手撕yolov8代码
时间: 2024-06-06 15:04:49 浏览: 307
YOLOv8(You Only Look Once version 8)是一种流行的实时物体检测算法,它是YOLO系列的最新版本,以其高效和准确的性能而闻名。手撕YOLOv8代码意味着手动解析和理解其源代码,以便学习其工作原理和实现细节。
YOLOv8的核心是利用卷积神经网络(CNN)来处理图像数据,将输入分割成多个网格,并对每个网格中的区域进行预测。它通常包括以下几个关键步骤:
1. **模型结构**:YOLOv8继承了YOLOv3的基本架构,但引入了更多的改进,如更小的特征图尺寸、扩增的头部设计(包含更多层来提高精度)等。
2. **特征提取**:使用Darknet或ResNet这样的预训练网络提取图像特征。
3. **多尺度检测**:YOLOv8可以在不同大小的特征图上执行预测,增加了对不同尺寸目标的适应性。
4. **Anchor boxes**:YOLO使用预定义的锚框来预测不同大小和比例的目标。
5. **预测阶段**:计算每个网格单元的概率分布和边界框坐标,然后结合非极大抑制(NMS)进行后处理。
6. **损失函数**:使用IoU损失(Intersection over Union)和其他指标来衡量预测结果的准确性。
如果你想要深入了解YOLov8的代码,建议你从GitHub上的官方仓库开始,例如` Ultralytics/yolov8 `,阅读其`__init__.py`中的主要类定义,以及`models.py`中涉及核心功能的部分。在阅读过程中,注意理解每一部分的作用,比如`Detector`类的初始化、前向传播、及其训练和预测过程。
相关问题
手撕yolov5s训练代码
### 实现YOLOv5s模型训练代码
为了从零开始构建并训练YOLOv5s模型,需先安装PyTorch环境以及必要的依赖库。之后定义网络结构、损失函数,并准备数据集用于训练过程。
#### 安装依赖项
确保已安装Python 3.x版本,在命令行执行如下操作来设置开发环境:
```bash
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
pip install numpy opencv-python matplotlib albumentations
```
#### 导入所需模块
创建一个新的`.py`文件作为项目入口点,导入必需的Python包以支持后续工作流[^1]。
```python
import os
from pathlib import Path
import yaml
import torch
from torch.utils.data import DataLoader, Dataset
import cv2
import numpy as np
import random
from tqdm.auto import tqdm
from typing import List, Tuple
import math
```
#### 数据预处理类
设计自定义的数据加载器,负责读取图像及其对应的标签信息,同时应用随机增强技术提高泛化能力。
```python
class CustomDataset(Dataset):
def __init__(self, img_dir: str, label_file: str, transform=None):
self.img_paths = list(Path(img_dir).glob('*.jpg'))
with open(label_file, 'r') as f:
lines = f.readlines()
self.labels = {line.split()[0]: line.strip().split()[1:] for line in lines}
self.transform = transform
def __len__(self) -> int:
return len(self.img_paths)
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, dict]:
path = str(self.img_paths[idx])
image = cv2.imread(path)
height, width = image.shape[:2]
boxes = []
labels = []
if path.replace('.jpg', '') in self.labels.keys():
box_info = self.labels[path.replace('.jpg', '')]
for info in box_info:
class_id, center_x, center_y, bbox_w, bbox_h = map(float, info.split(','))
x_min = (center_x - bbox_h / 2.) * height
x_max = (center_x + bbox_w / 2.) * width
y_max = (center_y + bbox_h / 2.) * height
boxes.append([x_min, y_min, x_max, y_max])
labels.append(int(class_id))
sample = {'image': image, 'boxes': torch.tensor(boxes), 'labels': torch.tensor(labels)}
if self.transform is not None:
transformed = self.transform(**sample)
return transformed['image'], {
"boxes": transformed["boxes"],
"labels": transformed["labels"]
}
```
#### 构建YOLOv5架构
基于官方论文描述搭建简化版YOLOv5小型网络[YOLOResult], 主要组件包括CSPDarknet骨干网和PANet颈部层连接FPN特征金字塔。
由于篇幅限制,这里仅给出部分核心代码片段展示如何初始化模型实例:
```python
def conv_bn_relu(in_channels, out_channels, kernel_size=3, stride=1, padding=1):
return nn.Sequential(
nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(negative_slope=.1))
class CSPBlock(nn.Module):
...
class SPPF(nn.Module):
...
class YOLOv5s(nn.Module):
def __init__(num_classes=80):
super().__init__()
# Backbone Network
self.backbone = nn.Sequential(...)
# Neck Layer
self.neck = PANet(...)
# Detection Head
self.head = Detect(num_anchors_per_scale=..., num_classes=num_classes)
def forward(x):
backbone_out = self.backbone(x)
neck_out = self.neck(backbone_out)
output = self.head(neck_out)
return output
```
#### 配置超参数与优化策略
设定初始学习率、权重衰减系数等关键配置选项;采用SGD或AdamW算法更新梯度;通过余弦退火调度器调整每轮迭代的学习速率大小。
```python
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = YOLOv5s(num_classes=len(CLASSES)).to(device=device)
optimizer = torch.optim.Adam(model.parameters(), lr=INITIAL_LR, weight_decay=WDECAY)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=EPOCHS)
criterion = YoloLoss()
train_loader = DataLoader(CustomDataset(...), batch_size=BATCH_SIZE, shuffle=True)
val_loader = DataLoader(CustomDataset(...), batch_size=BATCH_SIZE*2, shuffle=False)
```
#### 开始训练循环
遍历整个数据集完成前向传播计算预测框坐标位置及类别概率分布;反向传递误差信号修正各层权值直至收敛为止。
```python
for epoch in range(EPOCHS):
model.train()
pbar = enumerate(train_loader)
print(f'\nEpoch: [{epoch}]')
loss_sum = 0.
for i, data in pbar:
images, targets = [_.to(device) for _ in data]
optimizer.zero_grad(set_to_none=True)
outputs = model(images)
losses = criterion(outputs, targets)
loss_value = sum(losses.values())
loss_value.backward()
optimizer.step()
scheduler.step()
loss_sum += float(loss_value.item())
avg_loss = loss_sum/(i+1.)
print(f'Average Loss:{avg_loss:.4f}')
```
手撕yolov11
### 手动实现 YOLOv1 算法
YOLO (You Only Look Once) 是一种实时目标检测算法,其核心思想是将输入图像划分为网格,并预测每个网格单元中的边界框及其类别概率。以下是关于手动实现 YOLOv1 的详细说明。
#### 1. 数据预处理
为了训练模型,需要对数据集进行标准化和标注转换。通常会使用 Pascal VOC 或 COCO 格式的标注数据[^1]。
```python
import cv2
import numpy as np
def preprocess_image(image_path, input_size=448):
image = cv2.imread(image_path)
image_resized = cv2.resize(image, (input_size, input_size))
image_normalized = image_resized / 255.0
return image_normalized
```
#### 2. 构建网络结构
YOLOv1 使用了一个类似于 GoogLeNet 的卷积神经网络架构。可以通过 PyTorch 实现该网络结构。
```python
import torch.nn as nn
class YOLOv1(nn.Module):
def __init__(self, S=7, B=2, C=20): # 默认参数来自原始论文
super(YOLOv1, self).__init__()
self.S = S
self.B = B
self.C = C
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2),
nn.LeakyReLU(0.1),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 192, kernel_size=3),
nn.LeakyReLU(0.1),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(192, 128, kernel_size=1),
nn.Conv2d(128, 256, kernel_size=3),
nn.Conv2d(256, 256, kernel_size=1),
nn.Conv2d(256, 512, kernel_size=3),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 256, kernel_size=1),
nn.Conv2d(256, 512, kernel_size=3),
nn.Conv2d(512, 256, kernel_size=1),
nn.Conv2d(256, 512, kernel_size=3),
nn.Flatten(),
nn.Linear(512 * ((448//32)**2), 4096),
nn.Dropout(0.5),
nn.LeakyReLU(0.1),
nn.Linear(4096, S*S*(C+B*5)) # 输出层大小计算方式
)
def forward(self, x):
x = self.features(x)
x = x.view(-1, self.S, self.S, self.C + self.B * 5)
return x
```
#### 3. 计算损失函数
YOLOv1 定义了一种多任务损失函数来联合优化分类、定位以及置信度估计的任务。
```python
class YoloLoss(nn.Module):
def __init__(self, lambda_coord=5, lambda_noobj=0.5):
super(YoloLoss, self).__init__()
self.lambda_coord = lambda_coord
self.lambda_noobj = lambda_noobj
def forward(self, predictions, target):
batch_size = predictions.size(0)
predictions = predictions.reshape(batch_size, 7, 7, 30)
iou_b1 = intersection_over_union(predictions[..., 21:25], target[..., 21:25])
iou_b2 = intersection_over_union(predictions[..., 26:30], target[..., 21:25])
ious = torch.cat([iou_b1.unsqueeze(0), iou_b2.unsqueeze(0)], dim=0)
best_box = ious.argmax(dim=0).unsqueeze(-1)
exists_box = target[..., 20].unsqueeze(3)
box_predictions = exists_box * (
best_box * predictions[..., 26:30]
+ (1 - best_box) * predictions[..., 21:25]
)
box_targets = exists_box * target[..., 21:25]
box_predictions[..., 2:4] = torch.sign(box_predictions[..., 2:4]) * \
torch.sqrt(torch.abs(box_predictions[..., 2:4]))
box_loss = self.lambda_coord * F.mse_loss(box_predictions, box_targets, reduction="sum")
pred_box = best_box * predictions[..., 25:26] + (1 - best_box) * predictions[..., 20:21]
object_loss = F.mse_loss(exists_box.squeeze() * pred_box.squeeze(),
exists_box.squeeze() * target[..., 20].squeeze(), reduction="sum")
no_object_loss = self.lambda_noobj * (
F.mse_loss((1 - exists_box) * predictions[..., 20:21],
(1 - exists_box) * target[..., 20:21], reduction="sum") +
F.mse_loss((1 - exists_box) * predictions[..., 25:26],
(1 - exists_box) * target[..., 20:21], reduction="sum"))
class_loss = F.mse_loss(exists_box.squeeze().permute(0, 2, 3, 1) @ predictions[..., :20],
exists_box.squeeze().permute(0, 2, 3, 1) @ target[..., :20], reduction="sum")
total_loss = box_loss + object_loss + no_object_loss + class_loss
return total_loss
```
#### 4. 结果可视化与保存
可以利用 `matplotlib` 和其他工具库绘制检测结果并将其写入文件中[^2]。
```python
from matplotlib import pyplot as plt
def visualize_results(image, boxes, labels=None):
fig, ax = plt.subplots(1)
ax.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
for box in boxes:
rect = patches.Rectangle((box[0]-box[2]/2, box[1]-box[3]/2), box[2], box[3], linewidth=2,
edgecolor='r', facecolor='none')
ax.add_patch(rect)
plt.show()
```
---
阅读全文
相关推荐












