yolov8如何添加CBAM注意力机制
时间: 2025-06-28 16:09:34 浏览: 9
### 实现CBAM注意力机制于YOLOv8
#### 一、CBAM简介
CBAM(Convolutional Block Attention Module)是一种简单而高效的注意力模块,能够显著增强模型对于特征图的关注度。该模块由两个子模块组成:通道注意力和空间注意力。通过这两个维度上的注意力建模,使得网络可以更专注于重要的区域或通道特性[^1]。
#### 二、修改YOLOv8架构以加入CBAM
要在YOLOv8中集成CBAM,主要工作集中在调整骨干网部分,在适当层之后插入CBAM实例。具体来说:
- **选择合适的层次**:通常建议在最后几个残差块之前添加CBAM,因为这些地方包含了更高阶的抽象特征。
- **定义CBAM类**:创建一个新的Python文件`cbam.py`用于定义CBAM组件及其初始化参数。
```python
import torch.nn as nn
from torchvision import models
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class CBAM(nn.Module):
def __init__(self, gate_channels, reduction_ratio=16, no_spatial=False):
super(CBAM, self).__init__()
self.ChannelGate = ChannelAttention(gate_channels, reduction_ratio)
self.no_spatial=no_spatial
if not no_spatial:
self.SpatialGate = SpatialAttention()
def forward(self, x):
x_out = self.ChannelGate(x) * x
if not self.no_spatial:
x_out = self.SpatialGate(x_out) * x_out
return x_out
```
- **更新配置文件**:编辑YOLOv8对应的`.yaml`配置文档,指定哪些阶段要启用CBAM功能,并设置相应的超参值。
```yaml
# yolov8.yaml example with cbam enabled at certain stages
backbone:
...
stage_4: # Example of where to add CBAM; adjust according to your needs.
type: ConvBlockWithCBAM
args:
channels_in: 512
channels_out: 1024
use_cbam: true
...
```
#### 三、训练与评估
完成上述改动后即可按照常规流程编译项目并启动训练过程。值得注意的是,由于引入了额外计算开销,可能需要相应延长迭代次数或者增加GPU资源分配来确保收敛效果良好。同时也要密切关注验证集上mAP指标的变化趋势,以此判断CBAM是否确实带来了性能增益[^2]。
阅读全文
相关推荐


















