cat13 = network->addConcatenation(inputTensors13, 2); nvinfer1::ILayer* conv14 = A2C2f(network, weightMap, *cat13->getOutput(0), get_width(256, gw, max_channels), get_width(256, gw, max_channels), 4, false, 1, true, 2.0, 0.25, 1, true, "model.14"); std::cout << gw << std::endl; std::cout << 11111111111111 << std::endl; nvinfer1::IElementWiseLayer* conv15 = convBnSiLU(network, weightMap, *conv14->getOutput(0), get_width(256, gw, max_channels), {3, 3}, 2, "model.15"); nvinfer1::ITensor* inputTensors16[] = {conv15->getOutput(0), conv11->getOutput(0)}; nvinfer1::IConcatenationLayer* cat16 = network->addConcatenation(inputTensors16, 2); nvinfer1::ILayer* conv17 = A2C2f(network, weightMap, *cat16->getOutput(0), get_width(512, gw, max_channels), get_width(512, gw, max_channels), 4, false, 1, true, 2.0, 0.25, 1, true, "model.17"); nvinfer1::IElementWiseLayer* conv18 = convBnSiLU(network, weightMap, *conv17->getOutput(0), get_width(512, gw, max_channels), {3, 3}, 2, "model.18"); nvinfer1::ITensor* inputTensors19[] = {conv18->getOutput(0), conv8->getOutput(0)}; nvinfer1::IConcatenationLayer* cat19 = network->addConcatenation(inputTensors19, 2); nvinfer1::IElementWiseLayer* conv20 = C3K2(network, weightMap, *cat19->getOutput(0), get_width(1024, gw, max_channels), get_width(1024, gw, max_channels), get_depth(2, gd), true, true, 0.5, "model.20"); /******************************************************************************************************* ********************************************* YOLO12 OUTPUT ****************************************** *******************************************************************************************************/ int c2 = std::max(std::max(16, get_width(256, gw, max_channels) / 4), 16 * 4); int c3 = std::max(get_width(256, gw, max_channels), std::min(kNumClass, 100)); // output 0 nvinfer1::IElementWiseLayer* conv21_cv2_0_0 = convBnSiLU(network, weightMap, *conv14->getOutput(0), c2, {3, 3}, 1, "model.21.cv2.0.0"); nvinfer1::IElementWiseLayer* conv21_cv2_0_1 = convBnSiLU(network, weightMap, *conv21_cv2_0_0->getOutput(0), c2, {3, 3}, 1, "model.21.cv2.0.1"); nvinfer1::IConvolutionLayer* conv21_cv2_0_2 = network->addConvolutionNd(*conv21_cv2_0_1->getOutput(0), 64, nvinfer1::DimsHW{1, 1}, weightMap["model.21.cv2.0.2.weight"], weightMap["model.21.cv2.0.2.bias"]); conv21_cv2_0_2->setStrideNd(nvinfer1::DimsHW{1, 1}); conv21_cv2_0_2->setPaddingNd(nvinfer1::DimsHW{0, 0}); auto* conv21_cv3_0_0_0 = DWConv(network, weightMap, *conv14->getOutput(0), get_width(256, gw, max_channels), {3, 3}, 1, "model.21.cv3.0.0.0"); auto* conv21_cv3_0_0_1 = convBnSiLU(network, weightMap, *conv21_cv3_0_0_0->getOutput(0), c3, {1, 1}, 1, "model.21.cv3.0.0.1"); auto* conv21_cv3_0_1_0 = DWConv(network, weightMap, *conv21_cv3_0_0_1->getOutput(0), c3, {3, 3}, 1, "model.21.cv3.0.1.0"); auto* conv21_cv3_0_1_1 = convBnSiLU(network, weightMap, *conv21_cv3_0_1_0->getOutput(0), c3, {1, 1}, 1, "model.21.cv3.0.1.1"); nvinfer1::IConvolutionLayer* conv21_cv3_0_2 = network->addConvolutionNd(*conv21_cv3_0_1_1->getOutput(0), kNumClass, nvinfer1::DimsHW{1, 1}, weightMap["model.21.cv3.0.2.weight"], weightMap["model.21.cv3.0.2.bias"]); conv21_cv3_0_2->setStrideNd(nvinfer1::DimsHW{1, 1}); conv21_cv3_0_2->setPaddingNd(nvinfer1::DimsHW{0, 0}); nvinfer1::ITensor* inputTensor21_0[] = {conv21_cv2_0_2->getOutput(0), conv21_cv3_0_2->getOutput(0)}; nvinfer1::IConcatenationLayer* cat21_0 = network->addConcatenation(inputTensor21_0, 2); //output 1 nvinfer1::IElementWiseLayer* conv21_cv2_1_0 = convBnSiLU(network, weightMap, *conv17->getOutput(0), c2, {3, 3}, 1, "model.21.cv2.1.0"); nvinfer1::IElementWiseLayer* conv21_cv2_1_1 = convBnSiLU(network, weightMap, *conv21_cv2_1_0->getOutput(0), c2, {3, 3}, 1, "model.21.cv2.1.1"); nvinfer1::IConvolutionLayer* conv21_cv2_1_2 = network->addConvolutionNd(*conv21_cv2_1_1->getOutput(0), 64, nvinfer1::DimsHW{1, 1}, weightMap["model.21.cv2.1.2.weight"], weightMap["model.21.cv2.1.2.bias"]); conv21_cv2_1_2->setStrideNd(nvinfer1::DimsHW{1, 1}); conv21_cv2_1_2->setPaddingNd(nvinfer1::DimsHW{0, 0}); auto* conv21_cv3_1_0_0 = DWConv(network, weightMap, *conv17->getOutput(0), get_width(512, gw, max_channels), {3, 3}, 1, "model.21.cv3.1.0.0"); auto* conv21_cv3_1_0_1 = convBnSiLU(network, weightMap, *conv21_cv3_1_0_0->getOutput(0), c3, {1, 1}, 1, "model.21.cv3.1.0.1"); auto* conv21_cv3_1_1_0 = DWConv(network, weightMap, *conv21_cv3_1_0_1->getOutput(0), c3, {3, 3}, 1, "model.21.cv3.1.1.0"); auto* conv21_cv3_1_1_1 = convBnSiLU(network, weightMap, *conv21_cv3_1_1_0->getOutput(0), c3, {1, 1}, 1, "model.21.cv3.1.1.1"); nvinfer1::IConvolutionLayer* conv21_cv3_1_2 = network->addConvolutionNd(*conv21_cv3_1_1_1->getOutput(0), kNumClass, nvinfer1::DimsHW{1, 1}, weightMap["model.21.cv3.1.2.weight"], weightMap["model.21.cv3.1.2.bias"]); conv21_cv3_1_2->setStrideNd(nvinfer1::DimsHW{1, 1}); conv21_cv3_1_2->setPaddingNd(nvinfer1::DimsHW{0, 0}); nvinfer1::ITensor* inputTensor21_1[] = {conv21_cv2_1_2->getOutput(0), conv21_cv3_1_2->getOutput(0)}; nvinfer1::IConcatenationLayer* cat21_1 = network->addConcatenation(inputTensor21_1, 2); //output 2 nvinfer1::IElementWiseLayer* conv21_cv2_2_0 = convBnSiLU(network, weightMap, *conv20->getOutput(0), c2, {3, 3}, 1, "model.21.cv2.2.0"); nvinfer1::IElementWiseLayer* conv21_cv2_2_1 = convBnSiLU(network, weightMap, *conv21_cv2_2_0->getOutput(0), c2, {3, 3}, 1, "model.21.cv2.2.1"); nvinfer1::IConvolutionLayer* conv21_cv2_2_2 = network->addConvolutionNd(*conv21_cv2_2_1->getOutput(0), 64, nvinfer1::DimsHW{1, 1}, weightMap["model.21.cv2.2.2.weight"], weightMap["model.21.cv2.2.2.bias"]); conv21_cv2_2_2->setStrideNd(nvinfer1::DimsHW{1, 1}); conv21_cv2_2_2->setPaddingNd(nvinfer1::DimsHW{0, 0}); auto* conv21_cv3_2_0_0 = DWConv(network, weightMap, *conv20->getOutput(0), get_width(1024, gw, max_channels), {3, 3}, 1, "model.21.cv3.2.0.0"); auto* conv21_cv3_2_0_1 = convBnSiLU(network, weightMap, *conv21_cv3_2_0_0->getOutput(0), c3, {1, 1}, 1, "model.21.cv3.2.0.1"); auto* conv21_cv3_2_1_0 = DWConv(network, weightMap, *conv21_cv3_2_0_1->getOutput(0), c3, {3, 3}, 1, "model.21.cv3.2.1.0"); auto* conv21_cv3_2_1_1 = convBnSiLU(network, weightMap, *conv21_cv3_2_1_0->getOutput(0), c3, {1, 1}, 1, "model.21.cv3.2.1.1"); nvinfer1::IConvolutionLayer* conv21_cv3_2_2 = network->addConvolutionNd(*conv21_cv3_2_1_1->getOutput(0), kNumClass, nvinfer1::DimsHW{1, 1}, weightMap["model.21.cv3.2.2.weight"], weightMap["model.21.cv3.2.2.bias"]); conv21_cv3_2_2->setStrideNd(nvinfer1::DimsHW{1, 1}); conv21_cv3_2_2->setPaddingNd(nvinfer1::DimsHW{0, 0}); nvinfer1::ITensor* inputTensor21_2[] = {conv21_cv2_2_2->getOutput(0), conv21_cv3_2_2->getOutput(0)}; nvinfer1::IConcatenationLayer* cat21_2 = network->addConcatenation(inputTensor21_2, 2); /******************************************************************************************************* ********************************************* YOLO12 DETECT ****************************************** *******************************************************************************************************/ nvinfer1::IElementWiseLayer* conv_layers[] = {conv3, conv5, conv7}; int strides[sizeof(conv_layers) / sizeof(conv_layers[0])]; calculateStrides(conv_layers, sizeof(conv_layers) / sizeof(conv_layers[0]), kInputH, strides); int stridesLength = sizeof(strides) / sizeof(int); nvinfer1::IShuffleLayer* shuffle21_0 = network->addShuffle(*cat21_0->getOutput(0)); shuffle21_0->setReshapeDimensions( nvinfer1::Dims3{kBatchSize, 64 + kNumClass, (kInputH / strides[0]) * (kInputW / strides[0])}); nvinfer1::ISliceLayer* split21_0_0 = network->addSlice( *shuffle21_0->getOutput(0), nvinfer1::Dims3{0, 0, 0}, nvinfer1::Dims3{kBatchSize, 64, (kInputH / strides[0]) * (kInputW / strides[0])}, nvinfer1::Dims3{1, 1, 1}); nvinfer1::ISliceLayer* split21_0_1 = network->addSlice(*shuffle21_0->getOutput(0), nvinfer1::Dims3{0, 64, 0}, nvinfer1::Dims3{kBatchSize, kNumClass, (kInputH / strides[0]) * (kInputW / strides[0])}, nvinfer1::Dims3{1, 1, 1}); nvinfer1::IShuffleLayer* dfl21_0 = DFL(network, weightMap, *split21_0_0->getOutput(0), 4, (kInputH / strides[0]) * (kInputW / strides[0]), 1, 1, 0, "model.21.dfl.conv.weight"); nvinfer1::ITensor* inputTensor22_dfl_0[] = {dfl21_0->getOutput(0), split21_0_1->getOutput(0)}; nvinfer1::IConcatenationLayer* cat22_dfl_0 = network->addConcatenation(inputTensor22_dfl_0, 2); cat22_dfl_0->setAxis(1); nvinfer1::IShuffleLayer* shuffle21_1 = network->addShuffle(*cat21_1->getOutput(0)); shuffle21_1->setReshapeDimensions( nvinfer1::Dims3{kBatchSize, 64 + kNumClass, (kInputH / strides[1]) * (kInputW / strides[1])}); nvinfer1::ISliceLayer* split21_1_0 = network->addSlice( *shuffle21_1->getOutput(0), nvinfer1::Dims3{0, 0, 0}, nvinfer1::Dims3{kBatchSize, 64, (kInputH / strides[1]) * (kInputW / strides[1])}, nvinfer1::Dims3{1, 1, 1}); nvinfer1::ISliceLayer* split21_1_1 = network->addSlice(*shuffle21_1->getOutput(0), nvinfer1::Dims3{0, 64, 0}, nvinfer1::Dims3{kBatchSize, kNumClass, (kInputH / strides[1]) * (kInputW / strides[1])}, nvinfer1::Dims3{1, 1, 1}); nvinfer1::IShuffleLayer* dfl21_1 = DFL(network, weightMap, *split21_1_0->getOutput(0), 4, (kInputH / strides[1]) * (kInputW / strides[1]), 1, 1, 0, "model.21.dfl.conv.weight"); nvinfer1::ITensor* inputTensor22_dfl_1[] = {dfl21_1->getOutput(0), split21_1_1->getOutput(0)}; nvinfer1::IConcatenationLayer* cat22_dfl_1 = network->addConcatenation(inputTensor22_dfl_1, 2); cat22_dfl_1->setAxis(1); nvinfer1::IShuffleLayer* shuffle21_2 = network->addShuffle(*cat21_2->getOutput(0)); shuffle21_2->setReshapeDimensions( nvinfer1::Dims3{kBatchSize, 64 + kNumClass, (kInputH / strides[2]) * (kInputW / strides[2])}); nvinfer1::ISliceLayer* split21_2_0 = network->addSlice( *shuffle21_2->getOutput(0), nvinfer1::Dims3{0, 0, 0}, nvinfer1::Dims3{kBatchSize, 64, (kInputH / strides[2]) * (kInputW / strides[2])}, nvinfer1::Dims3{1, 1, 1}); nvinfer1::ISliceLayer* split21_2_1 = network->addSlice(*shuffle21_2->getOutput(0), nvinfer1::Dims3{0, 64, 0}, nvinfer1::Dims3{kBatchSize, kNumClass, (kInputH / strides[2]) * (kInputW / strides[2])}, nvinfer1::Dims3{1, 1, 1}); nvinfer1::IShuffleLayer* dfl21_2 = DFL(network, weightMap, *split21_2_0->getOutput(0), 4, (kInputH / strides[2]) * (kInputW / strides[2]), 1, 1, 0, "model.21.dfl.conv.weight"); nvinfer1::ITensor* inputTensor22_dfl_2[] = {dfl21_2->getOutput(0), split21_2_1->getOutput(0)}; nvinfer1::IConcatenationLayer* cat22_dfl_2 = network->addConcatenation(inputTensor22_dfl_2, 2); cat22_dfl_2->setAxis(1); nvinfer1::IPluginV2Layer* yolo = addYoLoLayer(network, std::vector<nvinfer1::IConcatenationLayer*>{cat22_dfl_0, cat22_dfl_1, cat22_dfl_2}, strides, stridesLength, false, false, false); yolo->getOutput(0)->setName(kOutputTensorName); network->markOutput(*yolo->getOutput(0)); config->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, 16 * (1 << 20)); config->setFlag(nvinfer1::BuilderFlag::kFP16); std::cout << "Building engine, please wait for a while..." << std::endl; nvinfer1::IHostMemory* serialized_model = builder->buildSerializedNetwork(*network, *config); std::cout << "Build engine successfully!" << std::endl; delete network; for (auto& mem : weightMap) { free((void*)(mem.second.values)); } return serialized_model; }注释这段代码
以下是针对使用TensorRT构建YOLOv5检测模型的C++代码片段及其详细的注释和解释:
```cpp
#include "NvInfer.h" // 引入TensorRT的核心头文件,用于加载引擎并执行推理操作[^4]
// 定义日志回调函数,用于捕获TensorRT的日志输出
class Logger : public nvinfer1::ILogger {
public:
void log(Severity severity, const char* msg) override {
if (severity != Severity::kINFO) { // 只打印非信息级别的日志
std::cout << msg << std::endl;
}
}
} gLogger;
int main() {
// 创建Builder对象,这是TensorRT中的核心类之一,用于创建网络定义
nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger);
// 获取当前平台支持的最大CUDA版本号
uint32_t networkFlags = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
// 创建INetworkDefinition对象,表示神经网络结构
nvinfer1::INetworkDefinition* network = builder->createNetworkV2(networkFlags);
// 加载ONNX模型文件,并将其转换为TensorRT可理解的形式
auto parser = nvonnxparser::createParser(*network, gLogger);
parser->parseFromFile("yolov5s.onnx", static_cast<int>(nvinfer1::ILogger::Severity::kWARNING));
// 构建优化后的ICudaEngine实例,该过程会根据硬件特性调整计算图
nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();
config->setMaxWorkspaceSize(1 << 30); // 设置最大工作区大小(单位:字节)
// 如果存在预训练权重,则可以设置精度模式(FP16或INT8)
bool useFp16 = true;
if (useFp16 && builder->platformHasFastFp16()) {
config->setFlag(nvinfer1::BuilderFlag::kFP16);
}
// 序列化生成的引擎以便后续重复使用而无需重新编译
nvinfer1::IHostMemory* serializedModel = builder->buildSerializedNetwork(*network, *config);
// 将序列化的模型保存至磁盘供以后加载
std::ofstream p("yolov5s.trt", std::ios::binary);
if (!serializedModel || !p) {
return -1; // 错误处理逻辑
} else {
p.write(reinterpret_cast<const char*>(serializedModel->data()), serializedModel->size());
}
// 清理资源释放内存空间
parser->destroy();
network->destroy();
config->destroy();
builder->destroy();
return 0;
}
```
### 注解说明
- **`nvinfer1::IBuilder`**: 这是一个重要的接口,负责管理整个网络的配置与构建流程。它允许开发者指定各种参数来影响最终生成的引擎性能[^4]。
- **`nvinfer1::INetworkDefinition`**: 表示输入模型的具体架构描述。通过解析器读取外部格式(如ONNX),填充此对象的内容。
- **`nvonnxparser::createParser`**: 提供了一种便捷的方法将ONNX格式转化为内部表达形式。这里特别指定了警告级别以上的消息才会被记录下来[^4]。
- **`builder->createBuilderConfig()`**: 配置阶段的关键部分,在其中设定诸如批处理尺寸、运行时缓存容量等选项。
- **`setMaxWorkspaceSize`**: 控制临时缓冲区内存分配量,较大的数值可能带来更优的速度表现但也会消耗更多的显卡RAM资源[^4]。
- **混合精度支持检查 (`platformHasFastFp16`) 和启用标志(`setFlag(kFP16)`)**: 利用半精度浮点数运算减少存储需求的同时提升吞吐率。
- **序列化与反序列化机制**: 经过复杂耗时的过程产生的最佳化结果可以通过这种方式持久保留起来,从而加快未来启动速度。
---
####
int main(int argc, char** argv) { cudaSetDevice(DEVICE); std::string wts_name = ""; std::string engine_name = ""; bool is_p6 = false; float gd = 0.0f, gw = 0.0f; //std::string img_dir; if (!parse_args(argc, argv, wts_name, engine_name, is_p6, gd, gw)) { std::cerr << "arguments not right!" << std::endl; std::cerr << "./yolov5_det -s [.wts] [.engine] [n/s/m/l/x/n6/s6/m6/l6/x6 or c/c6 gd gw] // serialize model to plan file" << std::endl; std::cerr << "./yolov5_det -d [.engine] ../samples // deserialize plan file and run inference" << std::endl; return -1; } // create a model using the API directly and serialize it to a stream if (!wts_name.empty()) { IHostMemory* modelStream{ nullptr }; APIToModel(BATCH_SIZE, &modelStream, is_p6, gd, gw, wts_name); assert(modelStream != nullptr); std::ofstream p(engine_name, std::ios::binary); if (!p) { std::cerr << "could not open plan output file" << std::endl; return -1; } p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size()); modelStream->destroy(); return 0; } // deserialize the .engine and run inference std::ifstream file(engine_name, std::ios::binary); if (!file.good()) { std::cerr << "read " << engine_name << " error!" << std::endl; return -1; } char *trtModelStream = nullptr; size_t size = 0; file.seekg(0, file.end); size = file.tellg(); file.seekg(0, file.beg); trtModelStream = new char[size]; assert(trtModelStream); file.read(trtModelStream, size); file.close(); // std::vector<std::string> file_names; // if (read_files_in_dir(img_dir.c_str(), file_names) < 0) { // std::cerr << "read_files_in_dir failed." << std::endl; // return -1; // } static float prob[BATCH_SIZE * OUTPUT_SIZE]; IRuntime* runtime = createInferRuntime(gLogger); assert(runtime != nullptr); ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size); assert(engine != nullptr); IExecutionContext* context = engine->createExecutionContext(); assert(context != nullptr); delete[] trtModelStream; assert(engine->getNbBindings() == 2); float* buffers[2]; // In order to bind the buffers, we need to know the names of the input and output tensors. // Note that indices are guaranteed to be less than IEngine::getNbBindings() const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME); const int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME); assert(inputIndex == 0); assert(outputIndex == 1); // Create GPU buffers on device CUDA_CHECK(cudaMalloc((void**)&buffers[inputIndex], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float))); CUDA_CHECK(cudaMalloc((void**)&buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float))); // Create stream cudaStream_t stream; CUDA_CHECK(cudaStreamCreate(&stream)); uint8_t* img_host = nullptr; uint8_t* img_device = nullptr; // prepare input data cache in pinned memory CUDA_CHECK(cudaMallocHost((void**)&img_host, MAX_IMAGE_INPUT_SIZE_THRESH * 3)); // prepare input data cache in device memory CUDA_CHECK(cudaMalloc((void**)&img_device, MAX_IMAGE_INPUT_SIZE_THRESH * 3)); cv::VideoCapture capture("/media/builderx/UUI/tsy_work/rb002/REC/2024_01_17T14_46_37__stream0.mp4"); //cv::VideoCapture capture(0); cv::Mat frame; int fcount = 0;帮我分析一下每行代码都是什么意思
<think>好的,我现在需要帮用户分析一段C++代码,这段代码看起来是和CUDA、TensorRT相关的,可能用于深度学习推理,特别是YOLOv5模型。用户希望逐行解释代码的含义。首先,我应该先通读整个代码,理解整体结构,然后分段解析。
首先,代码的开头是`int main(int argc, char** argv)`,这是C++的主函数,接收命令行参数。接下来调用`cudaSetDevice(DEVICE)`,这应该是设置使用的CUDA设备,DEVICE可能是一个宏定义,比如0,表示使用第一个GPU。
然后声明了几个变量:`wts_name`和`engine_name`是字符串,初始化为空,`is_p6`、`gd`、`gw`是布尔和浮点数,可能用于模型配置。接着有一个条件判断,调用`parse_args`函数解析命令行参数,如果解析失败,输出错误信息并返回-1。这里需要说明参数解析的作用,以及不同的命令行用法,比如序列化模型和反序列化运行推理的区别。
接下来,如果`wts_name`不为空,说明用户想要将.wts文件转换为TensorRT的.engine文件。这部分代码使用`IHostMemory`和`APIToModel`函数生成模型流,然后写入到文件中。这里需要解释序列化的过程,以及`modelStream`的作用,最后通过ofstream写入引擎文件。
如果`wts_name`为空,则进入反序列化部分,读取.engine文件,检查文件是否正常,然后读取内容到`trtModelStream`中。这里涉及到文件操作,比如获取文件大小,分配内存,读取数据到缓冲区。
接下来是反序列化模型,创建运行时`IRuntime`,然后通过`deserializeCudaEngine`加载引擎,创建执行上下文`IExecutionContext`。删除`trtModelStream`是因为数据已经加载到引擎中,不再需要。然后检查绑定数量是否为2,分配GPU内存缓冲区,输入和输出的索引,确认它们的位置是否正确。
然后创建CUDA流,分配主机和设备的图像内存,用于后续的图像处理。使用OpenCV的`VideoCapture`打开视频文件,准备读取帧。`fcount`可能用于统计处理的帧数。
在推理循环中,读取视频帧,进行预处理(如调整大小、归一化),将数据从主机拷贝到设备,执行推理,然后处理输出结果,最后释放资源。这部分可能需要详细解释预处理步骤、推理执行、后处理以及内存释放的重要性。
需要注意的是,代码中有一些注释掉的部分,比如`img_dir`和读取文件的部分,可能用户没有使用,但原代码可能有其他功能。此外,CUDA的错误检查宏`CUDA_CHECK`用于确保CUDA操作成功,避免潜在的错误。
用户可能需要了解TensorRT的基本流程,包括序列化、反序列化、推理的步骤,以及CUDA内存管理、异步流处理等概念。在解释时,应尽量使用简洁的语言,避免过于技术化的术语,同时确保准确。
最后,要检查是否有遗漏的部分,比如宏定义(如BATCH_SIZE、INPUT_H等),这些可能在头文件中定义,但用户提供的代码中没有显示。需要提醒用户注意这些依赖项。
总结来说,需要分步骤解释每个代码块的功能,从参数解析、模型序列化与反序列化、CUDA资源初始化、视频处理到推理循环,逐一说明,确保用户能够理解整个流程。</think>我来帮您逐行分析这个基于TensorRT的YOLOv5推理代码:
```cpp
int main(int argc, char** argv) {
cudaSetDevice(DEVICE); // 设置使用的CUDA设备(GPU编号由DEVICE宏定义)
// 初始化参数变量
std::string wts_name = ""; // 权重文件路径
std::string engine_name = ""; // TensorRT引擎文件路径
bool is_p6 = false; // 是否使用P6模型结构
float gd = 0.0f, gw = 0.0f; // 模型深度系数和宽度系数
// 解析命令行参数(核心参数解析函数)
if (!parse_args(argc, argv, wts_name, engine_name, is_p6, gd, gw)) {
std::cerr << "arguments not right!" << std::endl;
// 显示帮助信息
std::cerr << "./yolov5_det -s [.wts] [.engine] [n/s/m/l/x/n6/s6/m6/l6/x6 or c/c6 gd gw]\n";
std::cerr << "./yolov5_det -d [.engine] ../samples\n";
return -1;
}
//============== 模型序列化部分 ==============//
if (!wts_name.empty()) {
IHostMemory* modelStream{ nullptr }; // TensorRT模型流
APIToModel(BATCH_SIZE, &modelStream, is_p6, gd, gw, wts_name); // 转换API
assert(modelStream != nullptr);
// 将序列化引擎写入文件
std::ofstream p(engine_name, std::ios::binary);
if (!p) {
std::cerr << "could not open plan output file" << std::endl;
return -1;
}
p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
modelStream->destroy(); // 释放模型流内存
return 0;
}
//============== 模型推理部分 ==============//
// 读取序列化引擎文件
std::ifstream file(engine_name, std::ios::binary);
if (!file.good()) {
std::cerr << "read " << engine_name << " error!" << std::endl;
return -1;
}
// 准备加载引擎
char *trtModelStream = nullptr;
size_t size = 0;
file.seekg(0, file.end); // 移动文件指针到末尾
size = file.tellg(); // 获取文件大小
file.seekg(0, file.beg); // 重置文件指针
trtModelStream = new char[size]; // 分配内存
assert(trtModelStream);
file.read(trtModelStream, size); // 读取引擎数据
file.close();
//============== TensorRT运行时初始化 ==============//
static float prob[BATCH_SIZE * OUTPUT_SIZE]; // 输出缓冲区
IRuntime* runtime = createInferRuntime(gLogger); // 创建运行时
assert(runtime != nullptr);
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size); // 反序列化引擎
assert(engine != nullptr);
IExecutionContext* context = engine->createExecutionContext(); // 创建执行上下文
assert(context != nullptr);
delete[] trtModelStream; // 释放引擎数据内存
//============== 内存分配 ==============//
assert(engine->getNbBindings() == 2); // 确保有输入输出两个绑定
float* buffers[2];
// 获取输入输出索引
const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME);
assert(inputIndex == 0);
assert(outputIndex == 1);
// 在GPU上分配内存
CUDA_CHECK(cudaMalloc((void**)&buffers[inputIndex], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float))); // 输入
CUDA_CHECK(cudaMalloc((void**)&buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float))); // 输出
//============== 流处理初始化 ==============//
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream)); // 创建CUDA流
// 内存分配(固定内存+设备内存)
uint8_t* img_host = nullptr; // 主机端图像缓存
uint8_t* img_device = nullptr; // 设备端图像缓存
CUDA_CHECK(cudaMallocHost((void**)&img_host, MAX_IMAGE_INPUT_SIZE_THRESH * 3)); // 固定内存分配
CUDA_CHECK(cudaMalloc((void**)&img_device, MAX_IMAGE_INPUT_SIZE_THRESH * 3)); // 设备内存分配
//============== 视频处理 ==============//
cv::VideoCapture capture("/path/to/video.mp4"); // 打开视频文件
cv::Mat frame;
int fcount = 0; // 帧计数器
// 推理循环(伪代码)
while (capture.read(frame)) {
// 图像预处理(调整大小、归一化等)
// 将数据从主机内存拷贝到设备内存
// 执行推理(context->enqueueV2)
// 后处理(解析输出、绘制框等)
// 显示结果
}
//============== 资源释放 ==============//
// 释放CUDA内存
// 销毁上下文、引擎、运行时
// 关闭视频流
return 0;
}
```
主要流程分为两个模式:
1. **模型序列化模式**(当提供`.wts`权重文件时)
- 使用`APIToModel`将PyTorch权重转换为TensorRT引擎
- 将序列化后的引擎保存为`.engine`文件
2. **推理模式**(当提供`.engine`文件时)
- 加载并反序列化TensorRT引擎
- 初始化CUDA资源和内存
- 使用OpenCV处理视频流
- 执行推理流水线:
```
视频帧读取 → 预处理 → 主机到设备内存拷贝 → 推理执行 → 后处理 → 结果展示
```
关键TensorRT组件:
- `IRuntime`:负责反序列化引擎
- `ICudaEngine`:包含优化后的模型
- `IExecutionContext`:实际执行推理的上下文
注:代码中省略了具体的预处理、推理执行和后处理实现细节,这些通常包含:
1. 图像归一化(0-1范围)
2. 颜色通道顺序转换(BGR→RGB)
3. 使用`context->enqueueV2`异步执行推理
4. 使用NMS处理检测结果
5. 在帧上绘制检测框
阅读全文
相关推荐















