生成一个完整生存资料机器学习R脚本,包含5种机器学习模型,模型评价,模型解释
时间: 2024-11-27 09:20:01 浏览: 92
在R语言中创建一个完整的生存分析(Survival Analysis)机器学习脚本,通常用于处理时间到某个事件发生的预测任务,比如疾病复发、设备故障等。以下是使用`survival`, `caret`, `randomForest`, `glmnet` 和 `xgboost` 包的一个简单示例,包含了五个模型的训练、评估和解释:
```R
# 首先安装必要的包
install.packages(c("survival", "caret", "randomForest", "glmnet", "xgboost"))
# 加载库
library(survival)
library(caret)
library(randomForest)
library(glmnet)
library(xgboost)
# 假设我们有数据集df,其中包含'time'(时间变量),'event'(是否发生事件),和其他特征'feature_1', 'feature_2', ...
data <- df
# 数据预处理(假设我们需要对分类变量做编码)
encoded_data <- preProcess(data, method = c('center', 'scale'))
# 划分训练集和测试集
set.seed(123)
splitIndex <- createDataPartition(event ~ ., data = encoded_data, p = .8, list = FALSE)
train_set <- encoded_data[splitIndex, ]
test_set <- encoded_data[-splitIndex, ]
# 选择五种模型
models <- list(
surv_fit = survival::survreg(Surv(time, event) ~ ., data = train_set),
rf = randomForest::rfSurvival(train_set[, -c("time", "event")], as.factor(train_set$event)),
glm = glmnet::cv.glmnet(time ~ ., family = "coxph", data = train_set),
xgb = xgboost::xgbSurv(data = train_set[, -c("time", "event")], label = train_set$event, nrounds = 100),
lasso = glmnet::cv.glmnet(time ~ ., family = "coxph", alpha = 1, data = train_set)
)
# 训练并保存模型
for (model_name in names(models)) {
models[[model_name]]$fit <- eval(model_name, train_set)
}
# 模型评估
res_list <- lapply(models, function(m) {
surv_pred <- predict(m$fit, test_set, type = "response")
surv_summary <- survfit(newdata = test_set, Surv(time, event) ~ surv_pred)
return(list(name = model_name, surv_summary = surv_summary))
})
# 打印生存曲线比较
par(mfrow = c(2, 2))
for (i in 1:length(res_list)) {
plot(res_list[[i]]$surv_summary, main = res_list[[i]]$name, ylab = "Survival Probability")
}
# 使用Cox比例风险模型的哈特图(Hosmer-Lemeshow检验)
cox.zph.models <- sapply(models, function(m) cox.zph(m$fit))
summary(cox.zph.models)
# 结论与模型解释
# 可视化模型系数,并解释它们在模型中的作用(对于线性模型如GLM)
阅读全文
相关推荐


















