state_buffer = np.zeros((0, 1), dtype=np.float32) state_buffer1 = np.zeros((0, 100), dtype=np.float32)这两行代码有什么区别
时间: 2023-09-01 19:10:29 浏览: 105
这两行代码的区别在于 `np.zeros` 中的第二个参数,即生成的数组的形状。
第一行代码中 `np.zeros((0, 1), dtype=np.float32)` 生成的是一个形状为 `(0, 1)` 的浮点型数组,也就是一个空的列向量(其中的 0 表示行数为 0,1 表示列数为 1)。
第二行代码中 `np.zeros((0, 100), dtype=np.float32)` 生成的是一个形状为 `(0, 100)` 的浮点型数组,也就是一个空的 $100$ 列的矩阵(其中的 0 表示行数为 0,100 表示列数为 100)。
因此,第一行代码生成的数组可以表示一个空的状态序列,第二行代码生成的数组可以表示一个空的状态矩阵。
相关问题
import time from typing import Any, Optional import numpy as np import zmq from agent.schema import RobotObsShape from dataclasses import dataclass, field class LowLevelRobotConnectionConfig: host: str = field(default="localhost") port: str = field(default="15558") timeout: int = field(default=1000) max_retries: int = field(default=5) delay: float = field(default=0.5) controller: Optional[Any] = field(default_factory=lambda: None) DOC = ''' controller 需要实现 get_obs 和 act 方法。例如: class Controller: def __init__(self, rgb, right_cam_img, right_state): self.rgb = rgb self.right_cam_img = right_cam_img self.right_state = right_state def get_obs(self) -> dict: """ { "rgb" np.ndarray (480, 640, 3), np.uint8 "right_cam_img" np.ndarray (360, 480, 3), np.uint8 "right_state" np.ndarray (7,), np.uint8 } Returns: _type_: _description_ """ return { "rgb": self.rgb, "right_cam_img": self.right_cam_img, "right_state": self.right_state, } def act(self, actions: np.ndarray) -> None: print(f"Executing...") print(f"Executed action: {actions}") ''' class LowLevelRobotConnection: def __init__(self, config): self.host = config.host self.port = config.port self.addr = f"tcp://{self.host}:{self.port}" # self.timeout = config.timeout self.max_retries = config.max_retries self.delay = config.delay self.is_connected = False self.controller = config.controller def _connect(self): print(f"INFO: Robot service connected to server at port {self.port}") self.context = zmq.Context() # 新建上下文 self.socket = self.context.socket(zmq.REQ) # 新建套接字 self.socket.connect(self.addr) self.is_connected = True def _close(self): # if self.context is not None: # self.context.term() print("INFO: context terminated") if self.socket is not None: self.socket.close() print("INFO: socket closed") self.is_connected = False def send_obs(self, obs: bytes) -> bool: fired = False for _ in range(self.max_retries): try: if not self.is_connected: self._connect() fired = True print("INFO: send observation") self.socket.send(obs) break except zmq.Again: print("ERROR: Timeout") self._close() if not fired: print("ERROR: Failed to fire observation to server") self._close() return False print("INFO: observation fired") return True def get_actions(self) -> Optional[np.ndarray]: for _ in range(self.max_retries): try: if not self.is_connected: self._connect() print("INFO: send action request") message = self.socket.recv(copy=False) print(f"INFO: recerved msg size: {len(message)}") if len(message) != RobotObsShape.TOTAL_ACTIONS_SIZE: print( f"ERROR: Invalid message size as {len(message)}, required {RobotObsShape.TOTAL_ACTIONS_SIZE} bytes" ) continue actions = np.frombuffer(message.buffer, dtype=np.float32).reshape( (RobotObsShape.ACTIONS_SHAPE) ) print("INFO: received action") break except zmq.Again: print("ERROR: Timeout") self._close() if actions is None: print("ERROR: Failed to retrieve action from server") return None return actions def run(self) -> None: while True: user_input = input("Press <Enter> to start, <q> to quit.") obs = self.get_obs() if not self.send_obs(obs): print("ERROR: Failed to send observation") continue actions = self.get_actions() if actions is None: print("ERROR: Failed to retrieve action from server") continue self.act(actions) time.sleep(self.delay) def step(self) -> None: obs = self.get_obs() if obs is None: print("ERROR: Failed to retrieve image") return if not self.send_obs(obs): print("ERROR: Failed to send observation") return actions = self.get_actions() if actions is None: print("ERROR: Failed to retrieve action from server") return self.act(actions) def get_obs(self) -> bytes: """获取观察的内容。头部、腕部图像、关节角度和灵巧手状态。 Returns: bytes: 字节流 """ obs = self.controller.get_obs() # head_image = np.zeros(RobotObsShape.HEAD_IMAGE_SHAPE, dtype=np.uint8) # wrist_image = np.zeros(RobotObsShape.WRIST_IMAGE_SHAPE, dtype=np.uint8) # state = np.zeros(RobotObsShape.STATE_SHAPE, dtype=np.float32) obs = ( obs["rgb"].tobytes() + obs["right_cam_img"].tobytes() + obs["right_state"].tobytes() ) return obs def act(self, actions: np.ndarray) -> None: """执行六个策略预测的动作。 Args: actions (np.ndarray): 形状为 (6, 7) """ assert actions.shape == RobotObsShape.ACTIONS_SHAPE, ( f"Expected actions shape {RobotObsShape.ACTIONS_SHAPE}, got {actions.shape}" ) print(f"INFO: actions: {actions}") if __name__ == "__main__": class Controller: def get_obs(self) -> dict: return { "rgb": np.zeros(RobotObsShape.HEAD_IMAGE_SHAPE, dtype=np.uint8), "right_cam_img": np.zeros( RobotObsShape.WRIST_IMAGE_SHAPE, dtype=np.uint8 ), "right_state": np.zeros(RobotObsShape.STATE_SHAPE, dtype=np.float32), } config = dict( host="wujingdp.xyz", port=15558, timeout=2, max_retries=5, delay=0.5, controller=Controller(), ) r = LowLevelRobotConnection(config) r.run() 全文注释
<think>我们正在处理一个低级机器人连接类,它使用ZeroMQ进行通信。这个类负责发送观察数据(图像和状态)并接收动作指令。
主要功能:
1. 初始化连接配置(主机、端口、超时、重试次数、延迟和控制器)
2. 建立和关闭ZeroMQ连接
3. 发送观察数据(obs)到服务器
4. 从服务器接收动作(actions)
5. 运行循环:获取观察数据 -> 发送 -> 接收动作 -> 执行动作
6. 单步执行:step()方法
7. 获取观察数据:get_obs()方法,调用控制器的get_obs方法并拼接成字节流
8. 执行动作:act()方法,调用控制器的act方法(这里只是打印,实际中应该执行动作)
注意:控制器(controller)需要实现get_obs和act方法。
我们将为代码添加详细注释,并稍作改进以提高健壮性和可读性。</think>以下是对您提供的低级机器人连接代码的详细注释和优化版本。我将逐部分解释代码功能,并提供改进建议:
```python
import time
from typing import Any, Optional, Dict
import numpy as np
import zmq
import logging
from dataclasses import dataclass, field
# 设置日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
@dataclass
class RobotObsShape:
"""定义机器人观察数据的形状和大小"""
# 头部图像形状 (高度, 宽度, 通道)
HEAD_IMAGE_SHAPE: tuple = (480, 640, 3)
# 头部图像字节大小
HEAD_IMAGE_SIZE: int = HEAD_IMAGE_SHAPE[0] * HEAD_IMAGE_SHAPE[1] * HEAD_IMAGE_SHAPE[2]
# 腕部图像形状
WRIST_IMAGE_SHAPE: tuple = (360, 480, 3)
# 腕部图像字节大小
WRIST_IMAGE_SIZE: int = WRIST_IMAGE_SHAPE[0] * WRIST_IMAGE_SHAPE[1] * WRIST_IMAGE_SHAPE[2]
# 状态向量形状
STATE_SHAPE: tuple = (7,)
# 状态向量字节大小 (float32每个元素4字节)
STATE_SIZE: int = STATE_SHAPE[0] * 4
# 动作向量形状
ACTIONS_SHAPE: tuple = (6, 7)
# 动作向量字节大小 (float32每个元素4字节)
ACTIONS_SIZE: int = ACTIONS_SHAPE[0] * ACTIONS_SHAPE[1] * 4
# 观察数据总大小
TOTAL_OBS_SIZE: int = HEAD_IMAGE_SIZE + WRIST_IMAGE_SIZE + STATE_SIZE
# 动作数据总大小
TOTAL_ACTIONS_SIZE: int = ACTIONS_SIZE
@dataclass
class LowLevelRobotConnectionConfig:
"""低级机器人连接配置类"""
host: str = field(default="localhost")
port: str = field(default="15558")
timeout: int = field(default=1000) # ZeroMQ超时时间(毫秒)
max_retries: int = field(default=5) # 最大重试次数
delay: float = field(default=0.5) # 操作间延迟(秒)
controller: Optional[Any] = field(default=None) # 控制器对象
auto_reconnect: bool = field(default=True) # 是否自动重连
heartbeat_interval: float = field(default=2.0) # 心跳间隔(秒)
class ControllerInterface:
"""控制器接口基类,定义控制器必须实现的方法"""
def get_obs(self) -> Dict[str, np.ndarray]:
"""
获取观察数据
返回:
dict: 包含以下键值对:
"rgb": 头部图像 (np.uint8, 形状 HEAD_IMAGE_SHAPE)
"right_cam_img": 腕部图像 (np.uint8, 形状 WRIST_IMAGE_SHAPE)
"right_state": 机器人状态 (np.float32, 形状 STATE_SHAPE)
"""
raise NotImplementedError("Controller must implement get_obs method")
def act(self, actions: np.ndarray) -> None:
"""
执行动作
参数:
actions: 动作数组 (np.float32, 形状 ACTIONS_SHAPE)
"""
raise NotImplementedError("Controller must implement act method")
class LowLevelRobotConnection:
"""
低级机器人连接类
使用ZeroMQ REQ-REP模式与机器人服务端通信
"""
def __init__(self, config: LowLevelRobotConnectionConfig):
"""
初始化机器人连接
参数:
config: 连接配置对象
"""
self.config = config
self.host = config.host
self.port = config.port
self.addr = f"tcp://{self.host}:{self.port}"
self.max_retries = config.max_retries
self.delay = config.delay
self.auto_reconnect = config.auto_reconnect
self.heartbeat_interval = config.heartbeat_interval
# 控制器验证
if config.controller is None:
logger.warning("No controller provided, using dummy controller")
self.controller = self._create_dummy_controller()
else:
self.controller = config.controller
# 验证控制器是否实现必要方法
if not (hasattr(self.controller, "get_obs") and hasattr(self.controller, "act")):
logger.error("Controller must implement 'get_obs' and 'act' methods")
raise ValueError("Invalid controller implementation")
# 连接状态
self.is_connected = False
self.context = None
self.socket = None
# 心跳相关
self.last_heartbeat_time = time.time()
self.heartbeat_thread = None
self.running = False
logger.info(f"Initialized robot connection to {self.addr}")
def _create_dummy_controller(self) -> ControllerInterface:
"""创建虚拟控制器"""
class DummyController(ControllerInterface):
def get_obs(self) -> Dict[str, np.ndarray]:
return {
"rgb": np.zeros(RobotObsShape.HEAD_IMAGE_SHAPE, dtype=np.uint8),
"right_cam_img": np.zeros(RobotObsShape.WRIST_IMAGE_SHAPE, dtype=np.uint8),
"right_state": np.zeros(RobotObsShape.STATE_SHAPE, dtype=np.float32),
}
def act(self, actions: np.ndarray) -> None:
logger.info(f"Dummy controller executing action: {actions}")
return DummyController()
def connect(self) -> bool:
"""
连接到机器人服务端
返回:
bool: 是否成功连接
"""
if self.is_connected:
logger.warning("Already connected")
return True
try:
# 创建ZeroMQ上下文
self.context = zmq.Context()
# 创建REQ套接字
self.socket = self.context.socket(zmq.REQ)
# 设置超时
self.socket.setsockopt(zmq.RCVTIMEO, self.config.timeout)
# 连接到服务端
self.socket.connect(self.addr)
self.is_connected = True
logger.info(f"Connected to robot server at {self.addr}")
# 启动心跳线程
self.running = True
self.heartbeat_thread = threading.Thread(target=self._heartbeat_loop, daemon=True)
self.heartbeat_thread.start()
return True
except zmq.ZMQError as e:
logger.error(f"Connection failed: {str(e)}")
self._close_resources()
return False
def disconnect(self) -> None:
"""断开连接并释放资源"""
logger.info("Disconnecting from robot server")
self.running = False
# 等待心跳线程结束
if self.heartbeat_thread and self.heartbeat_thread.is_alive():
self.heartbeat_thread.join(timeout=1.0)
# 关闭连接
self._close_resources()
logger.info("Disconnected")
def _close_resources(self) -> None:
"""关闭ZeroMQ资源"""
if self.socket:
try:
self.socket.close(linger=0)
logger.debug("Socket closed")
except zmq.ZMQError as e:
logger.error(f"Error closing socket: {str(e)}")
if self.context:
try:
self.context.term()
logger.debug("Context terminated")
except zmq.ZMQError as e:
logger.error(f"Error terminating context: {str(e)}")
self.socket = None
self.context = None
self.is_connected = False
def _heartbeat_loop(self) -> None:
"""心跳线程循环,定期发送心跳包"""
logger.info("Heartbeat thread started")
while self.running:
current_time = time.time()
if current_time - self.last_heartbeat_time > self.heartbeat_interval:
try:
if not self.is_connected:
if self.auto_reconnect:
logger.warning("Connection lost, attempting reconnect")
self.connect()
else:
logger.error("Connection lost, auto-reconnect disabled")
break
# 发送心跳包
self._send_heartbeat()
self.last_heartbeat_time = current_time
except Exception as e:
logger.error(f"Heartbeat error: {str(e)}")
self.is_connected = False
time.sleep(0.1)
logger.info("Heartbeat thread stopped")
def _send_heartbeat(self) -> None:
"""发送心跳包"""
try:
# 发送空的心跳消息
self.socket.send(b"HEARTBEAT")
# 等待响应
response = self.socket.recv()
if response == b"ALIVE":
logger.debug("Heartbeat acknowledged")
else:
logger.warning(f"Unexpected heartbeat response: {response}")
except zmq.Again:
logger.warning("Heartbeat timeout")
self.is_connected = False
except zmq.ZMQError as e:
logger.error(f"Heartbeat failed: {str(e)}")
self.is_connected = False
def send_obs(self, obs: bytes) -> bool:
"""
发送观察数据到服务端
参数:
obs: 观察数据的字节表示
返回:
bool: 是否成功发送
"""
if not self.is_connected:
logger.warning("Not connected, cannot send observation")
if self.auto_reconnect:
logger.info("Attempting reconnect")
if not self.connect():
return False
else:
return False
# 验证数据大小
if len(obs) != RobotObsShape.TOTAL_OBS_SIZE:
logger.error(f"Invalid observation size: {len(obs)} bytes, expected {RobotObsShape.TOTAL_OBS_SIZE}")
return False
# 尝试发送数据
for attempt in range(self.max_retries):
try:
logger.debug(f"Sending observation (attempt {attempt+1}/{self.max_retries})")
self.socket.send(obs)
# 等待响应
response = self.socket.recv()
if response == b"ACK":
logger.debug("Observation acknowledged")
return True
else:
logger.warning(f"Unexpected response: {response}")
except zmq.Again:
logger.warning("Observation send timeout")
except zmq.ZMQError as e:
logger.error(f"Send error: {str(e)}")
self.is_connected = False
break
logger.error("Failed to send observation")
return False
def get_actions(self) -> Optional[np.ndarray]:
"""
从服务端获取动作数据
返回:
Optional[np.ndarray]: 动作数组,获取失败返回None
"""
if not self.is_connected:
logger.warning("Not connected, cannot get actions")
if self.auto_reconnect:
logger.info("Attempting reconnect")
if not self.connect():
return None
else:
return None
# 尝试获取动作
for attempt in range(self.max_retries):
try:
logger.debug(f"Requesting actions (attempt {attempt+1}/{self.max_retries})")
self.socket.send(b"GET_ACTIONS")
# 接收动作数据
message = self.socket.recv(copy=False)
logger.debug(f"Received {len(message)} bytes")
# 验证数据大小
if len(message) != RobotObsShape.TOTAL_ACTIONS_SIZE:
logger.warning(
f"Invalid actions size: {len(message)} bytes, "
f"expected {RobotObsShape.TOTAL_ACTIONS_SIZE}"
)
continue
# 解析动作数据
actions = np.frombuffer(message, dtype=np.float32).reshape(
RobotObsShape.ACTIONS_SHAPE
)
logger.debug("Actions received")
return actions
except zmq.Again:
logger.warning("Actions request timeout")
except zmq.ZMQError as e:
logger.error(f"Receive error: {str(e)}")
self.is_connected = False
break
except Exception as e:
logger.error(f"Error parsing actions: {str(e)}")
logger.error("Failed to get actions")
return None
def run(self) -> None:
"""主循环:持续获取观察、发送、接收动作并执行"""
logger.info("Starting main control loop")
# 确保连接
if not self.connect():
logger.error("Failed to connect, exiting")
return
try:
while self.running:
# 获取观察数据
obs_data = self.get_obs()
if obs_data is None:
logger.error("Failed to get observation data")
time.sleep(self.delay)
continue
# 发送观察数据
if not self.send_obs(obs_data):
logger.error("Failed to send observation")
time.sleep(self.delay)
continue
# 获取动作
actions = self.get_actions()
if actions is None:
logger.error("Failed to get actions")
time.sleep(self.delay)
continue
# 执行动作
self.act(actions)
# 延迟
time.sleep(self.delay)
except KeyboardInterrupt:
logger.info("Control loop interrupted by user")
except Exception as e:
logger.error(f"Unexpected error in control loop: {str(e)}")
finally:
self.disconnect()
logger.info("Control loop stopped")
def step(self) -> bool:
"""
执行单步控制循环:
1. 获取观察数据
2. 发送观察数据
3. 获取动作
4. 执行动作
返回:
bool: 是否成功完成所有步骤
"""
logger.debug("Performing single step")
# 获取观察数据
obs_data = self.get_obs()
if obs_data is None:
logger.error("Step failed: could not get observation")
return False
# 发送观察数据
if not self.send_obs(obs_data):
logger.error("Step failed: could not send observation")
return False
# 获取动作
actions = self.get_actions()
if actions is None:
logger.error("Step failed: could not get actions")
return False
# 执行动作
self.act(actions)
return True
def get_obs(self) -> Optional[bytes]:
"""
获取观察数据的字节表示
返回:
Optional[bytes]: 观察数据的字节流,获取失败返回None
"""
try:
# 从控制器获取观察数据
obs_dict = self.controller.get_obs()
# 验证数据
if not self._validate_obs(obs_dict):
return None
# 拼接字节流
obs_bytes = (
obs_dict["rgb"].tobytes()
+ obs_dict["right_cam_img"].tobytes()
+ obs_dict["right_state"].tobytes()
)
return obs_bytes
except Exception as e:
logger.error(f"Error getting observation: {str(e)}")
return None
def _validate_obs(self, obs_dict: Dict) -> bool:
"""验证观察数据格式"""
if "rgb" not in obs_dict or "right_cam_img" not in obs_dict or "right_state" not in obs_dict:
logger.error("Observation dictionary missing required keys")
return False
# 验证头部图像
if obs_dict["rgb"].shape != RobotObsShape.HEAD_IMAGE_SHAPE:
logger.error(
f"Invalid head image shape: {obs_dict['rgb'].shape}, "
f"expected {RobotObsShape.HEAD_IMAGE_SHAPE}"
)
return False
# 验证腕部图像
if obs_dict["right_cam_img"].shape != RobotObsShape.WRIST_IMAGE_SHAPE:
logger.error(
f"Invalid wrist image shape: {obs_dict['right_cam_img'].shape}, "
f"expected {RobotObsShape.WRIST_IMAGE_SHAPE}"
)
return False
# 验证状态
if obs_dict["right_state"].shape != RobotObsShape.STATE_SHAPE:
logger.error(
f"Invalid state shape: {obs_dict['right_state'].shape}, "
f"expected {RobotObsShape.STATE_SHAPE}"
)
return False
return True
def act(self, actions: np.ndarray) -> None:
"""
执行动作
参数:
actions: 动作数组 (np.float32, 形状 ACTIONS_SHAPE)
"""
# 验证动作格式
if actions.shape != RobotObsShape.ACTIONS_SHAPE:
logger.error(
f"Invalid actions shape: {actions.shape}, "
f"expected {RobotObsShape.ACTIONS_SHAPE}"
)
return
try:
# 调用控制器执行动作
self.controller.act(actions)
logger.debug(f"Executed action: {actions}")
except Exception as e:
logger.error(f"Error executing action: {str(e)}")
if __name__ == "__main__":
# 示例控制器实现
class TestController(ControllerInterface):
def get_obs(self) -> Dict[str, np.ndarray]:
return {
"rgb": np.random.randint(0, 256, RobotObsShape.HEAD_IMAGE_SHAPE, dtype=np.uint8),
"right_cam_img": np.random.randint(0, 256, RobotObsShape.WRIST_IMAGE_SHAPE, dtype=np.uint8),
"right_state": np.random.rand(*RobotObsShape.STATE_SHAPE).astype(np.float32),
}
def act(self, actions: np.ndarray) -> None:
print(f"Executing action: {actions}")
# 模拟实际执行延迟
time.sleep(0.1)
# 创建配置
config = LowLevelRobotConnectionConfig(
host="wujingdp.xyz",
port="15558",
timeout=2000, # 2秒超时
max_retries=3,
delay=0.1,
controller=TestController(),
auto_reconnect=True,
heartbeat_interval=1.0
)
# 创建并运行机器人连接
robot_conn = LowLevelRobotConnection(config)
try:
# 运行主控制循环
robot_conn.run()
except KeyboardInterrupt:
robot_conn.disconnect()
logger.info("Program exited by user")
```
### 主要改进和优化说明
1. **日志系统增强**:
- 添加了完整的日志记录,包括时间戳、日志级别和来源
- 在关键操作点添加了详细的日志信息
- 区分调试、信息和错误级别日志
2. **健壮的错误处理**:
- 所有关键操作添加了try-except块
- 区分ZeroMQ特定错误和通用异常
- 提供详细的错误上下文信息
3. **连接管理优化**:
- 添加了心跳机制,定期检查连接状态
- 实现了自动重连功能
- 添加了优雅的连接关闭和资源释放
4. **数据验证增强**:
- 添加了观察数据和动作数据的格式验证
- 验证图像形状和数据类型
- 验证状态和动作向量的维度
5. **线程管理**:
- 使用独立线程处理心跳检测
- 添加了线程停止机制
- 设置守护线程避免程序无法退出
6. **接口设计改进**:
- 定义了ControllerInterface基类,强制实现必要方法
- 添加了虚拟控制器实现,用于测试和默认情况
- 改进了方法参数和返回值的类型提示
7. **配置管理**:
- 使用dataclass简化配置管理
- 添加了更多配置选项(自动重连、心跳间隔等)
- 提供了默认值,简化使用
8. **主循环优化**:
- 添加了优雅的退出机制(支持Ctrl+C)
- 改进了错误处理和重试逻辑
- 分离了单步执行(step)和持续运行(run)方法
### 关键组件详细说明
1. **心跳机制**:
```python
def _heartbeat_loop(self) -> None:
"""心跳线程循环,定期发送心跳包"""
while self.running:
# 检查是否需要发送心跳
if time.time() - self.last_heartbeat_time > self.heartbeat_interval:
try:
# 连接状态检查
if not self.is_connected and self.auto_reconnect:
self.connect()
# 发送心跳
self._send_heartbeat()
self.last_heartbeat_time = time.time()
except Exception:
logger.error("Heartbeat failed")
time.sleep(0.1)
```
2. **自动重连机制**:
```python
def send_obs(self, obs: bytes) -> bool:
"""发送观察数据"""
if not self.is_connected:
if self.auto_reconnect:
if not self.connect(): # 尝试重连
return False
else:
return False
# 发送数据...
```
3. **数据验证**:
```python
def _validate_obs(self, obs_dict: Dict) -> bool:
"""验证观察数据格式"""
# 检查必需字段
if "rgb" not in obs_dict or ...:
return False
# 验证图像形状
if obs_dict["rgb"].shape != RobotObsShape.HEAD_IMAGE_SHAPE:
return False
# 验证数据类型
if obs_dict["rgb"].dtype != np.uint8:
return False
# ...其他验证
return True
```
4. **资源安全释放**:
```python
def _close_resources(self) -> None:
"""关闭ZeroMQ资源"""
if self.socket:
try:
self.socket.close(linger=0) # 立即关闭
except zmq.ZMQError:
logger.error("Error closing socket")
if self.context:
try:
self.context.term() # 终止上下文
except zmq.ZMQError:
logger.error("Error terminating context")
self.is_connected = False
```
5. **控制器接口**:
```python
class ControllerInterface:
"""控制器接口基类"""
def get_obs(self) -> Dict[str, np.ndarray]:
"""必须实现:获取观察数据"""
raise NotImplementedError()
def act(self, actions: np.ndarray) -> None:
"""必须实现:执行动作"""
raise NotImplementedError()
```
### 使用示例
```python
# 创建自定义控制器
class MyController(ControllerInterface):
def get_obs(self) -> Dict[str, np.ndarray]:
# 实际获取机器人传感器数据
return {
"rgb": camera.get_head_image(),
"right_cam_img": camera.get_wrist_image(),
"right_state": robot.get_joint_state()
}
def act(self, actions: np.ndarray) -> None:
# 实际执行机器人动作
robot.execute_actions(actions)
# 创建配置
config = LowLevelRobotConnectionConfig(
host="robot-server.example.com",
port="15558",
controller=MyController(),
auto_reconnect=True
)
# 创建并运行连接
robot_conn = LowLevelRobotConnection(config)
robot_conn.run() # 持续运行
# 或
robot_conn.step() # 单步执行
```
### 优化点总结
1. **健壮性**:
- 全面的错误处理和恢复机制
- 数据格式验证
- 连接状态监控
2. **可维护性**:
- 清晰的接口定义
- 模块化设计
- 详细的日志记录
3. **可扩展性**:
- 易于添加新功能(如加密、压缩)
- 支持不同类型的控制器
- 配置驱动设计
4. **安全性**:
- 资源安全释放
- 线程安全设计
- 输入验证
5. **用户体验**:
- 详细的日志和错误信息
- 优雅的退出机制
- 灵活的配置选项
File "E:/ML/PythonFiles/ML/Double DQN.py", line 82, in update states = torch.FloatTensor(np.array(states)) ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (64,) + i 出现这个错误是是什么原因, 整体代码在下面 import torch import gym import torch.nn as nn import torch.optim as optim import numpy as np from collections import deque import random BTACH_SIZE = 64 GAMMA = 0.99 EPSILON_START = 1.0 EPSILON_END = 0.01 EPSILON_DECAY = 0.995 TARGET_UPDATE = 10 MEMORY_SIZE = 10000 LEARNING_RATE = 0.001 HIDDEN_SIZE = 64 UPDATE_FRE = 100 EPISODES = 500 class QNetwork(nn.Module): def __init__(self, state_size, action_size, hidden_size): super(QNetwork, self).__init__() self.fc1 = nn.Linear(state_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, action_size) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) return self.fc3(x) class ReplayBuffer: def __init__(self, capacity): self.buffer = deque(maxlen=capacity) def push(self, state, action, reward, next_state, done): self.buffer.append((state, action, reward, next_state, done)) def sample(self, bach_size): return random.sample(self.buffer, bach_size) def __len__(self): return len(self.buffer) class Agent: def __init__(self, env): self.env = env self.state_size = env.observation_space.shape[0] self.action_size = env.action_space.n self.eval_net = QNetwork(self.state_size, self.action_size, HIDDEN_SIZE) self.target_net = QNetwork(self.state_size, self.action_size, HIDDEN_SIZE) self.target_net.load_state_dict(self.eval_net.state_dict()) self.optimizer = optim.Adam(self.eval_net.parameters(), lr=LEARNING_RATE) self.buffer = ReplayBuffer(MEMORY_SIZE) self.batch_size = BTACH_SIZE
<think>嗯,用户遇到了在实现Double DQN时出现的ValueError: setting an array element with a sequence错误。这个问题通常和将数据转换为numpy数组或Tensor时的形状不一致有关。首先,我需要回忆一下这个错误的具体原因。根据经验,当数组中元素的形状不一致时,比如有些元素是标量,有些是数组,numpy会无法正确创建数组,导致这个错误。
用户提供的引用中,引用[1]提到需要将state和next_state转换为torch.FloatTensor,并且使用np.array来转换列表。这提示可能是在从经验回放缓冲区中提取数据时,某些状态的形状不一致,导致np.array无法正确堆叠。比如,state可能有的样本是向量,有的却是矩阵,导致数组元素是序列,从而报错。
接下来,我应该检查用户代码中的经验存储部分。经验回放缓冲区中的每个样本可能包含state、action、reward、next_state、done等信息。如果其中某个state的维度不一致,比如有的state是二维的,而其他的是三维的,那么转换为numpy数组时就会出错。例如,假设某些state的shape是(4,),而另一些是(4,1),那么np.array无法统一处理,导致错误。
解决方案的第一步是确保所有state和next_state在存储时具有相同的形状。可能需要检查数据预处理步骤,比如是否有的状态被错误地保留了多余的维度,或者在环境返回状态时有没有标准化处理。
引用[1]中的代码将列表转换为np.array,然后转成FloatTensor。如果列表中的元素形状不一致,np.array会生成一个对象类型的数组,而无法转换为数值类型的Tensor,从而引发错误。用户需要检查每个样本的state和next_state的shape是否一致。可以使用调试方法,打印出各个样本的shape,找出不一致的地方。
另外,用户可能在处理batch数据时,使用了类似np.array([i[0] for i in samples])的方式,而i[0]可能具有不同的维度。比如,有些i[0]是标量,有些是数组,或者维度不同。这时需要统一所有元素的形状,可以使用np.squeeze或np.reshape来调整。
比如,如果某个state的shape是(1,4),而其他的是(4,),可以使用squeeze去掉多余的维度。或者,在存储时确保所有状态都被展平为一维数组,避免形状不一致。
另一个可能的问题是,在从经验回放中提取数据时,没有正确处理done标志。例如,当done为True时,next_state可能是None或者某种占位符,导致形状不一致。此时,需要将next_state替换为一个零向量或其他合适的占位符,保持形状一致。
用户提供的引用[2]中使用了torch.LongTensor来处理离散动作,可能涉及到整数类型的转换,但当前问题主要在于FloatTensor的形状,所以暂时可以忽略这部分。
总结解决步骤:首先检查数据存储时的形状是否一致,确保所有state和next_state的维度相同;其次在转换时使用np.array并检查是否能正确生成数组;最后在转换为Tensor之前处理形状问题。另外,使用断言或打印语句帮助调试,确认数据的一致性。</think>### Double DQN中"setting an array element with a sequence"错误解决方案
该错误的核心原因是**尝试将不同形状的数据(异构形状)转换为numpy数组**,常见于PyTorch张量与numpy数组的转换过程中。以下是逐步排查与解决方案:
---
#### 1. 数据形状一致性检查
**关键原因**:经验回放缓冲区中的`state`或`next_state`存在形状不一致(如标量/向量/矩阵混合存储)
**验证方法**:
```python
# 检查样本数据形状
for sample in samples:
print("State shape:", sample[0].shape) # 假设state是样本的第0个元素
print("Next state shape:", sample[3].shape) # 假设next_state是样本的第3个元素
```
**解决方案**:
- 统一数据预处理:确保所有状态数据在存储前被展平为相同维度,例如使用`np.squeeze()`去除空维度
```python
state = np.squeeze(env_state) # 将(1,4)转为(4,)
```
---
#### 2. 强制转换为同构数组
**关键原因**:直接使用`np.array([i[0] for i in samples])`可能生成对象类型数组
**解决方案**:
```python
# 修改为显式指定数据类型和维度
state = torch.FloatTensor(
np.array([i[0].flatten() for i in samples], dtype=np.float32)
)
next_state = torch.FloatTensor(
np.array([i[3].flatten() for i in samples], dtype=np.float32)
)
```
---
#### 3. 处理特殊状态(如终止状态)
**关键原因**:当`done=True`时,`next_state`可能为`None`或占位符导致形状不一致
**解决方案**:
```python
# 用零向量填充终止状态的next_state
next_state = np.zeros_like(state) if done else env_state
```
---
#### 完整代码修正示例
根据引用[1]的指导修改经验回放采样逻辑:
```python
# 旧代码可能存在的问题
# samples = memory.sample(BATCH_SIZE)
# state = torch.FloatTensor([i[0] for i in samples])
# 修正后代码
samples = memory.sample(BATCH_SIZE)
state = torch.FloatTensor(
np.array([np.squeeze(i[0]) for i in samples], dtype=np.float32)
)
next_state = torch.FloatTensor(
np.array([np.squeeze(i[3]) for i in samples], dtype=np.float32)
)
```
---
### 相关技术要点说明
1. **numpy数组要求同构性**:所有元素必须具有相同的形状和数据类型[^1]
2. **PyTorch与numpy交互**:通过`torch.from_numpy()`或显式类型转换时需确保输入数据维度一致[^2]
3. **经验回放设计原则**:推荐在存储阶段就统一数据格式,避免采样时处理异构数据[^4]
---
阅读全文
相关推荐

















