transformer-lstm代码
时间: 2025-03-13 18:13:17 浏览: 36
### Transformer 结合 LSTM 的模型实现
以下是基于 Python 和深度学习框架(如 TensorFlow 或 PyTorch)的 Transformer-LSTM 组合模型代码实现:
#### 使用 TensorFlow/Keras 实现 Transformer-LSTM 模型
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Embedding, LSTM, Dense, MultiHeadAttention, LayerNormalization, Dropout
from tensorflow.keras.models import Model
def transformer_lstm_model(vocab_size, max_len, d_model=128, num_heads=8, ff_dim=512, lstm_units=64):
inputs = Input(shape=(max_len,))
# 嵌入层
embedding_layer = Embedding(input_dim=vocab_size, output_dim=d_model)(inputs)
# Positional Encoding (可选,视需求而定)
pos_encoding = positional_encoding(max_len, d_model)
x = embedding_layer + pos_encoding
# 多头注意力机制
attention_output = MultiHeadAttention(num_heads=num_heads, key_dim=d_model)(x, x)
attention_output = Dropout(0.1)(attention_output)
out1 = LayerNormalization()(attention_output + x)
# Feed Forward Network
ffn_output = tf.keras.Sequential([
Dense(ff_dim, activation="relu"),
Dense(d_model),
Dropout(0.1)
])(out1)
out2 = LayerNormalization()(ffn_output + out1)
# 添加LSTM层
lstm_out = LSTM(lstm_units, return_sequences=False)(out2)
# 输出层
outputs = Dense(vocab_size, activation='softmax')(lstm_out)
model = Model(inputs=inputs, outputs=outputs)
return model
# 辅助函数:位置编码
def get_angles(pos, i, d_model):
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
return pos * angle_rates
def positional_encoding(position, d_model):
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
np.arange(d_model)[np.newaxis, :],
d_model)
# 将 sin 应用于数组中的偶数索引处
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# 将 cos 应用于数组中的奇数索引处
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)
model = transformer_lstm_model(vocab_size=10000, max_len=100)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```
上述代码展示了如何通过 Keras 构建一个结合了多头自注意力机制和 LSTM 层的混合架构。此方法适用于序列预测任务或其他涉及时间依赖性的场景。
#### 使用 PyTorch 实现 Transformer-LSTM 模型
```python
import torch
import torch.nn as nn
class TransformerLSTMModel(nn.Module):
def __init__(self, vocab_size, embed_size, num_heads, hidden_size, lstm_hidden_size, dropout=0.1):
super(TransformerLSTMModel, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_size)
self.transformer_encoder = nn.TransformerEncoderLayer(
d_model=embed_size,
nhead=num_heads,
dim_feedforward=hidden_size,
dropout=dropout
)
self.lstm = nn.LSTM(embed_size, lstm_hidden_size, batch_first=True)
self.fc = nn.Linear(lstm_hidden_size, vocab_size)
def forward(self, x):
embedded = self.embedding(x)
transformed = self.transformer_encoder(embedded.permute(1, 0, 2)).permute(1, 0, 2)
lstm_out, _ = self.lstm(transformed)
output = self.fc(lstm_out[:, -1, :]) # 取最后一个时间步的输出
return output
vocab_size = 10000
embed_size = 128
num_heads = 8
hidden_size = 512
lstm_hidden_size = 64
model = TransformerLSTMModel(vocab_size, embed_size, num_heads, hidden_size, lstm_hidden_size)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
```
以上代码实现了使用 PyTorch 创建的一个简单 Transformer-LSTM 混合网络结构。该模型能够利用 Transformer 提取特征的能力以及 LSTM 对于时间序列数据的记忆特性[^3]。
### 注意事项
在实际应用中,可能需要调整超参数以适应具体的数据集和任务目标。此外,由于 Transformer 和 LSTM 都属于计算密集型组件,因此建议在 GPU 上运行此类模型以加速训练过程[^1]。
阅读全文
相关推荐

















