活动介绍

import os import pandas as pd import tkinter as tk from tkinter import ttk, filedialog, scrolledtext, messagebox from tkinter.colorchooser import askcolor from difflib import SequenceMatcher import re import openpyxl import threading import numpy as np from openpyxl.utils import get_column_letter import xlrd import gc import hashlib import json import tempfile from concurrent.futures import ThreadPoolExecutor, as_completed import unicodedata class EnhancedSignalComparator: def __init__(self, root): self.root = root self.root.title("增强版信号功能对比工具") self.root.geometry("1200x800") self.root.configure(bg="#f0f0f0") # 初始化变量 self.folder_path = tk.StringVar() self.search_text = tk.StringVar() self.files = [] self.results = {} # 存储信号对比结果 self.highlight_color = "#FFD700" # 默认高亮色 self.search_running = False self.stop_requested = False self.cache_dir = os.path.join(tempfile.gettempdir(), "excel_cache") self.file_cache = {} # 文件缓存 self.column_cache = {} # 列名缓存 self.max_workers = 4 # 最大并发线程数 # 创建缓存目录 os.makedirs(self.cache_dir, exist_ok=True) # 创建界面 self.create_widgets() def create_widgets(self): # 顶部控制面板 control_frame = ttk.Frame(self.root, padding=10) control_frame.pack(fill=tk.X) # 文件夹选择 ttk.Label(control_frame, text="选择文件夹:").grid(row=0, column=0, sticky=tk.W) folder_entry = ttk.Entry(control_frame, textvariable=self.folder_path, width=50) folder_entry.grid(row=0, column=1, padx=5, sticky=tk.EW) ttk.Button(control_frame, text="浏览...", command=self.browse_folder).grid(row=0, column=2) # 搜索输入 ttk.Label(control_frame, text="搜索信号:").grid(row=1, column=0, sticky=tk.W, pady=(10,0)) search_entry = ttk.Entry(control_frame, textvariable=self.search_text, width=50) search_entry.grid(row=1, column=1, padx=5, pady=(10,0), sticky=tk.EW) search_entry.bind("<Return>", lambda event: self.start_search_thread()) ttk.Button(control_frame, text="搜索", command=self.start_search_thread).grid(row=1, column=2, pady=(10,0)) ttk.Button(control_frame, text="停止", command=self.stop_search).grid(row=1, column=3, pady=(10,0), padx=5) # 高级选项 ttk.Label(control_frame, text="并发线程:").grid(row=2, column=0, sticky=tk.W, pady=(10,0)) self.thread_var = tk.StringVar(value="4") ttk.Combobox(control_frame, textvariable=self.thread_var, values=["1", "2", "4", "8"], width=5).grid(row=2, column=1, sticky=tk.W, padx=5, pady=(10,0)) # 文件过滤 ttk.Label(control_frame, text="文件过滤:").grid(row=2, column=2, sticky=tk.W, pady=(10,0)) self.filter_var = tk.StringVar(value="*.xlsx;*.xlsm;*.xls") ttk.Entry(control_frame, textvariable=self.filter_var, width=20).grid(row=2, column=3, sticky=tk.W, padx=5, pady=(10,0)) # 高亮颜色选择 ttk.Label(control_frame, text="高亮颜色:").grid(row=3, column=0, sticky=tk.W, pady=(10,0)) self.color_btn = tk.Button(control_frame, bg=self.highlight_color, width=3, command=self.choose_color) self.color_btn.grid(row=3, column=1, sticky=tk.W, padx=5, pady=(10,0)) # 进度条 self.progress = ttk.Progressbar(control_frame, orient="horizontal", length=200, mode="determinate") self.progress.grid(row=3, column=2, columnspan=2, sticky=tk.EW, padx=5, pady=(10,0)) # 结果标签 self.result_label = ttk.Label(control_frame, text="") self.result_label.grid(row=3, column=4, sticky=tk.W, padx=5, pady=(10,0)) # 对比面板 notebook = ttk.Notebook(self.root) notebook.pack(fill=tk.BOTH, expand=True, padx=10, pady=10) # 表格视图 self.table_frame = ttk.Frame(notebook) notebook.add(self.table_frame, text="表格视图") # 文本对比视图 self.text_frame = ttk.Frame(notebook) notebook.add(self.text_frame, text="行内容对比") # 状态栏 self.status_var = tk.StringVar() status_bar = ttk.Label(self.root, textvariable=self.status_var, relief=tk.SUNKEN, anchor=tk.W) status_bar.pack(side=tk.BOTTOM, fill=tk.X) # 初始化表格和文本区域 self.init_table_view() self.init_text_view() def init_table_view(self): """初始化表格视图""" # 创建树状表格 columns = ("信号", "文件", "行内容摘要") self.tree = ttk.Treeview(self.table_frame, columns=columns, show="headings") # 设置列标题 for col in columns: self.tree.heading(col, text=col) self.tree.column(col, width=200, anchor=tk.W) # 添加滚动条 scrollbar = ttk.Scrollbar(self.table_frame, orient=tk.VERTICAL, command=self.tree.yview) self.tree.configure(yscrollcommand=scrollbar.set) self.tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) scrollbar.pack(side=tk.RIGHT, fill=tk.Y) # 绑定选择事件 self.tree.bind("<<TreeviewSelect>>", self.on_table_select) def init_text_view(self): """初始化文本对比视图""" self.text_panes = {} self.text_frame.columnconfigure(0, weight=1) self.text_frame.rowconfigure(0, weight=1) # 创建对比容器 self.compare_container = ttk.Frame(self.text_frame) self.compare_container.grid(row=0, column=0, sticky="nsew", padx=5, pady=5) # 添加差异高亮按钮 btn_frame = ttk.Frame(self.text_frame) btn_frame.grid(row=1, column=0, sticky="ew", padx=5, pady=5) ttk.Button(btn_frame, text="高亮显示差异", command=self.highlight_differences).pack(side=tk.LEFT) ttk.Button(btn_frame, text="导出差异报告", command=self.export_report).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="清除缓存", command=self.clear_cache).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="手动指定列名", command=self.manual_column_select).pack(side=tk.LEFT, padx=5) def browse_folder(self): """选择文件夹""" folder = filedialog.askdirectory(title="选择包含Excel文件的文件夹") if folder: self.folder_path.set(folder) self.load_files() def load_files(self): """加载文件夹中的Excel文件(优化特殊字符处理)""" folder = self.folder_path.get() if not folder or not os.path.isdir(folder): return # 获取文件过滤模式 filter_patterns = self.filter_var.get().split(';') self.files = [] for file in os.listdir(folder): file_path = os.path.join(folder, file) # 跳过临时文件 if file.startswith('~$'): continue # 检查文件扩展名 file_lower = file.lower() matched = False for pattern in filter_patterns: # 移除通配符并转换为小写 ext = pattern.replace('*', '').lower() if file_lower.endswith(ext): matched = True break if matched: # 规范化文件名处理特殊字符 normalized_path = self.normalize_file_path(file_path) if normalized_path and os.path.isfile(normalized_path): self.files.append(normalized_path) self.status_var.set(f"找到 {len(self.files)} 个Excel文件") def normalize_file_path(self, path): """规范化文件路径,处理特殊字符""" try: # 尝试直接访问文件 if os.path.exists(path): return path # 尝试Unicode规范化 normalized = unicodedata.normalize('NFC', path) if os.path.exists(normalized): return normalized # 尝试不同编码方案 encodings = ['utf-8', 'shift_jis', 'euc-jp', 'cp932'] for encoding in encodings: try: decoded = path.encode('latin1').decode(encoding) if os.path.exists(decoded): return decoded except: continue # 最终尝试原始路径 return path except Exception as e: self.status_var.set(f"文件路径处理错误: {str(e)}") return path def get_file_hash(self, file_path): """计算文件哈希值用于缓存""" try: hash_md5 = hashlib.md5() with open(file_path, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() except Exception as e: self.status_var.set(f"计算文件哈希失败: {str(e)}") return str(os.path.getmtime(file_path)) def get_cache_filename(self, file_path): """获取缓存文件名""" file_hash = self.get_file_hash(file_path) return os.path.join(self.cache_dir, f"{os.path.basename(file_path)}_{file_hash}.cache") def load_header_cache(self, file_path): """加载列名缓存""" cache_file = self.get_cache_filename(file_path) if os.path.exists(cache_file): try: with open(cache_file, "r", encoding='utf-8') as f: return json.load(f) except: return None return None def save_header_cache(self, file_path, header_info): """保存列名缓存""" cache_file = self.get_cache_filename(file_path) try: with open(cache_file, "w", encoding='utf-8') as f: json.dump(header_info, f) return True except: return False def find_header_row(self, file_path): """查找列名行(增强版)""" # 检查缓存 cache = self.load_header_cache(file_path) if cache: return cache.get("header_row"), cache.get("signal_col") # 没有缓存则重新查找 if file_path.lower().endswith((".xlsx", ".xlsm")): return self.find_header_row_openpyxl(file_path) elif file_path.lower().endswith(".xls"): return self.find_header_row_xlrd(file_path) return None, None def find_header_row_openpyxl(self, file_path): """使用openpyxl查找列名行(增强版)""" try: wb = openpyxl.load_workbook(file_path, read_only=True, data_only=True) ws = wb.active # 尝试多种列名匹配模式 patterns = [ r'データ名', # 半角片假名 r'データ名', # 全角片假名 r'信号名', # 中文 r'Signal Name', # 英文 r'Data Name', r'信号名称', r'データ名称' ] # 扩大搜索范围:前100行和前100列 for row_idx in range(1, 101): # 1-100行 # 扩大列搜索范围到100列 for col_idx in range(1, 101): # 1-100列 try: cell = ws.cell(row=row_idx, column=col_idx) cell_value = cell.value if not cell_value: continue # 尝试所有匹配模式 cell_str = str(cell_value) for pattern in patterns: if re.search(pattern, cell_str, re.IGNORECASE): # 找到列名行后,尝试确定信号列 signal_col = None # 在同行中查找信号列 for col_idx2 in range(1, 101): # 1-100列 try: cell2 = ws.cell(row=row_idx, column=col_idx2) cell2_value = cell2.value if not cell2_value: continue cell2_str = str(cell2_value) if re.search(pattern, cell2_str, re.IGNORECASE): signal_col = col_idx2 break except: continue # 保存缓存 if signal_col is not None: header_info = {"header_row": row_idx, "signal_col": signal_col} self.save_header_cache(file_path, header_info) wb.close() return row_idx, signal_col except: continue wb.close() except Exception as e: self.status_var.set(f"查找列名行出错: {str(e)}") return None, None def find_header_row_xlrd(self, file_path): """使用xlrd查找列名行(增强版)""" try: wb = xlrd.open_workbook(file_path) ws = wb.sheet_by_index(0) # 尝试多种列名匹配模式 patterns = [ r'データ名', # 半角片假名 r'データ名', # 全角片假名 r'信号名', # 中文 r'Signal Name', # 英文 r'Data Name', r'信号名称', r'データ名称' ] # 扩大搜索范围:前100行和前100列 for row_idx in range(0, 100): # 0-99行 # 扩大列搜索范围到100列 for col_idx in range(0, 100): # 0-99列 try: cell_value = ws.cell_value(row_idx, col_idx) if not cell_value: continue # 尝试所有匹配模式 cell_str = str(cell_value) for pattern in patterns: if re.search(pattern, cell_str, re.IGNORECASE): # 找到列名行后,尝试确定信号列 signal_col = None # 在同行中查找信号列 for col_idx2 in range(0, 100): # 0-99列 try: cell2_value = ws.cell_value(row_idx, col_idx2) if not cell2_value: continue cell2_str = str(cell2_value) if re.search(pattern, cell2_str, re.IGNORECASE): signal_col = col_idx2 break except: continue # 保存缓存 if signal_col is not None: header_info = {"header_row": row_idx, "signal_col": signal_col} self.save_header_cache(file_path, header_info) return row_idx, signal_col except: continue except Exception as e: self.status_var.set(f"查找列名行出错: {str(e)}") return None, None def extract_row_content(self, ws, row_idx, header_row, max_cols=100): """高效提取行内容(最多到100列)""" content = [] # 扩展到100列 for col_idx in range(1, max_cols + 1): try: cell = ws.cell(row=row_idx, column=col_idx) if cell.value is not None and str(cell.value).strip() != '': # 使用列名缓存 col_key = f"{header_row}-{col_idx}" if col_key in self.column_cache: col_name = self.column_cache[col_key] else: col_name_cell = ws.cell(row=header_row, column=col_idx) col_name = col_name_cell.value if col_name_cell.value else f"列{get_column_letter(col_idx)}" self.column_cache[col_key] = col_name content.append(f"{col_name}: {str(cell.value).strip()}") except: continue return "\n".join(content) def start_search_thread(self): """启动搜索线程""" if self.search_running: return self.search_running = True self.stop_requested = False self.max_workers = int(self.thread_var.get()) threading.Thread(target=self.search_files, daemon=True).start() def stop_search(self): """停止搜索""" self.stop_requested = True self.status_var.set("正在停止搜索...") def search_files(self): """在文件中搜索内容(优化特殊文件处理)""" search_term = self.search_text.get().strip() if not search_term: self.status_var.set("请输入搜索内容") self.search_running = False return if not self.files: self.status_var.set("请先选择文件夹") self.search_running = False return # 重置结果和UI self.results = {} for item in self.tree.get_children(): self.tree.delete(item) total_files = len(self.files) processed_files = 0 found_signals = 0 # 使用线程池处理文件 with ThreadPoolExecutor(max_workers=self.max_workers) as executor: futures = {} for file_path in self.files: if self.stop_requested: break future = executor.submit(self.process_file, file_path, search_term) futures[future] = file_path # 处理完成的任务 for future in as_completed(futures): if self.stop_requested: break file_path = futures[future] try: found = future.result() found_signals += found processed_files += 1 # 更新进度 progress = int(processed_files / total_files * 100) self.progress["value"] = progress self.status_var.set(f"已处理 {processed_files}/{total_files} 个文件") self.root.update_idletasks() except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") # 更新结果 if self.stop_requested: self.status_var.set(f"搜索已停止,已处理 {processed_files}/{total_files} 个文件") elif found_signals == 0: self.status_var.set(f"未找到包含 '{search_term}' 的信号") else: self.status_var.set(f"找到 {len(self.results)} 个匹配信号,共 {found_signals} 处匹配") self.update_text_view() self.progress["value"] = 0 self.search_running = False gc.collect() # 强制垃圾回收释放内存 def process_file(self, file_path, search_term): """处理单个文件(增强异常处理)""" found = 0 try: # 获取列名行和信号列 header_row, signal_col = self.find_header_row(file_path) # 如果自动查找失败,尝试手动模式 if header_row is None or signal_col is None: self.status_var.set(f"文件 {os.path.basename(file_path)} 未找到列名行,尝试手动查找...") header_row, signal_col = self.manual_find_header_row(file_path) if header_row is None or signal_col is None: self.status_var.set(f"文件 {os.path.basename(file_path)} 无法确定列名行,已跳过") return found # 根据文件类型处理 if file_path.lower().endswith((".xlsx", ".xlsm")): found = self.process_openpyxl_file(file_path, search_term, header_row, signal_col) elif file_path.lower().endswith(".xls"): found = self.process_xlrd_file(file_path, search_term, header_row, signal_col) except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") return found def manual_find_header_row(self, file_path): """手动查找列名行(当自动查找失败时使用)""" try: # 尝试打开文件 if file_path.lower().endswith((".xlsx", ".xlsm")): wb = openpyxl.load_workbook(file_path, read_only=True, data_only=True) ws = wb.active # 扫描整个工作表(最多1000行) for row_idx in range(1, 1001): for col_idx in range(1, 101): try: cell = ws.cell(row=row_idx, column=col_idx) if cell.value and "データ" in str(cell.value): # 找到可能的列名行 return row_idx, col_idx except: continue wb.close() elif file_path.lower().endswith(".xls"): wb = xlrd.open_workbook(file_path) ws = wb.sheet_by_index(0) # 扫描整个工作表(最多1000行) for row_idx in range(0, 1000): for col_idx in range(0, 100): try: cell_value = ws.cell_value(row_idx, col_idx) if cell_value and "データ" in str(cell_value): # 找到可能的列名行 return row_idx, col_idx except: continue except: pass return None, None def get_file_cache_key(self, file_path, header_row, signal_col): """生成唯一的文件缓存键""" file_hash = self.get_file_hash(file_path) return f"{file_hash}_{header_row}_{signal_col}" def process_openpyxl_file(self, file_path, search_term, header_row, signal_col): found = 0 try: cache_key = self.get_file_cache_key(file_path, header_row, signal_col) if cache_key in self.file_cache: signal_data = self.file_cache[cache_key] else: wb = openpyxl.load_workbook(file_path, data_only=True, read_only=True) ws = wb.active min_row = header_row + 1 max_row = min(ws.max_row, min_row + 5000) # 只读取信号列和行号 signal_data = [] for row_idx in range(min_row, max_row + 1): cell = ws.cell(row=row_idx, column=signal_col) if cell.value: signal_data.append((row_idx, str(cell.value))) self.file_cache[cache_key] = signal_data wb.close() # 收集匹配的行号 match_rows = [] for row_idx, value in signal_data: if search_term.lower() in value.lower(): match_rows.append(row_idx) # 批量处理匹配行 if match_rows: wb = openpyxl.load_workbook(file_path, data_only=True, read_only=True) ws = wb.active for row_idx in match_rows: # 只提取必要的列:信号名和关键元数据 signal = ws.cell(row=row_idx, column=signal_col).value data_name = ws.cell(row=row_idx, column=signal_col + 1).value if signal_col + 1 <= 100 else "" data_type = ws.cell(row=row_idx, column=signal_col + 2).value if signal_col + 2 <= 100 else "" row_content = f"信号名: {signal}\n数据名: {data_name}\n数据类型: {data_type}" # 添加到结果集 if signal not in self.results: self.results[signal] = {} short_name = os.path.basename(file_path) self.results[signal][short_name] = row_content # 添加到表格 summary = row_content[:50] + "..." if len(row_content) > 50 else row_content self.tree.insert("", tk.END, values=(signal, short_name, summary)) found += 1 wb.close() except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") return found def process_xlrd_file(self, file_path, search_term, header_row, signal_col): """高效处理xls文件(增强异常处理)""" found = 0 try: # 使用缓存 file_key = f"{file_path}_{header_row}_{signal_col}" if file_key in self.file_cache: ws = self.file_cache[file_key] else: wb = xlrd.open_workbook(file_path) ws = wb.sheet_by_index(0) self.file_cache[file_key] = ws # 优化搜索范围 min_row = header_row + 1 max_row = min(ws.nrows, min_row + 5000) # 限制搜索行数 # 批量读取信号列数据 signal_values = ws.col_values(signal_col, min_row, max_row) # 搜索匹配的信号 for idx, value in enumerate(signal_values): if self.stop_requested: break if not value: continue cell_str = str(value) if search_term.lower() in cell_str.lower(): signal = cell_str row_idx = min_row + idx # 提取整行内容 row_content = self.extract_xlrd_row_content(ws, row_idx, header_row) # 添加到结果集 if signal not in self.results: self.results[signal] = {} # 使用短文件名避免特殊字符问题 short_name = os.path.basename(file_path) self.results[signal][short_name] = row_content # 添加到表格(显示前50字符摘要) summary = row_content[:50] + "..." if len(row_content) > 50 else row_content self.tree.insert("", tk.END, values=(signal, short_name, summary)) found += 1 except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") return found def extract_xlrd_row_content(self, ws, row_idx, header_row): """为xls文件高效提取行内容""" content = [] try: row_values = ws.row_values(row_idx) except: return "" # 扩展到100列 for col_idx in range(min(len(row_values), 100)): try: cell_value = row_values[col_idx] if cell_value is not None and str(cell_value).strip() != '': # 使用列名缓存 col_key = f"{header_row}-{col_idx}" if col_key in self.column_cache: col_name = self.column_cache[col_key] else: try: col_name = ws.cell_value(header_row, col_idx) if not col_name: col_name = f"列{col_idx+1}" except: col_name = f"列{col_idx+1}" self.column_cache[col_key] = col_name content.append(f"{col_name}: {str(cell_value).strip()}") except: continue return "\n".join(content) def update_text_view(self): """更新文本对比视图""" # 清除现有文本区域 for widget in self.compare_container.winfo_children(): widget.destroy() if not self.results: return # 获取第一个信号作为默认显示 first_signal = next(iter(self.results.keys())) self.display_signal_comparison(first_signal) def on_table_select(self, event): """表格选择事件处理""" selected = self.tree.selection() if not selected: return item = self.tree.item(selected[0]) signal = item["values"][0] self.display_signal_comparison(signal) def display_signal_comparison(self, signal): """显示指定信号的对比""" # 清除现有文本区域 for widget in self.compare_container.winfo_children(): widget.destroy() if signal not in self.results: return signal_data = self.results[signal] files = list(signal_data.keys()) contents = list(signal_data.values()) # 创建列框架 for i, (file, content) in enumerate(zip(files, contents)): col_frame = ttk.Frame(self.compare_container) col_frame.grid(row=0, column=i, sticky="nsew", padx=5, pady=5) self.compare_container.columnconfigure(i, weight=1) # 文件名标签 file_label = ttk.Label(col_frame, text=file, font=("Arial", 10, "bold")) file_label.pack(fill=tk.X, pady=(0, 5)) # 文本区域 text_area = scrolledtext.ScrolledText(col_frame, wrap=tk.WORD, width=30, height=15) text_area.insert(tk.INSERT, content) text_area.configure(state="disabled") text_area.pack(fill=tk.BOTH, expand=True) # 保存引用 self.text_panes[file] = text_area def highlight_differences(self): """高亮显示文本差异""" if not self.text_panes: return # 获取所有行内容 all_contents = [] for text_area in self.text_panes.values(): text_area.configure(state="normal") text = text_area.get("1.0", tk.END).strip() text_area.configure(state="disabled") all_contents.append(text) # 如果所有内容相同,则不需要高亮 if len(set(all_contents)) == 1: self.status_var.set("所有文件行内容完全一致") return # 使用第一个文件作为基准 base_text = all_contents[0] # 对比并高亮差异 for i, (file, text_area) in enumerate(self.text_panes.items()): if i == 0: # 基准文件不需要处理 continue text_area.configure(state="normal") text_area.tag_configure("diff", background=self.highlight_color) # 清除之前的高亮 text_area.tag_remove("diff", "1.0", tk.END) # 获取当前文本 compare_text = text_area.get("1.0", tk.END).strip() # 使用序列匹配器查找差异 s = SequenceMatcher(None, base_text, compare_text) # 高亮差异部分 for tag in s.get_opcodes(): opcode = tag[0] start = tag[3] end = tag[4] if opcode != "equal": # 添加高亮标签 text_area.tag_add("diff", f"1.0+{start}c", f"1.0+{end}c") text_area.configure(state="disabled") self.status_var.set("差异已高亮显示") def choose_color(self): """选择高亮颜色""" color = askcolor(title="选择高亮颜色", initialcolor=self.highlight_color) if color[1]: self.highlight_color = color[1] self.color_btn.configure(bg=self.highlight_color) def export_report(self): """导出差异报告""" if not self.results: messagebox.showwarning("警告", "没有可导出的结果") return try: # 创建报告数据结构 report_data = [] for signal, files_data in self.results.items(): for file, content in files_data.items(): report_data.append({ "信号": signal, "文件": file, "行内容": content }) # 转换为DataFrame df = pd.DataFrame(report_data) # 保存到Excel save_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel文件", "*.xlsx")], title="保存差异报告" ) if save_path: df.to_excel(save_path, index=False) self.status_var.set(f"报告已保存到: {save_path}") except Exception as e: messagebox.showerror("错误", f"导出报告失败: {str(e)}") def clear_cache(self): """清除缓存""" try: for file in os.listdir(self.cache_dir): if file.endswith(".cache"): os.remove(os.path.join(self.cache_dir, file)) self.file_cache = {} self.column_cache = {} self.status_var.set("缓存已清除") except Exception as e: self.status_var.set(f"清除缓存失败: {str(e)}") def manual_column_select(self): """手动指定列名位置""" if not self.files: messagebox.showinfo("提示", "请先选择文件夹") return # 创建手动选择窗口 manual_window = tk.Toplevel(self.root) manual_window.title("手动指定列名位置") manual_window.geometry("400x300") # 文件选择 ttk.Label(manual_window, text="选择文件:").pack(pady=(10, 5)) file_var = tk.StringVar() file_combo = ttk.Combobox(manual_window, textvariable=file_var, values=[os.path.basename(f) for f in self.files]) file_combo.pack(fill=tk.X, padx=20, pady=5) file_combo.current(0) # 行号输入 ttk.Label(manual_window, text="列名行号:").pack(pady=(10, 5)) row_var = tk.StringVar(value="1") row_entry = ttk.Entry(manual_window, textvariable=row_var) row_entry.pack(fill=tk.X, padx=20, pady=5) # 列号输入 ttk.Label(manual_window, text="信号列号:").pack(pady=(10, 5)) col_var = tk.StringVar(value="1") col_entry = ttk.Entry(manual_window, textvariable=col_var) col_entry.pack(fill=tk.X, padx=20, pady=5) # 确认按钮 def confirm_selection(): try: file_idx = file_combo.current() file_path = self.files[file_idx] header_row = int(row_var.get()) signal_col = int(col_var.get()) # 保存到缓存 header_info = {"header_row": header_row, "signal_col": signal_col} self.save_header_cache(file_path, header_info) messagebox.showinfo("成功", f"已为 {os.path.basename(file_path)} 设置列名位置:行{header_row} 列{signal_col}") manual_window.destroy() except Exception as e: messagebox.showerror("错误", f"无效输入: {str(e)}") ttk.Button(manual_window, text="确认", command=confirm_selection).pack(pady=20) if __name__ == "__main__": root = tk.Tk() app = EnhancedSignalComparator(root) root.mainloop() 1、现在更改之后,读取的速度更慢了,在大文件的搜索中,一直在已处理中,速度太慢了,甚至没有改之前快,请搜索网络上类似的处理,优化处理流程

时间: 2025-07-23 15:56:51 浏览: 3
<think>我们注意到在`process_openpyxl_file`方法中,我们首先读取整个信号列并缓存,然后对每个匹配的行再次打开文件读取具体内容。这导致大文件处理变慢,因为反复打开文件。 优化思路: 1. 在第一次读取信号列时,同时缓存行内容摘要(关键列)?但是这样会占用更多内存,但可以减少文件打开次数。 2. 或者,在第一次读取信号列时,如果匹配到了,就立即提取该行的关键列内容,这样只需要打开一次文件。 我们选择第二种:在第一次读取信号列时,如果发现匹配,就同时读取关键列(信号列附近几列)并缓存行内容摘要。这样只需要打开一次文件。 修改`process_openpyxl_file`: - 不再分两步(先读信号列,再读匹配行),而是在读取信号列的同时,如果匹配,则读取该行的关键列(例如信号列、数据名、数据类型等)并生成行内容摘要。 - 这样,我们只需要打开一次文件,然后同时完成匹配和内容提取。 但是注意:我们之前使用`read_only`模式,在读取单元格时是顺序读取,效率较高。我们可以在读取信号列的同时,读取同一行的其他列。 具体修改: 在读取信号列时,对于每一行: - 读取信号列的值 - 如果匹配搜索词,则立即读取该行的关键列(比如信号列、信号列+1、信号列+2)并生成行内容摘要 - 缓存这个行内容摘要,这样就不需要再次打开文件 这样,我们只需要遍历一次文件,就可以完成所有匹配行的提取。 同样,对于xls文件,我们也采用类似的方式。 由于我们只关心匹配的行,所以我们可以这样做: 步骤: 1. 打开文件(使用read_only模式) 2. 从header_row+1开始遍历到最大行(限制5000行) 3. 对于每一行: 读取信号列的值 如果包含搜索词,则读取该行的关键列(例如信号列、信号列+1、信号列+2)并生成行内容摘要 将行内容摘要和信号名存入结果 4. 关闭文件 这样就不需要缓存信号列数据,因为我们在一次遍历中同时完成了匹配和内容提取。 但是,这样就不能利用缓存来避免重复读取同一文件(比如多次搜索)。但是考虑到大文件,缓存整个文件内容可能内存占用过大,所以我们选择每次搜索都重新读取文件。不过,我们可以提供选项让用户选择是否启用缓存(但当前需求是速度,所以先不考虑缓存)。 修改后的`process_openpyxl_file`: 注意:我们不再使用文件缓存(因为每次搜索都是独立的,且要避免内存占用过大),而是直接处理并获取结果。 同时,我们限制读取的行数(5000行)和列数(只读关键列),这样速度会快很多。 同样,修改`process_xlrd_file`。 此外,我们还可以考虑: - 使用更高效的方法读取行(例如,openpyxl的`iter_rows`可以一次读取一行中的多个列) 修改代码:</think>### 问题分析:大文件处理性能优化 您提到在优化后处理大文件时性能反而下降,这可能是由于以下原因: 1. **重复打开文件**:在匹配行处理阶段重复打开工作簿,导致I/O开销增加 2. **缓存策略不当**:缓存了过多数据,反而增加了内存开销 3. **全量读取策略**:虽然优化了列读取,但仍读取了所有行而非仅匹配行 ### 优化方案:高效处理大文件 以下是针对大文件的优化方案,结合了最佳实践和行业经验: ```python def process_openpyxl_file(self, file_path, search_term, header_row, signal_col): found = 0 try: cache_key = self.get_file_cache_key(file_path, header_row, signal_col) # 使用缓存或创建新处理 if cache_key in self.file_cache: match_rows = self.file_cache[cache_key] else: # 高效读取匹配行 wb = openpyxl.load_workbook(file_path, data_only=True, read_only=True) ws = wb.active min_row = header_row + 1 max_row = min(ws.max_row, min_row + 10000) # 扩大行数限制 # 直接查找匹配行 - 避免全量读取 match_rows = [] for row_idx in range(min_row, max_row + 1): try: cell = ws.cell(row=row_idx, column=signal_col) if cell.value and search_term.lower() in str(cell.value).lower(): match_rows.append(row_idx) except: continue # 缓存匹配行位置而非全量数据 self.file_cache[cache_key] = match_rows wb.close() # 批量处理匹配行 if match_rows: # 使用优化方式打开文件 wb = openpyxl.load_workbook(file_path, data_only=True) ws = wb.active # 预先获取列名映射 col_names = {} for col_idx in range(1, 101): # 只处理前100列 try: col_cell = ws.cell(row=header_row, column=col_idx) col_names[col_idx] = col_cell.value if col_cell.value else f"列{get_column_letter(col_idx)}" except: col_names[col_idx] = f"列{col_idx}" for row_idx in match_rows: # 只提取必要的列 row_content = [] for col_idx in range(1, 11): # 只处理前10个关键列 try: cell = ws.cell(row=row_idx, column=col_idx) if cell.value: row_content.append(f"{col_names.get(col_idx, f'列{col_idx}')}: {str(cell.value).strip()}") except: continue row_content = "\n".join(row_content) signal = ws.cell(row=row_idx, column=signal_col).value # 添加到结果集 if signal not in self.results: self.results[signal] = {} short_name = os.path.basename(file_path) self.results[signal][short_name] = row_content # 添加到表格 summary = row_content[:50] + "..." if len(row_content) > 50 else row_content self.tree.insert("", tk.END, values=(signal, short_name, summary)) found += 1 wb.close() except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") return found ``` ### 关键优化点解释 1. **高效匹配行定位**: - 直接遍历行并检查信号列值,避免全量读取信号列 - 只缓存匹配行位置而非全量数据,减少内存占用 2. **列处理优化**: - 只处理前10个关键列(可根据需要调整) - 预先获取列名映射,避免重复访问表头 3. **I/O优化**: - 使用`read_only=True`模式打开工作簿进行扫描 - 批量处理匹配行时使用标准模式打开,减少切换开销 4. **内存管理**: - 限制处理行数(可配置为10000行) - 避免在内存中保留大型数据结构 ### 针对xls文件的优化 ```python def process_xlrd_file(self, file_path, search_term, header_row, signal_col): found = 0 try: cache_key = self.get_file_cache_key(file_path, header_row, signal_col) if cache_key in self.file_cache: match_rows = self.file_cache[cache_key] else: wb = xlrd.open_workbook(file_path, on_demand=True) ws = wb.sheet_by_index(0) min_row = header_row + 1 max_row = min(ws.nrows, min_row + 10000) # 限制行数 # 直接查找匹配行 match_rows = [] for row_idx in range(min_row, max_row): try: cell_value = ws.cell_value(row_idx, signal_col) if cell_value and search_term.lower() in str(cell_value).lower(): match_rows.append(row_idx) except: continue self.file_cache[cache_key] = match_rows wb.release_resources() if match_rows: wb = xlrd.open_workbook(file_path) ws = wb.sheet_by_index(0) # 预先获取列名 col_names = {} for col_idx in range(0, 10): # 只处理前10列 try: col_name = ws.cell_value(header_row, col_idx) col_names[col_idx] = col_name if col_name else f"列{col_idx+1}" except: col_names[col_idx] = f"列{col_idx+1}" for row_idx in match_rows: # 只提取关键列 row_content = [] for col_idx in range(0, 10): # 前10列 try: cell_value = ws.cell_value(row_idx, col_idx) if cell_value: row_content.append(f"{col_names.get(col_idx, f'列{col_idx+1}')}: {str(cell_value).strip()}") except: continue row_content = "\n".join(row_content) signal = ws.cell_value(row_idx, signal_col) if signal not in self.results: self.results[signal] = {} short_name = os.path.basename(file_path) self.results[signal][short_name] = row_content summary = row_content[:50] + "..." if len(row_content) > 50 else row_content self.tree.insert("", tk.END, values=(signal, short_name, summary)) found += 1 wb.release_resources() except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") return found ``` ### 性能优化额外建议 1. **添加进度反馈**: ```python def process_openpyxl_file(self, file_path, search_term, header_row, signal_col): # ... total_rows = max_row - min_row + 1 processed_rows = 0 for row_idx in range(min_row, max_row + 1): processed_rows += 1 if processed_rows % 100 == 0: # 每100行更新一次 self.status_var.set(f"处理 {os.path.basename(file_path)}: {processed_rows}/{total_rows} 行") self.root.update_idletasks() # ... ``` 2. **使用内存映射文件**(对于超大文件): ```python if os.path.getsize(file_path) > 100 * 1024 * 1024: # >100MB wb = openpyxl.load_workbook(file_path, read_only=True, data_only=True, use_iterators=True) ``` 3. **添加超时处理**: ```python from func_timeout import func_timeout, FunctionTimedOut try: result = func_timeout(30, self.process_file, args=(file_path, search_term)) except FunctionTimedOut: self.status_var.set(f"处理文件 {file_path} 超时,已跳过") ``` ### 相关问题
阅读全文

相关推荐

import os import pandas as pd import tkinter as tk from tkinter import ttk, filedialog, scrolledtext, messagebox from tkinter.colorchooser import askcolor from difflib import SequenceMatcher import re import openpyxl import threading import numpy as np from openpyxl.utils import get_column_letter import xlrd import gc import hashlib import json import tempfile from concurrent.futures import ThreadPoolExecutor, as_completed import unicodedata from datetime import datetime class EnhancedSignalComparator: def __init__(self, root): self.root = root self.root.title("增强版信号功能对比工具") self.root.geometry("1200x800") self.root.configure(bg="#f0f0f0") # 初始化变量 self.folder_path = tk.StringVar() self.search_text = tk.StringVar() self.files = [] self.results = {} # 存储信号对比结果 self.highlight_color = "#FFD700" # 默认高亮色 self.search_running = False self.stop_requested = False self.cache_dir = os.path.join(tempfile.gettempdir(), "excel_cache") self.file_cache = {} # 文件缓存 self.column_cache = {} # 列名缓存 self.max_workers = 4 # 最大并发线程数 # 创建缓存目录 os.makedirs(self.cache_dir, exist_ok=True) # 创建界面 self.create_widgets() self.log_file = "comparator.log" self.setup_logging() def setup_logging(self): """初始化日志系统""" with open(self.log_file, "w", encoding="utf-8") as log_file: log_file.write(f"{datetime.now().isoformat()} - 日志初始化\n") def log(self, message): """记录日志""" timestamp = datetime.now().isoformat() log_entry = f"{timestamp} - {message}\n" # 控制台输出 print(log_entry.strip()) # 文件记录 with open(self.log_file, "a", encoding="utf-8") as log_file: log_file.write(log_entry) # 状态栏显示(缩短版本) if len(message) > 60: self.status_var.set(message[:57] + "...") else: self.status_var.set(message) def create_widgets(self): # 顶部控制面板 control_frame = ttk.Frame(self.root, padding=10) control_frame.pack(fill=tk.X) # 文件夹选择 ttk.Label(control_frame, text="选择文件夹:").grid(row=0, column=0, sticky=tk.W) folder_entry = ttk.Entry(control_frame, textvariable=self.folder_path, width=50) folder_entry.grid(row=0, column=1, padx=5, sticky=tk.EW) ttk.Button(control_frame, text="浏览...", command=self.browse_folder).grid(row=0, column=2) # 搜索输入 ttk.Label(control_frame, text="搜索信号:").grid(row=1, column=0, sticky=tk.W, pady=(10,0)) search_entry = ttk.Entry(control_frame, textvariable=self.search_text, width=50) search_entry.grid(row=1, column=1, padx=5, pady=(10,0), sticky=tk.EW) search_entry.bind("<Return>", lambda event: self.start_search_thread()) ttk.Button(control_frame, text="搜索", command=self.start_search_thread).grid(row=1, column=2, pady=(10,0)) ttk.Button(control_frame, text="停止", command=self.stop_search).grid(row=1, column=3, pady=(10,0), padx=5) # 高级选项 ttk.Label(control_frame, text="并发线程:").grid(row=2, column=0, sticky=tk.W, pady=(10,0)) self.thread_var = tk.StringVar(value="4") ttk.Combobox(control_frame, textvariable=self.thread_var, values=["1", "2", "4", "8"], width=5).grid(row=2, column=1, sticky=tk.W, padx=5, pady=(10,0)) # 文件过滤 ttk.Label(control_frame, text="文件过滤:").grid(row=2, column=2, sticky=tk.W, pady=(10,0)) self.filter_var = tk.StringVar(value="*.xlsx;*.xlsm;*.xls") ttk.Entry(control_frame, textvariable=self.filter_var, width=20).grid(row=2, column=3, sticky=tk.W, padx=5, pady=(10,0)) # 高亮颜色选择 ttk.Label(control_frame, text="高亮颜色:").grid(row=3, column=0, sticky=tk.W, pady=(10,0)) self.color_btn = tk.Button(control_frame, bg=self.highlight_color, width=3, command=self.choose_color) self.color_btn.grid(row=3, column=1, sticky=tk.W, padx=5, pady=(10,0)) # 进度条 self.progress = ttk.Progressbar(control_frame, orient="horizontal", length=200, mode="determinate") self.progress.grid(row=3, column=2, columnspan=2, sticky=tk.EW, padx=5, pady=(10,0)) # 结果标签 self.result_label = ttk.Label(control_frame, text="") self.result_label.grid(row=3, column=4, sticky=tk.W, padx=5, pady=(10,0)) # 对比面板 notebook = ttk.Notebook(self.root) notebook.pack(fill=tk.BOTH, expand=True, padx=10, pady=10) # 表格视图 self.table_frame = ttk.Frame(notebook) notebook.add(self.table_frame, text="表格视图") # 文本对比视图 self.text_frame = ttk.Frame(notebook) notebook.add(self.text_frame, text="行内容对比") # 状态栏 self.status_var = tk.StringVar() status_bar = ttk.Label(self.root, textvariable=self.status_var, relief=tk.SUNKEN, anchor=tk.W) status_bar.pack(side=tk.BOTTOM, fill=tk.X) # 初始化表格和文本区域 self.init_table_view() self.init_text_view() def init_table_view(self): """初始化表格视图""" # 创建树状表格 columns = ("信号", "文件", "行内容摘要") self.tree = ttk.Treeview(self.table_frame, columns=columns, show="headings") # 设置列标题 for col in columns: self.tree.heading(col, text=col) self.tree.column(col, width=200, anchor=tk.W) # 添加滚动条 scrollbar = ttk.Scrollbar(self.table_frame, orient=tk.VERTICAL, command=self.tree.yview) self.tree.configure(yscrollcommand=scrollbar.set) self.tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) scrollbar.pack(side=tk.RIGHT, fill=tk.Y) # 绑定选择事件 self.tree.bind("<<TreeviewSelect>>", self.on_table_select) def init_text_view(self): """初始化文本对比视图""" self.text_panes = {} self.text_frame.columnconfigure(0, weight=1) self.text_frame.rowconfigure(0, weight=1) # 创建对比容器 self.compare_container = ttk.Frame(self.text_frame) self.compare_container.grid(row=0, column=0, sticky="nsew", padx=5, pady=5) # 添加差异高亮按钮 btn_frame = ttk.Frame(self.text_frame) btn_frame.grid(row=1, column=0, sticky="ew", padx=5, pady=5) ttk.Button(btn_frame, text="高亮显示差异", command=self.highlight_differences).pack(side=tk.LEFT) ttk.Button(btn_frame, text="导出差异报告", command=self.export_report).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="清除缓存", command=self.clear_cache).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="手动指定列名", command=self.manual_column_select).pack(side=tk.LEFT, padx=5) def browse_folder(self): """选择文件夹""" folder = filedialog.askdirectory(title="选择包含Excel文件的文件夹") if folder: self.folder_path.set(folder) self.load_files() def load_files(self): """加载文件夹中的Excel文件(优化特殊字符处理)""" folder = self.folder_path.get() if not folder or not os.path.isdir(folder): return # 获取文件过滤模式 filter_patterns = self.filter_var.get().split(';') self.files = [] for file in os.listdir(folder): file_path = os.path.join(folder, file) # 跳过临时文件 if file.startswith('~$'): continue # 检查文件扩展名 file_lower = file.lower() matched = False for pattern in filter_patterns: # 移除通配符并转换为小写 ext = pattern.replace('*', '').lower() if file_lower.endswith(ext): matched = True break if matched: # 规范化文件名处理特殊字符 normalized_path = self.normalize_file_path(file_path) if normalized_path and os.path.isfile(normalized_path): self.files.append(normalized_path) self.status_var.set(f"找到 {len(self.files)} 个Excel文件") def normalize_file_path(self, path): """规范化文件路径,处理特殊字符""" try: # 尝试直接访问文件 if os.path.exists(path): return path # 尝试Unicode规范化 normalized = unicodedata.normalize('NFC', path) if os.path.exists(normalized): return normalized # 尝试不同编码方案 encodings = ['utf-8', 'shift_jis', 'euc-jp', 'cp932'] for encoding in encodings: try: decoded = path.encode('latin1').decode(encoding) if os.path.exists(decoded): return decoded except: continue # 最终尝试原始路径 return path except Exception as e: self.status_var.set(f"文件路径处理错误: {str(e)}") return path def get_file_hash(self, file_path): """计算文件哈希值用于缓存""" try: hash_md5 = hashlib.md5() with open(file_path, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() except Exception as e: self.status_var.set(f"计算文件哈希失败: {str(e)}") return str(os.path.getmtime(file_path)) def get_cache_filename(self, file_path): """获取缓存文件名""" file_hash = self.get_file_hash(file_path) return os.path.join(self.cache_dir, f"{os.path.basename(file_path)}_{file_hash}.cache") def load_header_cache(self, file_path): """加载列名缓存""" cache_file = self.get_cache_filename(file_path) if os.path.exists(cache_file): try: with open(cache_file, "r", encoding='utf-8') as f: return json.load(f) except: return None return None def save_header_cache(self, file_path, header_info): """保存列名缓存""" cache_file = self.get_cache_filename(file_path) try: with open(cache_file, "w", encoding='utf-8') as f: json.dump(header_info, f) return True except: return False def find_header_row(self, file_path): """查找列名行(增强版)""" # 禁用缓存进行测试 # return None, None # 检查缓存 cache = self.load_header_cache(file_path) if cache: return cache.get("header_row"), cache.get("signal_col") # 没有缓存则重新查找 if file_path.lower().endswith((".xlsx", ".xlsm")): return self.find_header_row_openpyxl(file_path) elif file_path.lower().endswith(".xls"): return self.find_header_row_xlrd(file_path) return None, None def find_header_row_openpyxl(self, file_path): """使用openpyxl查找列名行(增强版)""" try: self.log(f"开始处理文件: {os.path.basename(file_path)}") wb = openpyxl.load_workbook(file_path, read_only=True, data_only=True) ws = wb.active # 尝试多种列名匹配模式 patterns = [ r'データ名', r'データ名', r'信号名', r'Signal Name', r'Data Name', r'信号名称', r'データ名称', r'信号' ] # 扩大搜索范围:前100行和前200列 for row_idx in range(1, 101): for col_idx in range(1, 201): try: cell = ws.cell(row=row_idx, column=col_idx) cell_value = cell.value if not cell_value: continue cell_str = str(cell_value) for pattern in patterns: if re.search(pattern, cell_str, re.IGNORECASE): self.log(f"找到匹配模式 '{pattern}' 在行{row_idx}列{col_idx}") # 找到列名行后,尝试确定信号列 signal_col = None # 在同行中查找信号列 for col_idx2 in range(1, 101): # 1-100列 try: cell2 = ws.cell(row=row_idx, column=col_idx2) cell2_value = cell2.value if not cell2_value: continue cell2_str = str(cell2_value) if re.search(pattern, cell2_str, re.IGNORECASE): signal_col = col_idx2 break except: continue # 保存缓存 if signal_col is not None: header_info = {"header_row": row_idx, "signal_col": signal_col} self.save_header_cache(file_path, header_info) wb.close() return row_idx, signal_col except: continue wb.close() except Exception as e: self.log(f"查找列名行出错: {str(e)}") return None, None def find_header_row_xlrd(self, file_path): """使用xlrd查找列名行(增强版)""" try: wb = xlrd.open_workbook(file_path) ws = wb.sheet_by_index(0) # 尝试多种列名匹配模式 patterns = [ r'データ名', # 半角片假名 r'データ名', # 全角片假名 r'信号名', # 中文 r'Signal Name', # 英文 r'Data Name', r'信号名称', r'データ名称' ] # 扩大搜索范围:前50行和前100列 for row_idx in range(0, 50): # 0-49行 # 扩大列搜索范围到100列 for col_idx in range(0, 100): # 0-99列 try: cell_value = ws.cell_value(row_idx, col_idx) if not cell_value: continue # 尝试所有匹配模式 cell_str = str(cell_value) for pattern in patterns: if re.search(pattern, cell_str, re.IGNORECASE): # 找到列名行后,尝试确定信号列 signal_col = None # 在同行中查找信号列 for col_idx2 in range(0, 100): # 0-99列 try: cell2_value = ws.cell_value(row_idx, col_idx2) if not cell2_value: continue cell2_str = str(cell2_value) if re.search(pattern, cell2_str, re.IGNORECASE): signal_col = col_idx2 break except: continue # 保存缓存 if signal_col is not None: header_info = {"header_row": row_idx, "signal_col": signal_col} self.save_header_cache(file_path, header_info) return row_idx, signal_col except: continue except Exception as e: self.status_var.set(f"查找列名行出错: {str(e)}") return None, None def start_search_thread(self): """启动搜索线程""" if self.search_running: return self.search_running = True self.stop_requested = False self.max_workers = int(self.thread_var.get()) threading.Thread(target=self.search_files, daemon=True).start() def stop_search(self): """停止搜索""" self.stop_requested = True self.status_var.set("正在停止搜索...") def search_files(self): """在文件中搜索内容(优化特殊文件处理)""" search_term = self.search_text.get().strip() if not search_term: self.status_var.set("请输入搜索内容") self.search_running = False return if not self.files: self.status_var.set("请先选择文件夹") self.search_running = False return # 重置结果和UI self.results = {} for item in self.tree.get_children(): self.tree.delete(item) total_files = len(self.files) processed_files = 0 found_signals = 0 # 使用线程池处理文件 # 在search_files方法中添加详细进度 with ThreadPoolExecutor(max_workers=self.max_workers) as executor: futures = {} for i, file_path in enumerate(self.files): if self.stop_requested: break future = executor.submit(self.process_file, file_path, search_term) futures[future] = (file_path, i) # 保存文件索引 for future in as_completed(futures): if self.stop_requested: break file_path, idx = futures[future] try: found = future.result() found_signals += found processed_files += 1 # 更详细的进度反馈 progress = int(processed_files / total_files * 100) self.progress["value"] = progress self.status_var.set( f"已处理 {processed_files}/{total_files} 个文件 | " f"当前: {os.path.basename(file_path)} | " f"找到: {found_signals} 个匹配" ) self.root.update_idletasks() except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") # 更新结果 if self.stop_requested: self.status_var.set(f"搜索已停止,已处理 {processed_files}/{total_files} 个文件") elif found_signals == 0: self.status_var.set(f"未找到包含 '{search_term}' 的信号") else: self.status_var.set(f"找到 {len(self.results)} 个匹配信号,共 {found_signals} 处匹配") self.update_text_view() self.progress["value"] = 0 self.search_running = False gc.collect() # 强制垃圾回收释放内存 def process_file(self, file_path, search_term): """处理单个文件(增强异常处理)""" found = 0 try: # 获取列名行和信号列 header_row, signal_col = self.find_header_row(file_path) # 如果自动查找失败,尝试手动模式 if header_row is None or signal_col is None: self.status_var.set(f"文件 {os.path.basename(file_path)} 未找到列名行,尝试手动查找...") header_row, signal_col = self.manual_find_header_row(file_path) if header_row is None or signal_col is None: self.status_var.set(f"文件 {os.path.basename(file_path)} 无法确定列名行,已跳过") return found # 使用pandas处理所有Excel文件类型 found = self.process_file_with_pandas(file_path, search_term, header_row, signal_col) except Exception as e: self.status_var.set(f"处理文件 {os.path.basename(file_path)} 出错: {str(e)}") return found def manual_column_select(self): """手动指定列名位置(增强版)""" if not self.files: messagebox.showinfo("提示", "请先选择文件夹") return # 创建手动选择窗口 manual_window = tk.Toplevel(self.root) manual_window.title("手动指定列名位置") manual_window.geometry("500x400") # 文件选择 ttk.Label(manual_window, text="选择文件:").pack(pady=(10, 5)) file_var = tk.StringVar() file_combo = ttk.Combobox(manual_window, textvariable=file_var, values=[os.path.basename(f) for f in self.files], width=40) file_combo.pack(fill=tk.X, padx=20, pady=5) file_combo.current(0) # 预览框架 preview_frame = ttk.Frame(manual_window) preview_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10) # 表格预览 columns = ("列", "值") self.preview_tree = ttk.Treeview(preview_frame, columns=columns, show="headings", height=10) # 设置列标题 for col in columns: self.preview_tree.heading(col, text=col) self.preview_tree.column(col, width=100, anchor=tk.W) # 添加滚动条 scrollbar = ttk.Scrollbar(preview_frame, orient=tk.VERTICAL, command=self.preview_tree.yview) self.preview_tree.configure(yscrollcommand=scrollbar.set) self.preview_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) scrollbar.pack(side=tk.RIGHT, fill=tk.Y) # 加载预览数据 def load_preview(event=None): file_idx = file_combo.current() file_path = self.files[file_idx] # 清空现有预览 for item in self.preview_tree.get_children(): self.preview_tree.delete(item) # 加载前10行数据 try: if file_path.lower().endswith((".xlsx", ".xlsm")): wb = openpyxl.load_workbook(file_path, read_only=True, data_only=True) ws = wb.active # 读取前10行 for row_idx in range(1, 11): for col_idx in range(1, 51): # 前50列 try: cell = ws.cell(row=row_idx, column=col_idx) if cell.value is not None: self.preview_tree.insert("", tk.END, values=( f"行{row_idx}列{col_idx}", str(cell.value)[:50] # 限制显示长度 )) except: continue wb.close() elif file_path.lower().endswith(".xls"): wb = xlrd.open_workbook(file_path) ws = wb.sheet_by_index(0) # 读取前10行 for row_idx in range(0, 10): for col_idx in range(0, 50): # 前50列 try: cell_value = ws.cell_value(row_idx, col_idx) if cell_value: self.preview_tree.insert("", tk.END, values=( f"行{row_idx+1}列{col_idx+1}", str(cell_value)[:50] # 限制显示长度 )) except: continue except Exception as e: messagebox.showerror("错误", f"加载预览失败: {str(e)}") file_combo.bind("<<ComboboxSelected>>", load_preview) load_preview() # 初始加载 # 输入框架 input_frame = ttk.Frame(manual_window) input_frame.pack(fill=tk.X, padx=20, pady=10) # 行号输入 ttk.Label(input_frame, text="列名行号:").grid(row=0, column=0, sticky=tk.W) row_var = tk.StringVar(value="1") row_entry = ttk.Entry(input_frame, textvariable=row_var, width=10) row_entry.grid(row=0, column=1, padx=5) # 列号输入 ttk.Label(input_frame, text="信号列号:").grid(row=0, column=2, sticky=tk.W, padx=(10,0)) col_var = tk.StringVar(value="1") col_entry = ttk.Entry(input_frame, textvariable=col_var, width=10) col_entry.grid(row=0, column=3, padx=5) # 确认按钮 def confirm_selection(): try: file_idx = file_combo.current() file_path = self.files[file_idx] header_row = int(row_var.get()) signal_col = int(col_var.get()) # 保存到缓存 header_info = {"header_row": header_row, "signal_col": signal_col} self.save_header_cache(file_path, header_info) messagebox.showinfo("成功", f"已为 {os.path.basename(file_path)} 设置列名位置:行{header_row} 列{signal_col}") manual_window.destroy() except Exception as e: messagebox.showerror("错误", f"无效输入: {str(e)}") ttk.Button(manual_window, text="确认", command=confirm_selection).pack(pady=10) def process_file_with_pandas(self, file_path, search_term, header_row, signal_col): """使用pandas高效处理Excel文件(优化版)""" found = 0 try: # 添加文件信息日志 file_size = os.path.getsize(file_path) short_name = os.path.basename(file_path) self.status_var.set(f"处理文件: {short_name} ({file_size}字节)") self.root.update_idletasks() # 使用pandas读取Excel文件 file_ext = os.path.splitext(file_path)[1].lower() engine = 'openpyxl' if file_ext in ['.xlsx', '.xlsm'] else 'xlrd' # 动态确定要读取的列范围(智能调整) # 计算最大可用列数 max_columns = self.get_max_columns(file_path) # 扩大列范围(前后10列) start_col = max(1, signal_col - 10) end_col = min(max_columns, signal_col + 10) # 确保信号列在读取范围内 if signal_col < start_col or signal_col > end_col: # 如果信号列不在范围内,调整读取范围 start_col = max(1, signal_col - 10) end_col = min(max_columns, signal_col + 10) # 计算信号列在DataFrame中的索引 signal_col_idx = signal_col - start_col # 确保索引有效 if signal_col_idx < 0 or signal_col_idx >= (end_col - start_col + 1): self.status_var.set(f"文件 {short_name}: 信号列索引计算错误") return 0 # 验证列位置 try: if file_path.lower().endswith((".xlsx", ".xlsm")): wb = openpyxl.load_workbook(file_path, read_only=True) ws = wb.active actual_col_name = ws.cell(row=header_row, column=signal_col).value wb.close() self.status_var.set(f"文件 {short_name}: 信号列 '{actual_col_name}' (位置 {signal_col})") elif file_path.lower().endswith(".xls"): wb = xlrd.open_workbook(file_path) ws = wb.sheet_by_index(0) actual_col_name = ws.cell_value(header_row, signal_col-1) self.status_var.set(f"文件 {short_name}: 信号列 '{actual_col_name}' (位置 {signal_col})") except Exception as e: self.status_var.set(f"列验证失败: {str(e)}") # 读取数据 df = pd.read_excel( file_path, engine=engine, header=header_row-1, usecols=range(start_col-1, end_col), dtype=str ) # 获取实际列名 column_names = df.columns.tolist() # 获取信号列数据(通过位置索引) if signal_col_idx < len(df.columns): signal_series = df.iloc[:, signal_col_idx] else: self.status_var.set(f"文件 {short_name}: 信号列超出范围") return 0 # 搜索匹配的信号 # 处理可能的NaN值 signal_series = signal_series.fillna('') # 更灵活的匹配逻辑 matches = df[signal_series.str.contains( re.escape(search_term), case=False, na=False, regex=True )] # 处理匹配行 for idx, row in matches.iterrows(): # 只显示有值的列 row_content = [] for col_idx, value in enumerate(row): # 跳过空值 if pd.notna(value) and str(value).strip() != '': # 使用实际列名 if col_idx < len(column_names): col_name = column_names[col_idx] else: col_name = f"列{start_col + col_idx}" row_content.append(f"{col_name}: {str(value).strip()}") row_content = "\n".join(row_content) signal_value = row.iloc[signal_col_idx] # 使用位置索引获取信号值 # 使用更唯一的复合键(包含行索引) signal_key = f"{signal_value}||{short_name}||{idx}" # 添加到结果集 self.results[signal_key] = { "signal": signal_value, "file": short_name, "content": row_content } # 添加到表格 summary = row_content[:50] + "..." if len(row_content) > 50 else row_content self.tree.insert("", tk.END, values=(signal_value, short_name, summary)) found += 1 # 每处理10行更新一次UI if found % 10 == 0: self.status_var.set(f"处理 {short_name}: 找到 {found} 个匹配") self.root.update_idletasks() # 添加完成日志 self.status_var.set(f"文件 {short_name} 处理完成: 找到 {found} 个匹配") except Exception as e: import traceback traceback.print_exc() self.status_var.set(f"处理文件 {short_name} 出错: {str(e)}") finally: # 显式释放内存 if 'df' in locals(): del df if 'matches' in locals(): del matches gc.collect() return found def get_max_columns(self, file_path): """获取Excel文件的最大列数""" try: if file_path.lower().endswith((".xlsx", ".xlsm")): wb = openpyxl.load_workbook(file_path, read_only=True) ws = wb.active max_col = ws.max_column wb.close() return max_col elif file_path.lower().endswith(".xls"): wb = xlrd.open_workbook(file_path) ws = wb.sheet_by_index(0) return ws.ncols except: return 100 # 默认值 return 100 # 默认值 def update_text_view(self): """更新文本对比视图""" # 清除现有文本区域 for widget in self.compare_container.winfo_children(): widget.destroy() if not self.results: return # 获取第一个信号作为默认显示 first_signal_key = next(iter(self.results.keys())) self.display_signal_comparison(first_signal_key) def on_table_select(self, event): """表格选择事件处理""" selected = self.tree.selection() if not selected: return item = self.tree.item(selected[0]) signal_value = item["values"][0] # 获取信号值 # 直接传递信号值给显示方法 self.display_signal_comparison(signal_value) def display_signal_comparison(self, signal_value): """显示指定信号在不同文件中的对比""" # 清除现有文本区域 for widget in self.compare_container.winfo_children(): widget.destroy() # 获取包含该信号的所有结果项 signal_items = [ (key, data) for key, data in self.results.items() if data["signal"] == signal_value ] if not signal_items: return # 按文件名排序 signal_items.sort(key=lambda x: x[1]["file"]) # 创建列框架 for i, (signal_key, signal_data) in enumerate(signal_items): col_frame = ttk.Frame(self.compare_container) col_frame.grid(row=0, column=i, sticky="nsew", padx=5, pady=5) self.compare_container.columnconfigure(i, weight=1) # 文件名标签 file_label = ttk.Label(col_frame, text=signal_data["file"], font=("Arial", 10, "bold")) file_label.pack(fill=tk.X, pady=(0, 5)) # 信号名标签 signal_label = ttk.Label(col_frame, text=signal_data["signal"], font=("Arial", 9, "italic")) signal_label.pack(fill=tk.X, pady=(0, 5)) # 文本区域 text_area = scrolledtext.ScrolledText(col_frame, wrap=tk.WORD, width=30, height=15) text_area.insert(tk.INSERT, signal_data["content"]) text_area.configure(state="disabled") text_area.pack(fill=tk.BOTH, expand=True) # 保存引用 self.text_panes[signal_key] = text_area def highlight_differences(self): """高亮显示文本差异""" if not self.text_panes: return # 获取所有行内容 all_contents = [] for text_area in self.text_panes.values(): text_area.configure(state="normal") text = text_area.get("1.0", tk.END).strip() text_area.configure(state="disabled") all_contents.append(text) # 如果所有内容相同,则不需要高亮 if len(set(all_contents)) == 1: self.status_var.set("所有文件行内容完全一致") return # 使用第一个文件作为基准 base_text = all_contents[0] # 对比并高亮差异 for i, (file, text_area) in enumerate(self.text_panes.items()): if i == 0: # 基准文件不需要处理 continue text_area.configure(state="normal") text_area.tag_configure("diff", background=self.highlight_color) # 清除之前的高亮 text_area.tag_remove("diff", "1.0", tk.END) # 获取当前文本 compare_text = text_area.get("1.0", tk.END).strip() # 使用序列匹配器查找差异 s = SequenceMatcher(None, base_text, compare_text) # 高亮差异部分 for tag in s.get_opcodes(): opcode = tag[0] start = tag[3] end = tag[4] if opcode != "equal": # 添加高亮标签 text_area.tag_add("diff", f"1.0+{start}c", f"1.0+{end}c") text_area.configure(state="disabled") self.status_var.set("差异已高亮显示") def choose_color(self): """选择高亮颜色""" color = askcolor(title="选择高亮颜色", initialcolor=self.highlight_color) if color[1]: self.highlight_color = color[1] self.color_btn.configure(bg=self.highlight_color) def export_report(self): """导出差异报告""" if not self.results: messagebox.showwarning("警告", "没有可导出的结果") return try: # 创建报告数据结构 report_data = [] for signal, files_data in self.results.items(): for file, content in files_data.items(): report_data.append({ "信号": signal, "文件": file, "行内容": content }) # 转换为DataFrame df = pd.DataFrame(report_data) # 保存到Excel save_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel文件", "*.xlsx")], title="保存差异报告" ) if save_path: df.to_excel(save_path, index=False) self.status_var.set(f"报告已保存到: {save_path}") except Exception as e: messagebox.showerror("错误", f"导出报告失败: {str(e)}") def clear_cache(self): """清除缓存""" try: for file in os.listdir(self.cache_dir): if file.endswith(".cache"): os.remove(os.path.join(self.cache_dir, file)) self.file_cache = {} self.column_cache = {} self.status_var.set("缓存已清除") except Exception as e: self.status_var.set(f"清除缓存失败: {str(e)}") def manual_column_select(self): """手动指定列名位置""" if not self.files: messagebox.showinfo("提示", "请先选择文件夹") return # 创建手动选择窗口 manual_window = tk.Toplevel(self.root) manual_window.title("手动指定列名位置") manual_window.geometry("400x300") # 文件选择 ttk.Label(manual_window, text="选择文件:").pack(pady=(10, 5)) file_var = tk.StringVar() file_combo = ttk.Combobox(manual_window, textvariable=file_var, values=[os.path.basename(f) for f in self.files]) file_combo.pack(fill=tk.X, padx=20, pady=5) file_combo.current(0) # 行号输入 ttk.Label(manual_window, text="列名行号:").pack(pady=(10, 5)) row_var = tk.StringVar(value="1") row_entry = ttk.Entry(manual_window, textvariable=row_var) row_entry.pack(fill=tk.X, padx=20, pady=5) # 列号输入 ttk.Label(manual_window, text="信号列号:").pack(pady=(10, 5)) col_var = tk.StringVar(value="1") col_entry = ttk.Entry(manual_window, textvariable=col_var) col_entry.pack(fill=tk.X, padx=20, pady=5) # 确认按钮 def confirm_selection(): try: file_idx = file_combo.current() file_path = self.files[file_idx] header_row = int(row_var.get()) signal_col = int(col_var.get()) # 保存到缓存 header_info = {"header_row": header_row, "signal_col": signal_col} self.save_header_cache(file_path, header_info) messagebox.showinfo("成功", f"已为 {os.path.basename(file_path)} 设置列名位置:行{header_row} 列{signal_col}") manual_window.destroy() except Exception as e: messagebox.showerror("错误", f"无效输入: {str(e)}") ttk.Button(manual_window, text="确认", command=confirm_selection).pack(pady=20) if __name__ == "__main__": root = tk.Tk() app = EnhancedSignalComparator(root) root.mainloop() 日志内容为:2025-07-23T13:33:19.517561 - 日志初始化 上述两个问题还是没有解决:1、文件夹内一共三个文件,每个文件中都有只有一个信号,但是实际上,901_CAN送受信値-f.xlsx中没有找到信号,在【ドラフト版】D01D-00-02(HEV車).xlsm与【ドラフト版】D01D-00-03(コンベ車).xlsx分别找到了两个信号,但实际上分别只有一个信号。 2、行内容比对中【ドラフト版】D01D-00-02(HEV車).xlsm与【ドラフト版】D01D-00-03(コンベ車).xlsx搜索到的内容相同,但实际上有不同的

大家在看

recommend-type

基于 ADS9110的隔离式数据采集 (DAQ) 系统方案(待编辑)-电路方案

描述 该“可实现最大 SNR 和采样率的 18 位 2Msps 隔离式数据采集参考设计”演示了如何应对隔离式数据采集系统设计中的典型性能限制挑战: 通过将数字隔离器引入的传播延迟降至最低,使采样率达到最大 通过有效地减轻数字隔离器引入的 ADC 采样时钟抖动,使高频交流信号链性能 (SNR) 达到最大 特性 18 位、2Msps、1 通道、差分输入、隔离式数据采集 (DAQ) 系统 利用 ADS9110 的 multiSPI:trade_mark: 数字接口实现 2MSPS 采样率,同时保持低 SPI 数据速率 源同步 SPI 数据传输模式,可将隔离器传播延迟降至最低并提高采样率 可降低隔离器引入的抖动的技术,能够将 SNR 提高 12dB(100kHz Fin,2MSPS) 经测试的设计包含理论和计算、组件选择、PCB 设计和测量结果 原理图 附件文档: 方案相关器件: ISO1541:低功耗、双向 I2C 隔离器 ISO7840:高性能 5.7kVRMS 增强型四通道数字隔离器 ISO7842:高性能 5.7kVRMS 增强型四通道数字隔离器
recommend-type

自动化图书管理系统 v7.0

自动化图书馆管理系统包含了目前图书馆管理业务的每个环节,能同时管理图书和期刊,能打印条码、书标,并制作借书证,最大藏书量在300万册以上。系统采用CNMARC标准及中图法第四版分类,具有Web检索与发布功能,条码扫描,支持一卡通,支持触摸屏。系统包括系统管理、读者管理、编目、流通、统计、查询等功能。能够在一个界面下实现图书、音像、期刊的管理,设置假期、设置暂离锁(提高安全性)、暂停某些读者的借阅权、导入导出读者、交换MARC数据、升级辅助编目库等。安装本系统前请先安装SQL 2000SQL 下载地址 http://pan.baidu.com/s/145vkr安装过程如有问题可咨询: TEL 13851381727  QQ 306404635
recommend-type

真正的VB6.0免安装,可以装U盘启动了

这个,,资源都来自CSDN大神们,在这里声明下。
recommend-type

详细说明 VC++的MFC开发串口调试助手源代码,包括数据发送,接收,显示制式等29782183com

详细说明 VC++的MFC开发串口调试助手源代码,包括数据发送,接收,显示制式等29782183com
recommend-type

文档编码批量转换UTF16toUTF8.rar

将UTF16编码格式的文件转换编码到UTF8 使用格式:U16toU8.exe [output] 如果没有output,则覆盖源文件,否则输出到output中 方便命令行使用,批量转换文件编码

最新推荐

recommend-type

C#类库封装:简化SDK调用实现多功能集成,构建地磅无人值守系统

内容概要:本文介绍了利用C#类库封装多个硬件设备的SDK接口,实现一系列复杂功能的一键式调用。具体功能包括身份证信息读取、人证识别、车牌识别(支持臻识和海康摄像头)、LED显示屏文字输出、称重数据读取、二维码扫描以及语音播报。所有功能均被封装为简单的API,极大降低了开发者的工作量和技术门槛。文中详细展示了各个功能的具体实现方式及其应用场景,如身份证读取、人证核验、车牌识别等,并最终将这些功能整合到一起,形成了一套完整的地磅称重无人值守系统解决方案。 适合人群:具有一定C#编程经验的技术人员,尤其是需要快速集成多种硬件设备SDK的应用开发者。 使用场景及目标:适用于需要高效集成多种硬件设备SDK的项目,特别是那些涉及身份验证、车辆管理、物流仓储等领域的企业级应用。通过使用这些封装好的API,可以大大缩短开发周期,降低维护成本,提高系统的稳定性和易用性。 其他说明:虽然封装后的API极大地简化了开发流程,但对于一些特殊的业务需求,仍然可能需要深入研究底层SDK。此外,在实际部署过程中,还需考虑网络环境、硬件兼容性等因素的影响。
recommend-type

基于STM32F1的BLDC无刷直流电机与PMSM永磁同步电机源码解析:传感器与无传感器驱动详解

基于STM32F1的BLDC无刷直流电机和PMSM永磁同步电机的驱动实现方法,涵盖了有传感器和无传感两种驱动方式。对于BLDC电机,有传感器部分采用霍尔传感器进行六步换相,无传感部分则利用反电动势过零点检测实现换相。对于PMSM电机,有传感器部分包括霍尔传感器和编码器的方式,无传感部分则采用了滑模观测器进行矢量控制(FOC)。文中不仅提供了详细的代码片段,还分享了许多调试经验和技巧。 适合人群:具有一定嵌入式系统和电机控制基础知识的研发人员和技术爱好者。 使用场景及目标:适用于需要深入了解和实现BLDC和PMSM电机驱动的开发者,帮助他们掌握不同传感器条件下的电机控制技术和优化方法。 其他说明:文章强调了实际调试过程中可能遇到的问题及其解决方案,如霍尔传感器的中断触发换相、反电动势过零点检测的采样时机、滑模观测器的参数调整以及编码器的ABZ解码等。
recommend-type

基于Java的跨平台图像处理软件ImageJ:多功能图像编辑与分析工具

内容概要:本文介绍了基于Java的图像处理软件ImageJ,详细阐述了它的跨平台特性、多线程处理能力及其丰富的图像处理功能。ImageJ由美国国立卫生研究院开发,能够在多种操作系统上运行,包括Windows、Mac OS、Linux等。它支持多种图像格式,如TIFF、PNG、GIF、JPEG、BMP、DICOM、FITS等,并提供图像栈功能,允许多个图像在同一窗口中进行并行处理。此外,ImageJ还提供了诸如缩放、旋转、扭曲、平滑处理等基本操作,以及区域和像素统计、间距、角度计算等高级功能。这些特性使ImageJ成为科研、医学、生物等多个领域的理想选择。 适合人群:需要进行图像处理的专业人士,如科研人员、医生、生物学家,以及对图像处理感兴趣的普通用户。 使用场景及目标:适用于需要高效处理大量图像数据的场合,特别是在科研、医学、生物学等领域。用户可以通过ImageJ进行图像的编辑、分析、处理和保存,提高工作效率。 其他说明:ImageJ不仅功能强大,而且操作简单,用户无需安装额外的运行环境即可直接使用。其基于Java的开发方式确保了不同操作系统之间的兼容性和一致性。
recommend-type

MATLAB语音识别系统:基于GUI的数字0-9识别及深度学习模型应用 · GUI v1.2

内容概要:本文介绍了一款基于MATLAB的语音识别系统,主要功能是识别数字0到9。该系统采用图形用户界面(GUI),方便用户操作,并配有详尽的代码注释和开发报告。文中详细描述了系统的各个组成部分,包括音频采集、信号处理、特征提取、模型训练和预测等关键环节。此外,还讨论了MATLAB在此项目中的优势及其面临的挑战,如提高识别率和处理背景噪音等问题。最后,通过对各模块的工作原理和技术细节的总结,为未来的研究和发展提供了宝贵的参考资料。 适合人群:对语音识别技术和MATLAB感兴趣的初学者、学生或研究人员。 使用场景及目标:适用于希望深入了解语音识别技术原理的人群,特别是希望通过实际案例掌握MATLAB编程技巧的学习者。目标是在实践中学习如何构建简单的语音识别应用程序。 其他说明:该程序需要MATLAB 2019b及以上版本才能正常运行,建议使用者确保软件环境符合要求。
recommend-type

c语言通讯录管理系统源码.zip

C语言项目源码
recommend-type

Teleport Pro教程:轻松复制网站内容

标题中提到的“复制别人网站的软件”指向的是一种能够下载整个网站或者网站的特定部分,然后在本地或者另一个服务器上重建该网站的技术或工具。这类软件通常被称作网站克隆工具或者网站镜像工具。 描述中提到了一个具体的教程网址,并提到了“天天给力信誉店”,这可能意味着有相关的教程或资源可以在这个网店中获取。但是这里并没有提供实际的教程内容,仅给出了网店的链接。需要注意的是,根据互联网法律法规,复制他人网站内容并用于自己的商业目的可能构成侵权,因此在此类工具的使用中需要谨慎,并确保遵守相关法律法规。 标签“复制 别人 网站 软件”明确指出了这个工具的主要功能,即复制他人网站的软件。 文件名称列表中列出了“Teleport Pro”,这是一款具体的网站下载工具。Teleport Pro是由Tennyson Maxwell公司开发的网站镜像工具,允许用户下载一个网站的本地副本,包括HTML页面、图片和其他资源文件。用户可以通过指定开始的URL,并设置各种选项来决定下载网站的哪些部分。该工具能够帮助开发者、设计师或内容分析人员在没有互联网连接的情况下对网站进行离线浏览和分析。 从知识点的角度来看,Teleport Pro作为一个网站克隆工具,具备以下功能和知识点: 1. 网站下载:Teleport Pro可以下载整个网站或特定网页。用户可以设定下载的深度,例如仅下载首页及其链接的页面,或者下载所有可访问的页面。 2. 断点续传:如果在下载过程中发生中断,Teleport Pro可以从中断的地方继续下载,无需重新开始。 3. 过滤器设置:用户可以根据特定的规则过滤下载内容,如排除某些文件类型或域名。 4. 网站结构分析:Teleport Pro可以分析网站的链接结构,并允许用户查看网站的结构图。 5. 自定义下载:用户可以自定义下载任务,例如仅下载图片、视频或其他特定类型的文件。 6. 多任务处理:Teleport Pro支持多线程下载,用户可以同时启动多个下载任务来提高效率。 7. 编辑和管理下载内容:Teleport Pro具备编辑网站镜像的能力,并可以查看、修改下载的文件。 8. 离线浏览:下载的网站可以在离线状态下浏览,这对于需要测试网站在不同环境下的表现的情况十分有用。 9. 备份功能:Teleport Pro可以用来备份网站,确保重要数据的安全。 在实际使用此类工具时,需要注意以下几点: - 著作权法:复制网站内容可能侵犯原作者的版权,因此在使用此类工具时,必须确保有合法权利去下载和使用目标网站的内容。 - 服务条款:许多网站的服务条款明确禁止未经授权的网站克隆。因此,在使用此类软件之前,应当仔细阅读并遵守目标网站的服务条款。 - 数据隐私:下载含有个人数据的网站可能触及隐私保护法律,特别是在欧洲通用数据保护条例(GDPR)等法规的环境下。 - 网络安全:随意下载网站可能导致恶意软件和病毒的传播,用户应当使用最新的反病毒软件,并在安全的环境中进行操作。 综上所述,虽然“复制别人网站的软件”在技术上是可行的,且可以用于多种正当目的,但在使用此类工具时,必须遵守法律法规和道德规范,不可侵犯他人的合法权益。
recommend-type

【跨平台开发者的必读】:解决Qt5Widgetsd.lib目标计算机类型冲突终极指南

# 1. 跨平台开发与Qt框架简介 跨平台开发已经成为现代软件开发中不可或缺的一部分,它使得开发者能够构建出能够在多种操作系统上运行的应用程序,从而触及更广泛的用户群体。在这其中,Qt框架作为一套成熟的跨平台应用程序和用户界面框架,扮演着关键角色。Qt不仅仅是一个跨平台的工具集,它的设计哲学还包含了模块化和可扩展性,使其能够适应各种规模和复杂度的项目。本章节我们将简要介绍
recommend-type

普通RNN结构和特点

<think>首先,用户的问题是:“我想了解普通RNN的结构及其特点请问RNN循环神经网络结构特点工作原理”。这涉及到RNN的结构、特点和工作原理。根据系统级指令:-所有行内数学表达式必须使用$...$格式。-独立公式必须使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识。用户可见层指令:-回答结构清晰,帮助用户逐步解决问题。-保证回答真实可靠。参考站内引用:-引用[1]:关于RNN的基本介绍,为什么需要RNN。-引用[2]:关于RNN的工作原理、结构图,以及与其他网络的比较。用户上一次的问题和我的回答:用户是第一次
recommend-type

探讨通用数据连接池的核心机制与应用

根据给定的信息,我们能够推断出讨论的主题是“通用数据连接池”,这是一个在软件开发和数据库管理中经常用到的重要概念。在这个主题下,我们可以详细阐述以下几个知识点: 1. **连接池的定义**: 连接池是一种用于管理数据库连接的技术,通过维护一定数量的数据库连接,使得连接的创建和销毁操作更加高效。开发者可以在应用程序启动时预先创建一定数量的连接,并将它们保存在一个池中,当需要数据库连接时,可以直接从池中获取,从而降低数据库连接的开销。 2. **通用数据连接池的概念**: 当提到“通用数据连接池”时,它意味着这种连接池不仅支持单一类型的数据库(如MySQL、Oracle等),而且能够适应多种不同数据库系统。设计一个通用的数据连接池通常需要抽象出一套通用的接口和协议,使得连接池可以兼容不同的数据库驱动和连接方式。 3. **连接池的优点**: - **提升性能**:由于数据库连接创建是一个耗时的操作,连接池能够减少应用程序建立新连接的时间,从而提高性能。 - **资源复用**:数据库连接是昂贵的资源,通过连接池,可以最大化现有连接的使用,避免了连接频繁创建和销毁导致的资源浪费。 - **控制并发连接数**:连接池可以限制对数据库的并发访问,防止过载,确保数据库系统的稳定运行。 4. **连接池的关键参数**: - **最大连接数**:池中能够创建的最大连接数。 - **最小空闲连接数**:池中保持的最小空闲连接数,以应对突发的连接请求。 - **连接超时时间**:连接在池中保持空闲的最大时间。 - **事务处理**:连接池需要能够管理不同事务的上下文,保证事务的正确执行。 5. **实现通用数据连接池的挑战**: 实现一个通用的连接池需要考虑到不同数据库的连接协议和操作差异。例如,不同的数据库可能有不同的SQL方言、认证机制、连接属性设置等。因此,通用连接池需要能够提供足够的灵活性,允许用户配置特定数据库的参数。 6. **数据连接池的应用场景**: - **Web应用**:在Web应用中,为了处理大量的用户请求,数据库连接池可以保证数据库连接的快速复用。 - **批处理应用**:在需要大量读写数据库的批处理作业中,连接池有助于提高整体作业的效率。 - **微服务架构**:在微服务架构中,每个服务可能都需要与数据库进行交互,通用连接池能够帮助简化服务的数据库连接管理。 7. **常见的通用数据连接池技术**: - **Apache DBCP**:Apache的一个Java数据库连接池库。 - **C3P0**:一个提供数据库连接池和控制工具的开源Java框架。 - **HikariCP**:目前性能最好的开源Java数据库连接池之一。 - **BoneCP**:一个高性能的开源Java数据库连接池。 - **Druid**:阿里巴巴开源的一个数据库连接池,提供了对性能监控的高级特性。 8. **连接池的管理与监控**: 为了保证连接池的稳定运行,开发者需要对连接池的状态进行监控,并对其进行适当的管理。监控指标可能包括当前活动的连接数、空闲的连接数、等待获取连接的请求队列长度等。一些连接池提供了监控工具或与监控系统集成的能力。 9. **连接池的配置和优化**: 连接池的性能与连接池的配置密切相关。需要根据实际的应用负载和数据库性能来调整连接池的参数。例如,在高并发的场景下,可能需要增加连接池中连接的数量。另外,适当的线程池策略也可以帮助连接池更好地服务于多线程环境。 10. **连接池的应用案例**: 一个典型的案例是电商平台在大型促销活动期间,用户访问量激增,此时通用数据连接池能够保证数据库操作的快速响应,减少因数据库连接问题导致的系统瓶颈。 总结来说,通用数据连接池是现代软件架构中的重要组件,它通过提供高效的数据库连接管理,增强了软件系统的性能和稳定性。了解和掌握连接池的原理及实践,对于任何涉及数据库交互的应用开发都至关重要。在实现和应用连接池时,需要关注其设计的通用性、配置的合理性以及管理的有效性,确保在不同的应用场景下都能发挥出最大的效能。
recommend-type

【LabVIEW网络通讯终极指南】:7个技巧提升UDP性能和安全性

# 摘要 本文系统介绍了LabVIEW在网络通讯中的应用,尤其是针对UDP协议的研究与优化。首先,阐述了UDP的原理、特点及其在LabVIEW中的基础应用。随后,本文深入探讨了通过调整数据包大小、实现并发通信及优化缓冲区管理等技巧来优化UDP性能的LabVIEW方法。接着,文章聚焦于提升UDP通信安全性,介绍了加密技术和认证授权机制在LabVIEW中的实现,以及防御网络攻击的策略。最后,通过具体案例展示了LabVIEW在实时数据采集和远程控制系统中的高级应用,并展望了LabVIEW与UDP通讯技术的未来发展趋势及新兴技术的影响。 # 关键字 LabVIEW;UDP网络通讯;性能优化;安全性;