如何把vit模型使用
时间: 2025-05-22 07:04:47 浏览: 14
### 如何使用 Vision Transformer (ViT) 模型实现图像分类
Vision Transformer (ViT) 是一种基于 Transformer 的架构,用于处理图像分类任务。它通过将图像分割成固定大小的 patches 并将其作为输入序列传递给 Transformer 来工作[^1]。
以下是 ViT 图像分类的一个简单实现示例:
#### 数据预处理
为了训练 ViT 模型,通常需要对图像进行标准化和分块操作。以下是一个简单的数据加载器配置:
```python
import tensorflow as tf
def load_and_preprocess(image_path, label):
img = tf.io.read_file(image_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.resize(img, [224, 224]) # 调整到适合 ViT 输入尺寸
img /= 255.0 # 归一化像素值到 [0, 1]
return img, label
batch_size = 32
image_paths = [...] # 替换为实际图片路径列表
labels = [...] # 替换为对应标签列表
dataset = tf.data.Dataset.from_tensor_slices((image_paths, labels))
dataset = dataset.map(load_and_preprocess).shuffle(1000).batch(batch_size)
```
#### 构建 ViT 模型
下面展示了一个基本的 ViT 模型结构,该模型由 patch 嵌入层、多头自注意力机制以及全连接分类头组成。
```python
from tensorflow.keras import layers, models
class PatchEmbedding(layers.Layer):
def __init__(self, patch_size, embed_dim):
super(PatchEmbedding, self).__init__()
self.patch_size = patch_size
self.embed_dim = embed_dim
self.projection = layers.Conv2D(embed_dim, kernel_size=patch_size, strides=patch_size)
def call(self, images):
batch_size = tf.shape(images)[0]
projected_patches = self.projection(images)
flattened_patches = tf.reshape(projected_patches, [batch_size, -1, self.embed_dim])
return flattened_patches
def create_vit_model(input_shape=(224, 224, 3), num_classes=10, patch_size=16, embed_dim=768, depth=12, num_heads=12):
inputs = layers.Input(shape=input_shape)
# 创建补丁嵌入
patches = PatchEmbedding(patch_size, embed_dim)(inputs)
# 添加位置编码
positions = tf.range(start=0, limit=tf.shape(patches)[1], delta=1)
pos_encoding = layers.Embedding(input_dim=1000, output_dim=embed_dim)(positions)
encoded_patches = patches + pos_encoding
# 多头自注意力与前馈网络堆叠
for _ in range(depth):
attention_output = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)(
encoded_patches, encoded_patches
)
residual_attention = layers.Add()([attention_output, encoded_patches])
mlp_input = layers.LayerNormalization()(residual_attention)
dense_output = layers.Dense(units=mlp_units, activation="gelu")(mlp_input)
dense_output = layers.Dropout(rate=dropout_rate)(dense_output)
dense_output = layers.Dense(units=embed_dim)(dense_output)
residual_dense = layers.Add()([dense_output, mlp_input])
encoded_patches = layers.LayerNormalization()(residual_dense)
representation = layers.LayerNormalization()(encoded_patches[:, 0, :])
outputs = layers.Dense(num_classes, activation='softmax')(representation)
model = models.Model(inputs=inputs, outputs=outputs)
return model
vit_model = create_vit_model()
```
上述代码定义了一个基础版本的 ViT 模型,并支持调整超参数以适应不同的任务需求。
#### 训练过程
完成模型构建后,可以编译并训练模型如下所示:
```python
vit_model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
history = vit_model.fit(dataset, epochs=10)
```
此部分展示了如何利用 TensorFlow/Keras API 对 ViT 进行端到端训练[^2]。
---
阅读全文
相关推荐


















