TransformER
时间: 2024-05-04 11:13:04 浏览: 225
TransformER是一个基于Transformer模型的实体关系抽取器。它是由CSDN开发的C知道团队开发的,旨在从文本中自动提取实体和它们之间的关系。
Transformer是一种基于自注意力机制的神经网络模型,它在自然语言处理任务中取得了很大的成功。TransformER利用Transformer模型的强大表达能力,能够对输入文本进行编码,并学习到实体之间的关系。
TransformER的工作流程如下:
1. 输入文本预处理:将输入文本进行分词、词性标注等预处理操作。
2. 实体识别:使用命名实体识别技术,识别出文本中的实体,如人名、地名、组织机构等。
3. 关系抽取:通过Transformer模型对输入文本进行编码,学习到实体之间的关系。
4. 输出结果:将抽取到的实体和关系进行整理和展示。
TransformER在许多实际应用中具有广泛的应用,如信息抽取、问答系统、知识图谱构建等。它能够帮助用户从大量文本中快速准确地提取出有用的信息。
阅读全文