活动介绍

std::enable_if 和 std::is_base_of 结合使用

时间: 2024-10-15 08:20:42 浏览: 119
`std::enable_if` 和 `std::is_base_of` 是 C++ 中的两个模板元编程工具,它们通常一起用于条件编译和类型安全的操作。 `std::enable_if` 是一种断言,它允许你在函数或类型的声明上添加一个布尔表达式,如果该表达式的值为真,则编译器会通过;否则,编译过程将失败,从而防止了无效的代码被执行。例如: ```cpp template <typename T> void foo(T value, std::enable_if_t<std::is_arithmetic_v<T>>) { // 只有当T是基本算术类型时,这段代码才会被实例化 // 对于非数值类型,foo不会被调用 } ``` `std::is_base_of` 则是一个类型断言,检查某个类型是否直接或间接派生自另一个给定的基类。它的返回类型是一个布尔值,如果是,则表示是;否则不是。 两者结合使用,可以确保函数的行为只对特定的基类及其衍生类有效。例如: ```cpp template <typename Derived, typename Base> void bar(Derived& derived, std::enable_if_t<std::is_base_of<Base, Derived>::value>) { // 这里保证derived确实是从Base派生的,因此可以安全地调用Base的成员 Base* base = dynamic_cast<Base*>(&derived); if (base) { base->specificFunction(); } } ``` 在这个例子中,只有`Derived`是`Base`的直接或间接子类时,`bar`函数的模板实例化才会被启用。
阅读全文

相关推荐

||=== Build file: "no target" in "no project" (compiler: unknown) ===| E:\C++\2\main.cpp||In function 'int main()':| E:\C++\2\main.cpp|11|error: no match for 'operator>>' (operand types are 'std::basic_istream<char>::__istream_type' {aka 'std::basic_istream<char>'} and '<unresolved overloaded function type>')| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|120|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(std::basic_istream<_CharT, _Traits>::__istream_type& (*)(std::basic_istream<_CharT, _Traits>::__istream_type&)) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|120|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'std::basic_istream<char>::__istream_type& (*)(std::basic_istream<char>::__istream_type&)' {aka 'std::basic_istream<char>& (*)(std::basic_istream<char>&)'}| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|124|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(std::basic_istream<_CharT, _Traits>::__ios_type& (*)(std::basic_istream<_CharT, _Traits>::__ios_type&)) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>; std::basic_istream<_CharT, _Traits>::__ios_type = std::basic_ios<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|124|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'std::basic_istream<char>::__ios_type& (*)(std::basic_istream<char>::__ios_type&)' {aka 'std::basic_ios<char>& (*)(std::basic_ios<char>&)'}| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|131|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(std::ios_base& (*)(std::ios_base&)) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|131|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'std::ios_base& (*)(std::ios_base&)'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|168|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(bool&) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|168|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'bool&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|172|note: candidate: 'std::basic_istream<_CharT, _Traits>& std::basic_istream<_CharT, _Traits>::operator>>(short int&) [with _CharT = char; _Traits = std::char_traits<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|172|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'short int&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|175|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(short unsigned int&) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|175|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'short unsigned int&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|179|note: candidate: 'std::basic_istream<_CharT, _Traits>& std::basic_istream<_CharT, _Traits>::operator>>(int&) [with _CharT = char; _Traits = std::char_traits<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|179|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'int&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|182|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(unsigned int&) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|182|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'unsigned int&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|186|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(long int&) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|186|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'long int&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|190|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(long unsigned int&) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|190|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'long unsigned int&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|195|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(long long int&) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|195|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'long long int&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|199|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(long long unsigned int&) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|199|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'long long unsigned int&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|214|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(float&) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|214|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'float&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|218|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(double&) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|218|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'double&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|222|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(long double&) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|222|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'long double&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|235|note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(void*&) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__istream_type = std::basic_istream<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|235|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'void*&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|259|note: candidate: 'std::basic_istream<_CharT, _Traits>& std::basic_istream<_CharT, _Traits>::operator>>(std::basic_istream<_CharT, _Traits>::__streambuf_type*) [with _CharT = char; _Traits = std::char_traits<char>; std::basic_istream<_CharT, _Traits>::__streambuf_type = std::basic_streambuf<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|259|note: no known conversion for argument 1 from '<unresolved overloaded function type>' to 'std::basic_istream<char>::__streambuf_type*' {aka 'std::basic_streambuf<char>*'}| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\bits\basic_string.tcc|1465|note: candidate: 'template<class _CharT, class _Traits, class _Alloc> std::basic_istream<_CharT, _Traits>& std::operator>>(std::basic_istream<_CharT, _Traits>&, std::__cxx11::basic_string<_CharT, _Traits, _Alloc>&)'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\bits\basic_string.tcc|1465|note: template argument deduction/substitution failed:| E:\C++\2\main.cpp|11|note: couldn't deduce template parameter '_Alloc'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\bits\istream.tcc|931|note: candidate: 'std::basic_istream<_CharT, _Traits>& std::operator>>(std::basic_istream<_CharT, _Traits>&, _CharT&) [with _CharT = char; _Traits = std::char_traits<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\bits\istream.tcc|931|note: no known conversion for argument 2 from '<unresolved overloaded function type>' to 'char&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|756|note: candidate: 'template<class _Traits> std::basic_istream<char, _Traits>& std::operator>>(std::basic_istream<char, _Traits>&, unsigned char&)'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|756|note: template argument deduction/substitution failed:| E:\C++\2\main.cpp|11|note: cannot convert 'std::endl' (type '<unresolved overloaded function type>') to type 'unsigned char&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|761|note: candidate: 'template<class _Traits> std::basic_istream<char, _Traits>& std::operator>>(std::basic_istream<char, _Traits>&, signed char&)'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|761|note: template argument deduction/substitution failed:| E:\C++\2\main.cpp|11|note: cannot convert 'std::endl' (type '<unresolved overloaded function type>') to type 'signed char&'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|799|note: candidate: 'std::basic_istream<_CharT2, _Traits2>& std::operator>>(std::basic_istream<_CharT2, _Traits2>&, _CharT2*) [with _CharT2 = char; _Traits2 = std::char_traits<char>; _CharT = char; _Traits = std::char_traits<char>]'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|799|note: no known conversion for argument 2 from '<unresolved overloaded function type>' to 'char*'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|803|note: candidate: 'template<class _Traits> std::basic_istream<char, _Traits>& std::operator>>(std::basic_istream<char, _Traits>&, unsigned char*)'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|803|note: template argument deduction/substitution failed:| E:\C++\2\main.cpp|11|note: cannot convert 'std::endl' (type '<unresolved overloaded function type>') to type 'unsigned char*'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|808|note: candidate: 'template<class _Traits> std::basic_istream<char, _Traits>& std::operator>>(std::basic_istream<char, _Traits>&, signed char*)'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|808|note: template argument deduction/substitution failed:| E:\C++\2\main.cpp|11|note: cannot convert 'std::endl' (type '<unresolved overloaded function type>') to type 'signed char*'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|980|note: candidate: 'template<class _Istream, class _Tp> typename std::enable_if<std::__and_<std::__not_<std::is_lvalue_reference<_Tp> >, std::__is_convertible_to_basic_istream<_Istream>, std::__is_extractable<typename std::__is_convertible_to_basic_istream<_Tp>::__istream_type, _Tp&&, void> >::value, typename std::__is_convertible_to_basic_istream<_Tp>::__istream_type>::type std::operator>>(_Istream&&, _Tp&&)'| E:\CodeBlocks\MinGW\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\istream|980|note: template argument deduction/substitution failed:| E:\C++\2\main.cpp|11|note: couldn't deduce template parameter '_Tp'| E:\C++\2\main.cpp|12|error: 'class cube' has no member named 'setchang'| E:\C++\2\main.cpp|13|error: 'class cube' has no member named 'getchang'| ||=== Build failed: 3 error(s), 0 warning(s) (0 minute(s), 0 second(s)) ===| 是什么意思,怎么解决

E40021: Failed to compile Op [/model.25/SWS/att/Pow_3/Square/SquareSumV2,[/model.25/SWS/att/ReduceSum_3,/model.25/SWS/att/ReduceSum_3,/model.25/SWS/att/Pow_3]]. (oppath: [Compile /usr/local/Ascend/ascend-toolkit/7.0.RC1/opp/built-in/op_impl/ai_core/tbe/impl/square_sum_v2.py failed with errormsg/stack: File "/usr/local/Ascend/ascend-toolkit/7.0.RC1/python/site-packages/tbe/tvm/_ffi/_ctypes/packed_func.py", line 239, in __call__ raise get_last_ffi_error() tvm._ffi.base.TVMError: {'errClass': 'EmitInsn Error', 'errCode': '[EB4000]', 'message': 'Traceback (most recent call last): 13: TVMFuncCall 12: 0x0000e7ffc4fd24f3 11: ascend_tvm::LowerSchedule(ascend_tvm::te::Schedule, ascend_tvm::runtime::Array<ascend_tvm::runtime::ObjectRef, void> const&, std::string const&, std::unordered_map<ascend_tvm::te::Tensor, ascend_tvm::tir::Buffer, std::hash<ascend_tvm::te::Tensor>, std::equal_to<ascend_tvm::te::Tensor>, std::allocator<std::pair<ascend_tvm::te::Tensor const, ascend_tvm::tir::Buffer> > > const&, ascend_tvm::PrimExpr, bool) 10: ascend_tvm::LowerWithPassList(ascend_tvm::IRModule, ascend_tvm::runtime::Array<ascend_tvm::transform::Pass, void>) 9: ascend_tvm::transform::Pass::operator()(ascend_tvm::IRModule) const 8: ascend_tvm::transform::Pass::operator()(ascend_tvm::IRModule, ascend_tvm::transform::PassContext const&) const 7: ascend_tvm::transform::SequentialNode::operator()(ascend_tvm::IRModule, ascend_tvm::transform::PassContext const&) const 6: ascend_tvm::transform::Pass::operator()(ascend_tvm::IRModule, ascend_tvm::transform::PassContext const&) const 5: ascend_tvm::tir::transform::PrimFuncPassNode::operator()(ascend_tvm::IRModule, ascend_tvm::transform::PassContext const&) const 4: 0x0000e7ffc758a91f 3: ascend_tvm::tir::ReuseBuf(ascend_tvm::tir::Stmt) File "reuse_buf.cc", line 126

EPRobot@EPRobot:~/robot_ws/src/eprobot_start/script/one_car_pkg$ roslaunch eprobot_start one_car_start.launch RLException: [one_car_start.launch] is neither a launch file in package [eprobot_start] nor is [eprobot_start] a launch file name The traceback for the exception was written to the log file EPRobot@EPRobot:~/robot_ws/src/eprobot_start/script/one_car_pkg$ roscd usd_cam roscd: No such package/stack 'usd_cam' EPRobot@EPRobot:~/robot_ws/src/eprobot_start/script/one_car_pkg$ source /opt/ros/melodic/setup.bash EPRobot@EPRobot:~/robot_ws/src/eprobot_start/script/one_car_pkg$ cd ~/robot_ws EPRobot@EPRobot:~/robot_ws$ source devel/setup.bash EPRobot@EPRobot:~/robot_ws$ roslaunch eprobot_start one_car_start.launch ... logging to /home/EPRobot/.ros/log/98e3a152-624a-11f0-a474-e45f0131f240/roslaunch-EPRobot-28515.log Checking log directory for disk usage. This may take a while. Press Ctrl-C to interrupt Done checking log file disk usage. Usage is <1GB. started roslaunch server http://EPRobot:33123/ SUMMARY ======== CLEAR PARAMETERS * /ekf_se/ PARAMETERS * /amcl/base_frame_id: base_footprint * /amcl/global_frame_id: map * /amcl/gui_publish_rate: 10.0 * /amcl/initial_pose_a: 0.0 * /amcl/initial_pose_x: 0.0 * /amcl/initial_pose_y: 0.0 * /amcl/kld_err: 0.05 * /amcl/kld_z: 0.99 * /amcl/laser_lambda_short: 0.1 * /amcl/laser_likelihood_max_dist: 5.0 * /amcl/laser_max_beams: 60 * /amcl/laser_max_range: 12.0 * /amcl/laser_model_type: likelihood_field * /amcl/laser_sigma_hit: 0.2 * /amcl/laser_z_hit: 0.7 * /amcl/laser_z_max: 0.1 * /amcl/laser_z_rand: 0.3 * /amcl/laser_z_short: 0.1 * /amcl/max_particles: 2000 * /amcl/min_particles: 600 * /amcl/odom_alpha1: 0.2 * /amcl/odom_alpha2: 0.2 * /amcl/odom_alpha3: 0.2 * /amcl/odom_alpha4: 0.2 * /amcl/odom_alpha5: 0.1 * /amcl/odom_frame_id: odom * /amcl/odom_model_type: diff * /amcl/recovery_alpha_fast: 0.2 * /amcl/recovery_alpha_slow: 0.005 * /amcl/resample_interval: 0.4 * /amcl/transform_tolerance: 0.5 * /amcl/update_min_a: 0.05 * /amcl/update_min_d: 0.05 * /amcl/use_map_topic: True * /base_control/base_kd: 0.0 * /base_control/base_ki: 100.0 * /base_control/base_kp: 1000.0 * /base_control/base_kv: 1.0 * /base_control/is_send_anger: false * /camera_uri: http://192.168.3.... * /ekf_se/base_link_frame: /base_footprint * /ekf_se/debug: False * /ekf_se/debug_out_file: /path/to/debug/fi... * /ekf_se/frequency: 30 * /ekf_se/imu0: /imu_data * /ekf_se/imu0_config: [False, False, Fa... * /ekf_se/imu0_differential: False * /ekf_se/imu0_nodelay: True * /ekf_se/imu0_pose_rejection_threshold: 0.8 * /ekf_se/imu0_queue_size: 8 * /ekf_se/imu0_relative: True * /ekf_se/imu0_remove_gravitational_acceleration: True * /ekf_se/initial_estimate_covariance: ['1e-9', 0, 0, 0,... * /ekf_se/map_frame: /map * /ekf_se/odom0: /odom * /ekf_se/odom0_config: [False, False, Fa... * /ekf_se/odom0_differential: False * /ekf_se/odom0_nodelay: True * /ekf_se/odom0_queue_size: 5 * /ekf_se/odom0_relative: True * /ekf_se/odom_frame: /odom * /ekf_se/print_diagnostics: True * /ekf_se/process_noise_covariance: [0.01, 0, 0, 0, 0... * /ekf_se/publish_acceleration: True * /ekf_se/publish_tf: True * /ekf_se/sensor_timeout: 0.025 * /ekf_se/transform_time_offset: 0.0001 * /ekf_se/transform_timeout: 0.025 * /ekf_se/two_d_mode: True * /ekf_se/world_frame: /odom * /image_view/autosize: True * /laser_filter/scan_filter_chain: [{'type': 'laser_... * /lslidar_driver_node/angle_disable_max: 0 * /lslidar_driver_node/angle_disable_min: 0 * /lslidar_driver_node/compensation: False * /lslidar_driver_node/frame_id: base_laser_link * /lslidar_driver_node/high_reflection: False * /lslidar_driver_node/interface_selection: serial * /lslidar_driver_node/lidar_name: M10 * /lslidar_driver_node/max_range: 100.0 * /lslidar_driver_node/min_range: 0.1 * /lslidar_driver_node/pubPointCloud2: False * /lslidar_driver_node/pubScan: True * /lslidar_driver_node/scan_topic: scan * /lslidar_driver_node/serial_port: /dev/EPRobot_laser * /lslidar_driver_node/use_gps_ts: False * /map_server/frame_id: map * /move_base/TebLocalPlannerROS/acc_lim_theta: 0.3 * /move_base/TebLocalPlannerROS/acc_lim_x: 0.2 * /move_base/TebLocalPlannerROS/allow_init_with_backwards_motion: True * /move_base/TebLocalPlannerROS/cmd_angle_instead_rotvel: False * /move_base/TebLocalPlannerROS/costmap_converter_plugin: * /move_base/TebLocalPlannerROS/costmap_converter_rate: 5 * /move_base/TebLocalPlannerROS/costmap_converter_spin_thread: True * /move_base/TebLocalPlannerROS/costmap_obstacles_behind_robot_dist: 1.0 * /move_base/TebLocalPlannerROS/dt_hysteresis: 0.1 * /move_base/TebLocalPlannerROS/dt_ref: 0.3 * /move_base/TebLocalPlannerROS/dynamic_obstacle_inflation_dist: 0.2 * /move_base/TebLocalPlannerROS/enable_homotopy_class_planning: False * /move_base/TebLocalPlannerROS/enable_multithreading: True * /move_base/TebLocalPlannerROS/exact_arc_length: False * /move_base/TebLocalPlannerROS/feasibility_check_no_poses: 3 * /move_base/TebLocalPlannerROS/footprint_model/line_end: [0.1, 0.0] * /move_base/TebLocalPlannerROS/footprint_model/line_start: [-0.1, 0.0] * /move_base/TebLocalPlannerROS/footprint_model/type: line * /move_base/TebLocalPlannerROS/force_reinit_new_goal_dist: 0.5 * /move_base/TebLocalPlannerROS/free_goal_vel: False * /move_base/TebLocalPlannerROS/global_plan_overwrite_orientation: True * /move_base/TebLocalPlannerROS/global_plan_viapoint_sep: 3.0 * /move_base/TebLocalPlannerROS/h_signature_prescaler: 0.5 * /move_base/TebLocalPlannerROS/h_signature_threshold: 0.1 * /move_base/TebLocalPlannerROS/include_costmap_obstacles: True * /move_base/TebLocalPlannerROS/include_dynamic_obstacles: True * /move_base/TebLocalPlannerROS/inflation_dist: 0.35 * /move_base/TebLocalPlannerROS/is_footprint_dynamic: False * /move_base/TebLocalPlannerROS/legacy_obstacle_association: False * /move_base/TebLocalPlannerROS/max_global_plan_lookahead_dist: 10.0 * /move_base/TebLocalPlannerROS/max_number_classes: 2 * /move_base/TebLocalPlannerROS/max_vel_theta: 1.0 * /move_base/TebLocalPlannerROS/max_vel_x: 0.6 * /move_base/TebLocalPlannerROS/max_vel_x_backwards: 0.3 * /move_base/TebLocalPlannerROS/max_vel_y: 0.0 * /move_base/TebLocalPlannerROS/min_obstacle_dist: 0.55 * /move_base/TebLocalPlannerROS/min_turning_radius: 0.6 * /move_base/TebLocalPlannerROS/no_inner_iterations: 5 * /move_base/TebLocalPlannerROS/no_outer_iterations: 4 * /move_base/TebLocalPlannerROS/obstacle_association_cutoff_factor: 5.0 * /move_base/TebLocalPlannerROS/obstacle_association_force_inclusion_factor: 1.5 * /move_base/TebLocalPlannerROS/obstacle_cost_exponent: 5.5 * /move_base/TebLocalPlannerROS/obstacle_heading_threshold: 0.45 * /move_base/TebLocalPlannerROS/obstacle_keypoint_offset: 0.1 * /move_base/TebLocalPlannerROS/obstacle_poses_affected: 15 * /move_base/TebLocalPlannerROS/odom_topic: odom * /move_base/TebLocalPlannerROS/optimization_activate: True * /move_base/TebLocalPlannerROS/optimization_verbose: False * /move_base/TebLocalPlannerROS/oscillation_recovery: True * /move_base/TebLocalPlannerROS/penalty_epsilon: 0.08 * /move_base/TebLocalPlannerROS/roadmap_graph_area_length_scale: 1.0 * /move_base/TebLocalPlannerROS/roadmap_graph_area_width: 5 * /move_base/TebLocalPlannerROS/roadmap_graph_no_samples: 15 * /move_base/TebLocalPlannerROS/selection_alternative_time_cost: False * /move_base/TebLocalPlannerROS/selection_cost_hysteresis: 1.0 * /move_base/TebLocalPlannerROS/selection_obst_cost_scale: 1.0 * /move_base/TebLocalPlannerROS/selection_viapoint_cost_scale: 1.0 * /move_base/TebLocalPlannerROS/shrink_horizon_backup: True * /move_base/TebLocalPlannerROS/simple_exploration: False * /move_base/TebLocalPlannerROS/teb_autosize: True * /move_base/TebLocalPlannerROS/via_points_ordered: False * /move_base/TebLocalPlannerROS/visualize_hc_graph: False * /move_base/TebLocalPlannerROS/weight_acc_lim_theta: 1 * /move_base/TebLocalPlannerROS/weight_acc_lim_x: 1 * /move_base/TebLocalPlannerROS/weight_adapt_factor: 1.0 * /move_base/TebLocalPlannerROS/weight_dynamic_obstacle: 100 * /move_base/TebLocalPlannerROS/weight_dynamic_obstacle_inflation: 0.6 * /move_base/TebLocalPlannerROS/weight_inflation: 1.0 * /move_base/TebLocalPlannerROS/weight_kinematics_forward_drive: 800 * /move_base/TebLocalPlannerROS/weight_kinematics_nh: 1000 * /move_base/TebLocalPlannerROS/weight_kinematics_turning_radius: 6.0 * /move_base/TebLocalPlannerROS/weight_max_vel_theta: 1 * /move_base/TebLocalPlannerROS/weight_max_vel_x: 2 * /move_base/TebLocalPlannerROS/weight_obstacle: 190 * /move_base/TebLocalPlannerROS/weight_optimaltime: 15 * /move_base/TebLocalPlannerROS/weight_shortest_path: 5.0 * /move_base/TebLocalPlannerROS/weight_viapoint: 10.0 * /move_base/TebLocalPlannerROS/wheelbase: 0.3 * /move_base/TebLocalPlannerROS/xy_goal_tolerance: 0.1 * /move_base/TebLocalPlannerROS/yaw_goal_tolerance: 0.1 * /move_base/base_local_planner: teb_local_planner... * /move_base/clearing_rotation_allowed: False * /move_base/conservative_reset_dist: 0.2 * /move_base/controller_frequency: 5.0 * /move_base/controller_patience: 15.0 * /move_base/global_costmap/footprint: [[-0.18, -0.18], ... * /move_base/global_costmap/global_frame: map * /move_base/global_costmap/inflation_layer/cost_scaling_factor: 10.0 * /move_base/global_costmap/inflation_layer/enabled: True * /move_base/global_costmap/inflation_layer/inflation_radius: 0.3 * /move_base/global_costmap/inflation_radius: 0.4 * /move_base/global_costmap/laser_scan_sensor/clearing: True * /move_base/global_costmap/laser_scan_sensor/data_type: LaserScan * /move_base/global_costmap/laser_scan_sensor/marking: True * /move_base/global_costmap/laser_scan_sensor/topic: scan * /move_base/global_costmap/map_type: costmap * /move_base/global_costmap/observation_sources: laser_scan_sensor * /move_base/global_costmap/obstacle_layer/combination_method: 1 * /move_base/global_costmap/obstacle_layer/enabled: True * /move_base/global_costmap/obstacle_layer/inflation_radius: 0.2 * /move_base/global_costmap/obstacle_layer/obstacle_range: 6.5 * /move_base/global_costmap/obstacle_layer/raytrace_range: 6.0 * /move_base/global_costmap/obstacle_layer/track_unknown_space: False * /move_base/global_costmap/plugins: [{'type': 'costma... * /move_base/global_costmap/publish_frequency: 5.0 * /move_base/global_costmap/robot_base_frame: base_footprint * /move_base/global_costmap/static_layer/enabled: True * /move_base/global_costmap/static_layer/map_topic: /map * /move_base/global_costmap/static_map: True * /move_base/global_costmap/transform_tolerance: 0.5 * /move_base/global_costmap/update_frequency: 5.0 * /move_base/local_costmap/cost_scaling_factor: 10 * /move_base/local_costmap/footprint: [[-0.18, -0.18], ... * /move_base/local_costmap/global_frame: map * /move_base/local_costmap/height: 3 * /move_base/local_costmap/inflation_layer/cost_scaling_factor: 10.0 * /move_base/local_costmap/inflation_layer/enabled: True * /move_base/local_costmap/inflation_layer/inflation_radius: 0.3 * /move_base/local_costmap/inflation_radius: 0.16 * /move_base/local_costmap/laser_scan_sensor/clearing: True * /move_base/local_costmap/laser_scan_sensor/data_type: LaserScan * /move_base/local_costmap/laser_scan_sensor/marking: True * /move_base/local_costmap/laser_scan_sensor/topic: scan * /move_base/local_costmap/map_type: costmap * /move_base/local_costmap/observation_sources: laser_scan_sensor * /move_base/local_costmap/obstacle_layer/combination_method: 1 * /move_base/local_costmap/obstacle_layer/enabled: True * /move_base/local_costmap/obstacle_layer/inflation_radius: 0.2 * /move_base/local_costmap/obstacle_layer/obstacle_range: 6.5 * /move_base/local_costmap/obstacle_layer/raytrace_range: 6.0 * /move_base/local_costmap/obstacle_layer/track_unknown_space: False * /move_base/local_costmap/plugins: [{'type': 'costma... * /move_base/local_costmap/publish_frequency: 5.0 * /move_base/local_costmap/resolution: 0.05 * /move_base/local_costmap/robot_base_frame: base_footprint * /move_base/local_costmap/rolling_window: True * /move_base/local_costmap/static_layer/enabled: True * /move_base/local_costmap/static_layer/map_topic: /map * /move_base/local_costmap/static_map: False * /move_base/local_costmap/transform_tolerance: 0.5 * /move_base/local_costmap/update_frequency: 5.0 * /move_base/local_costmap/width: 3 * /move_base/oscillation_distance: 0.2 * /move_base/oscillation_timeout: 10.0 * /move_base/planner_frequency: 1.0 * /move_base/planner_patience: 5.0 * /robot_description: <?xml version="1.... * /rosdistro: melodic * /rosversion: 1.14.13 * /time0: 5.0 * /time1: 15.0 * /time2: 2.0 * /time3: 10.0 * /time4: 2.0 * /time5: 5.0 * /usb_cam/camera_frame_id: usb_cam * /usb_cam/color_format: yuv422p * /usb_cam/image_height: 960 * /usb_cam/image_width: 1280 * /usb_cam/io_method: mmap * /usb_cam/pixel_format: yuyv * /usb_cam/video_device: /dev/video0 NODES / amcl (amcl/amcl) base_control (eprobot_start/art_racecar.py) base_to_camera (tf/static_transform_publisher) base_to_gyro (tf/static_transform_publisher) base_to_laser (tf/static_transform_publisher) base_to_link (tf/static_transform_publisher) ekf_se (robot_localization/ekf_localization_node) image_view (image_view/image_view) joint_state_publisher (joint_state_publisher/joint_state_publisher) laser_filter (laser_filters/scan_to_scan_filter_chain) lslidar_driver_node (lslidar_driver/lslidar_driver_node) map_server (map_server/map_server) move_base (move_base/move_base) one_car_start (eprobot_start/one_car_start.py) robot_state_publisher (robot_state_publisher/robot_state_publisher) usb_cam (usb_cam/usb_cam_node) auto-starting new master process[master]: started with pid [28540] ROS_MASTER_URI=http://EPRobot:11311 setting /run_id to 98e3a152-624a-11f0-a474-e45f0131f240 process[rosout-1]: started with pid [28569] started core service [/rosout] process[usb_cam-2]: started with pid [28577] [ INFO] [1752673306.541706342]: using default calibration URL [ INFO] [1752673306.544599750]: camera calibration URL: file:///home/EPRobot/.ros/camera_info/head_camera.yaml [ INFO] [1752673306.548678571]: Starting 'head_camera' (/dev/video0) at 1280x960 via mmap (yuyv) at 30 FPS [ WARN] [1752673306.947265581]: unknown control 'focus_auto' process[image_view-3]: started with pid [28591] [ INFO] [1752673307.509032663]: Initializing nodelet with 4 worker threads. [ INFO] [1752673307.861474363]: Using transport "raw" Unable to init server: Could not connect: Connection refused (image_raw:28591): Gtk-WARNING **: 21:41:47.890: cannot open display: process[base_to_link-4]: started with pid [28612] [image_view-3] process has died [pid 28591, exit code -7, cmd /opt/ros/melodic/lib/image_view/image_view image:=/usb_cam/image_raw __name:=image_view __log:=/home/EPRobot/.ros/log/98e3a152-624a-11f0-a474-e45f0131f240/image_view-3.log]. log file: /home/EPRobot/.ros/log/98e3a152-624a-11f0-a474-e45f0131f240/image_view-3*.log process[base_to_gyro-5]: started with pid [28629] process[base_to_laser-6]: started with pid [28635] process[base_to_camera-7]: started with pid [28657] process[joint_state_publisher-8]: started with pid [28680] process[robot_state_publisher-9]: started with pid [28686] /opt/ros/melodic/lib/python2.7/dist-packages/roslib/packages.py:470: UnicodeWarning: Unicode equal comparison failed to convert both arguments to Unicode - interpreting them as being unequal if resource_name in files: process[base_control-10]: started with pid [28694] ERROR: cannot launch node of type [lslidar_driver/lslidar_driver_node]: Cannot locate node of type [lslidar_driver_node] in package [lslidar_driver]. Make sure file exists in package path and permission is set to executable (chmod +x) ERROR: cannot launch node of type [laser_filters/scan_to_scan_filter_chain]: Cannot locate node of type [scan_to_scan_filter_chain] in package [laser_filters]. Make sure file exists in package path and permission is set to executable (chmod +x) ERROR: cannot launch node of type [map_server/map_server]: Cannot locate node of type [map_server] in package [map_server]. Make sure file exists in package path and permission is set to executable (chmod +x) ERROR: cannot launch node of type [amcl/amcl]: Cannot locate node of type [amcl] in package [amcl]. Make sure file exists in package path and permission is set to executable (chmod +x) ERROR: cannot launch node of type [move_base/move_base]: Cannot locate node of type [move_base] in package [move_base]. Make sure file exists in package path and permission is set to executable (chmod +x) ERROR: cannot launch node of type [robot_localization/ekf_localization_node]: Cannot locate node of type [ekf_localization_node] in package [robot_localization]. Make sure file exists in package path and permission is set to executable (chmod +x) ERROR: cannot launch node of type [eprobot_start/one_car_start.py]: Cannot locate node of type [one_car_start.py] in package [eprobot_start]. Make sure file exists in package path and permission is set to executable (chmod +x) [INFO] [1752673319.775691]: base control start... [INFO] [1752673319.816039]: LaserMode : Express [INFO] [1752673319.819294]: is_pub_odom_tf : false [INFO] [1752673319.822670]: is_send_anger : false [INFO] [1752673319.827339]: Opening Serial [INFO] [1752673319.831187]: Serial Open Succeed

这是我的测试函数:#include <memory> #include <chrono> #include <vector> #include "rclcpp/rclcpp.hpp" #include "kx_topic/msg/system_state.hpp" #include "kx_topic/msg/planning_control.hpp" #include "kx_topic/msg/pose.hpp" #include "kx_topic/msg/localization_state.hpp" #include "kx_topic/msg/way_points.hpp" #include "kx_topic/msg/perception_state.hpp" #include "kx_topic/msg/rigid_velocity.hpp" #include "kx_topic/msg/driving_state.hpp" #include "kx_topic/msg/planning_state.hpp" #include <kx_common/transform/kxtransform.h> #include <kx_common/system/topic_attr_define.h> #include "geometry_msgs/msg/pose_array.hpp" #include "visualization_msgs/msg/marker_array.hpp" #include "tf2_ros/transform_broadcaster.h" #include <tf2_geometry_msgs/tf2_geometry_msgs.hpp> class TestPlanningNode : public rclcpp::Node { public: TestPlanningNode() : Node("test_planning_node") { // 初始化变量 current_pose_.x = 0.0; current_pose_.y = 0.0; current_pose_.yaw = 0.0; current_velocity_.vx = 0.5; // 初始速度0.5 m/s // 创建发布器 system_state_pub_ = create_publisher<kx_topic::msg::SystemState>( "system_state", 10); planning_control_pub_ = create_publisher<kx_topic::msg::PlanningControl>( "planning_control", 10); pose_fusion_pub_ = create_publisher<kx_topic::msg::Pose>( "pose_fusion", 10); localization_state_pub_ = create_publisher<kx_topic::msg::LocalizationState>( "localization_state", 10); perception_state_pub_ = create_publisher<kx_topic::msg::PerceptionState>( "perception_state", 10); chassis_velocity_pub_ = create_publisher<kx_topic::msg::RigidVelocity>( "chassis_velocity", 10); driving_state_pub_ = create_publisher<kx_topic::msg::DrivingState>( "driving_control", 10); // 创建订阅器(用于可视化) waypoints_sub_ = create_subscription<kx_topic::msg::WayPoints>( "waypoints", 10, std::bind(&TestPlanningNode::waypointsCallback, this, std::placeholders::_1)); planning_state_sub_ = create_subscription<kx_topic::msg::PlanningState>( "planning_state", 10, std::bind(&TestPlanningNode::planningStateCallback, this, std::placeholders::_1)); // RViz可视化发布器 - 确保使用正确的命名空间和ID path_viz_pub_ = create_publisher<visualization_msgs::msg::Marker>( "path_viz", 10); waypoints_viz_pub_ = create_publisher<visualization_msgs::msg::Marker>( "waypoints_viz", 10); obstacle_viz_pub_ = create_publisher<visualization_msgs::msg::Marker>( "obstacle_viz", 10); car_viz_pub_ = create_publisher<visualization_msgs::msg::Marker>( "car_viz", 10); // 创建50米长的测试路径(直线) createTestPath(); // 创建定时器发布测试数据 publish_timer_ = create_wall_timer( std::chrono::milliseconds(100), std::bind(&TestPlanningNode::publishTestData, this)); // 创建定时器更新车辆位置 update_timer_ = create_wall_timer( std::chrono::milliseconds(200), std::bind(&TestPlanningNode::updateVehiclePosition, this)); // 创建定时器用于可视化 viz_timer_ = create_wall_timer( std::chrono::milliseconds(500), std::bind(&TestPlanningNode::publishVisualization, this)); // 初始化可视化标记 initMarkers(); } private: void initMarkers() { // 初始化路径标记 path_marker_.header.frame_id = "map"; path_marker_.ns = "test_path"; path_marker_.id = 1; path_marker_.type = visualization_msgs::msg::Marker::LINE_STRIP; path_marker_.action = visualization_msgs::msg::Marker::ADD; path_marker_.scale.x = 0.1; path_marker_.color.r = 0.0; path_marker_.color.g = 1.0; path_marker_.color.b = 0.0; path_marker_.color.a = 1.0; // 初始化路径点标记 waypoints_marker_.header.frame_id = "map"; waypoints_marker_.ns = "planning_waypoints"; waypoints_marker_.id = 2; waypoints_marker_.type = visualization_msgs::msg::Marker::SPHERE_LIST; waypoints_marker_.action = visualization_msgs::msg::Marker::ADD; waypoints_marker_.scale.x = 0.3; waypoints_marker_.scale.y = 0.3; waypoints_marker_.scale.z = 0.3; waypoints_marker_.color.r = 1.0; waypoints_marker_.color.g = 0.0; waypoints_marker_.color.b = 0.0; waypoints_marker_.color.a = 1.0; // 初始化障碍物标记 obstacle_marker_.header.frame_id = "map"; obstacle_marker_.ns = "obstacle"; obstacle_marker_.id = 3; obstacle_marker_.type = visualization_msgs::msg::Marker::CUBE; obstacle_marker_.action = visualization_msgs::msg::Marker::ADD; obstacle_marker_.scale.x = 1.0; obstacle_marker_.scale.y = 1.0; obstacle_marker_.scale.z = 0.5; obstacle_marker_.color.r = 1.0; obstacle_marker_.color.g = 0.0; obstacle_marker_.color.b = 0.0; obstacle_marker_.color.a = 1.0; // 初始化车辆标记 car_marker_.header.frame_id = "map"; car_marker_.ns = "vehicle"; car_marker_.id = 4; car_marker_.type = visualization_msgs::msg::Marker::CUBE; // 使用立方体代替模型 car_marker_.action = visualization_msgs::msg::Marker::ADD; car_marker_.scale.x = 2.0; // 车长 car_marker_.scale.y = 1.0; // 车宽 car_marker_.scale.z = 0.5; // 车高 car_marker_.color.r = 0.0; car_marker_.color.g = 0.0; car_marker_.color.b = 1.0; car_marker_.color.a = 0.8; } void createTestPath() { // 创建一条50米长的直线路径 kx_topic::msg::PlanningBezier3Route route; // 起点 route.p0.x = 0.0; route.p0.y = 0.0; route.p1.x = 10.0; route.p1.y = 0.0; route.p2.x = 40.0; route.p2.y = 0.0; route.p3.x = 50.0; route.p3.y = 0.0; route.limit_speed = 1.0; // 限速1.0 m/s route.tracking_precision = kx_topic::msg::PlanningBezier3Route::TRACKING_PRECISION_NORMAL; route.stopping_precision = kx_topic::msg::PlanningBezier3Route::STOPPING_PRECISION_NORMAL; route.avoid_left_enable = true; route.avoid_right_enable = true; // 添加到控制消息 planning_control_msg_.control_type = kx_topic::msg::PlanningControl::CONTROL_TYPE_TRACK_BEZIER3; planning_control_msg_.track_bezier3_data.bezier3_route.push_back(route); planning_control_msg_.track_bezier3_data.bezier3_route_current_index = 0; // 设置障碍物在25米处 obstacle_position_.x = 25.0; obstacle_position_.y = 0.0; // 创建路径可视化点 for (double x = 0; x <= 50; x += 1.0) { geometry_msgs::msg::Point p; p.x = x; p.y = 0.0; p.z = 0.0; path_marker_.points.push_back(p); } } void publishTestData() { // 发布系统状态 auto system_state_msg = kx_topic::msg::SystemState(); system_state_msg.state = 1; // AUTO状态 system_state_pub_->publish(system_state_msg); // 发布规划控制 planning_control_pub_->publish(planning_control_msg_); // 发布定位状态 auto localization_state_msg = kx_topic::msg::LocalizationState(); localization_state_msg.map_id = 1; // 有效地图ID localization_state_pub_->publish(localization_state_msg); // 发布感知状态(包含障碍物) auto perception_state_msg = kx_topic::msg::PerceptionState(); // 添加障碍物 kx_topic::msg::Obstacle2d obstacle; obstacle.center_x = obstacle_position_.x; obstacle.center_y = obstacle_position_.y; obstacle.center_z = 0.0; obstacle.movable = false; // 创建障碍物多边形(正方形) geometry_msgs::msg::Point32 p; p.x = obstacle_position_.x - 0.5; p.y = obstacle_position_.y - 0.5; obstacle.polygon.points.push_back(p); p.x = obstacle_position_.x + 0.5; p.y = obstacle_position_.y - 0.5; obstacle.polygon.points.push_back(p); p.x = obstacle_position_.x + 0.5; p.y = obstacle_position_.y + 0.5; obstacle.polygon.points.push_back(p); p.x = obstacle_position_.x - 0.5; p.y = obstacle_position_.y + 0.5; obstacle.polygon.points.push_back(p); perception_state_msg.obstacles.push_back(obstacle); perception_state_pub_->publish(perception_state_msg); // 发布底盘速度 chassis_velocity_pub_->publish(current_velocity_); // 发布驾驶状态 auto driving_state_msg = kx_topic::msg::DrivingState(); driving_state_pub_->publish(driving_state_msg); } void updateVehiclePosition() { // 根据速度更新车辆位置 double dt = 0.2; // 200ms current_pose_.x += current_velocity_.vx * dt * cos(current_pose_.yaw); current_pose_.y += current_velocity_.vx * dt * sin(current_pose_.yaw); // 发布车辆位姿 auto pose_msg = kx_topic::msg::Pose(); pose_msg.x = current_pose_.x; pose_msg.y = current_pose_.y; pose_msg.z = 0.0; pose_msg.roll = 0.0; pose_msg.pitch = 0.0; pose_msg.yaw = current_pose_.yaw; pose_fusion_pub_->publish(pose_msg); } void waypointsCallback(const kx_topic::msg::WayPoints::SharedPtr msg) { // 存储最新的路径点用于可视化 latest_waypoints_ = *msg; } void planningStateCallback(const kx_topic::msg::PlanningState::SharedPtr msg) { // 打印规划状态信息 RCLCPP_INFO(get_logger(), "Planning State: control_type=%d, sub_state=%d", msg->current_control_type, msg->track_bezier3_data.sub_state); } void publishVisualization() { auto now = this->now(); // 更新并发布路径标记 path_marker_.header.stamp = now; path_viz_pub_->publish(path_marker_); // 更新并发布路径点标记 waypoints_marker_.header.stamp = now; waypoints_marker_.points.clear(); if (latest_waypoints_.waypoints.size() > 0) { for (const auto& wp : latest_waypoints_.waypoints) { geometry_msgs::msg::Point p; p.x = wp.x; p.y = wp.y; p.z = 0.0; waypoints_marker_.points.push_back(p); } } waypoints_viz_pub_->publish(waypoints_marker_); // 更新并发布障碍物标记 obstacle_marker_.header.stamp = now; obstacle_marker_.pose.position.x = obstacle_position_.x; obstacle_marker_.pose.position.y = obstacle_position_.y; obstacle_marker_.pose.position.z = 0.0; obstacle_viz_pub_->publish(obstacle_marker_); // 更新并发布车辆标记 car_marker_.header.stamp = now; car_marker_.pose.position.x = current_pose_.x; car_marker_.pose.position.y = current_pose_.y; car_marker_.pose.position.z = 0.0; // 设置车辆方向 tf2::Quaternion quat; quat.setRPY(0, 0, current_pose_.yaw); car_marker_.pose.orientation = tf2::toMsg(quat); car_viz_pub_->publish(car_marker_); } // 变量声明 struct Pose { double x; double y; double yaw; }; Pose current_pose_; kx_topic::msg::RigidVelocity current_velocity_; kx_topic::msg::PlanningControl planning_control_msg_; kx_topic::msg::WayPoints latest_waypoints_; geometry_msgs::msg::Point obstacle_position_; // 可视化标记 visualization_msgs::msg::Marker path_marker_; visualization_msgs::msg::Marker waypoints_marker_; visualization_msgs::msg::Marker obstacle_marker_; visualization_msgs::msg::Marker car_marker_; // 发布器 rclcpp::Publisher<kx_topic::msg::SystemState>::SharedPtr system_state_pub_; rclcpp::Publisher<kx_topic::msg::PlanningControl>::SharedPtr planning_control_pub_; rclcpp::Publisher<kx_topic::msg::Pose>::SharedPtr pose_fusion_pub_; rclcpp::Publisher<kx_topic::msg::LocalizationState>::SharedPtr localization_state_pub_; rclcpp::Publisher<kx_topic::msg::PerceptionState>::SharedPtr perception_state_pub_; rclcpp::Publisher<kx_topic::msg::RigidVelocity>::SharedPtr chassis_velocity_pub_; rclcpp::Publisher<kx_topic::msg::DrivingState>::SharedPtr driving_state_pub_; // 订阅器 rclcpp::Subscription<kx_topic::msg::WayPoints>::SharedPtr waypoints_sub_; rclcpp::Subscription<kx_topic::msg::PlanningState>::SharedPtr planning_state_sub_; // 可视化发布器 rclcpp::Publisher<visualization_msgs::msg::Marker>::SharedPtr path_viz_pub_; rclcpp::Publisher<visualization_msgs::msg::Marker>::SharedPtr waypoints_viz_pub_; rclcpp::Publisher<visualization_msgs::msg::Marker>::SharedPtr obstacle_viz_pub_; rclcpp::Publisher<visualization_msgs::msg::Marker>::SharedPtr car_viz_pub_; // 定时器 rclcpp::TimerBase::SharedPtr publish_timer_; rclcpp::TimerBase::SharedPtr update_timer_; rclcpp::TimerBase::SharedPtr viz_timer_; }; int main(int argc, char** argv) { rclcpp::init(argc, argv); auto node = std::make_shared<TestPlanningNode>(); rclcpp::spin(node); rclcpp::shutdown(); return 0; }但是运行planning之后再运行这个测试节点会显示和planning终端里一样的内容即test_planning_node终端内容:[INFO] [1753150661.203834771] [kx_planning]: localization map_id=-1<0, now allow move [INFO] [1753150662.223568424] [kx_planning]: running. real interval: 19.913 ms, calc: 0.008 ms, mode=0(idle) [INFO] [1753150662.223612171] [kx_planning]: localization map_id=-1<0, now allow move [INFO] [1753150663.244129907] [kx_planning]: running. real interval: 21.011 ms, calc: 0.008 ms, mode=0(idle) 等,planning终端里的内容:[INFO] [1753150639.991114081] [kx_planning]: running. real interval: 19.843 ms, calc: 0.022 ms, mode=0(idle) [INFO] [1753150639.991145309] [kx_planning]: localization map_id=-1<0, now allow move [INFO] [1753150641.011186408] [kx_planning]: running. real interval: 20.794 ms, calc: 0.009 ms, mode=0(idle) [INFO] [1753150641.011215057] [kx_planning]: localization map_id=-1<0, now allow move [INFO] [1753150642.011464393] [kx_planning]: running. real interval: 19.955 ms, calc: 0.018 ms, mode=0(idle) [INFO] [1753150642.011516071] [kx_planning]: localization map_id=-1<0, now allow move 等。而且topic list内容如下/chassis_velocity /driving_control /error /feedback_waypoints /localization_state /parameter_events /perception_state /planning_control /planning_debug_all_points /planning_debug_current_point /planning_debug_current_pose /planning_debug_response_car_limit_polygon /planning_debug_response_car_polygon /planning_debug_response_car_pose /planning_debug_response_car_stop_polygon /planning_debug_response_obstacle_point /planning_state /pose_fusion /rosout /system_state /waypoints 没有我发布的path_viz等话题,请问怎么回事?

#include "dml-module.h" #include "cap.h" #include "cap_win.h" #include <nms.h> #include <opencv2/opencv.hpp> #include "AIMBOT.cpp" #include "mouse_controller.h" #include <windows.h> #include <chrono> #include <string> #include <filesystem> #include <iostream> #include <functional> #include <atomic> #include <mutex> #include <vector> #include <algorithm> #include <optional> #include "gbil_mouse_controller.h" #include "config.h" // ===== 新增:ADRC控制器结构体(自抗扰控制,解决动态目标扰动问题)===== struct ADRCController { float w0; // 观测器带宽 float b0; // 控制增益 float w_n; // 闭环带宽 float sigma; // 阻尼系数 float time_delta; // 时间步长(ms转换为秒) // 扩张状态观测器变量 float z1{ 0 }, z2{ 0 }, z3{ 0 }; // 状态观测值(位置、速度、扰动) float u_p{ 0 }; // 上一时刻控制量 std::mutex mtx; // 初始化ADRC参数(从配置文件读取) ADRCController(float w0_, float b0_, float w_n_, float sigma_, float dt) : w0(w0_), b0(b0_), w_n(w_n_), sigma(sigma_), time_delta(dt) { } // *核心方法:根据目标值和当前值计算补偿后的控制量 float update(float target, float current) { std::lock_guard<std::mutex> lock(mtx); float err = current - z1; // 跟踪误差 // 扩张状态观测器(ESO)更新 float fhan = this->fhan(err, z2, w_n, sigma); z1 += time_delta * (z2 + w0 * w0 * err); // 位置观测 z2 += time_delta * (z3 + 2 * w0 * z2 + w0 * w0 * fhan); // 速度观测 z3 += time_delta * (-3 * w0 * z3 + w0 * w0 * w0 * (current - z1)); // 扰动观测 // 控制律计算(补偿扰动) float u0 = w_n * w_n * (target - z1) - 2 * sigma * w_n * z2; float u = (u0 - z3) / b0; u_p = u; // 保存当前控制量 return u; } // 快速跟踪微分器(处理非线性特性) float fhan(float x1, float x2, float r, float h0) { float d = r * h0 * h0; float d0 = h0 * d; float y = x1 + h0 * x2; float a0 = sqrt(d * (d + 8 * abs(y))); float a; if (abs(y) > d0) { a = x2 + (a0 - d) / 2 * (y > 0 ? 1 : -1); } else { a = x2 + y / h0; } if (abs(a) > d) { return -r * (a > 0 ? 1 : -1); } else { return -r * a / d; } } void reset() { std::lock_guard<std::mutex> lock(mtx); z1 = z2 = z3 = 0; u_p = 0; } }; // ===== PID控制器结构体(保留原有功能,与ADRC级联)===== struct PIDController { float kp, ki, kd; float integral{ 0 }, last_error{ 0 }; std::mutex mtx; PIDController(float p, float i, float d) : kp(p), ki(i), kd(d) {} float compute(float error) { std::lock_guard<std::mutex> lock(mtx); integral += error; float derivative = error - last_error; last_error = error; return kp * error + ki * integral + kd * derivative; } void reset() { std::lock_guard<std::mutex> lock(mtx); integral = 0; last_error = 0; } }; // ===== 卡尔曼滤波类(参数可配置)===== class KalmanFilter { public: KalmanFilter(float process_noise, float obs_noise) { kf.init(4, 2, 0); kf.transitionMatrix = (cv::Mat_<float>(4, 4) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1); cv::setIdentity(kf.measurementMatrix); cv::setIdentity(kf.processNoiseCov, cv::Scalar::all(process_noise)); cv::setIdentity(kf.measurementNoiseCov, cv::Scalar::all(obs_noise)); cv::setIdentity(kf.errorCovPost, cv::Scalar::all(1)); } cv::Point2f predict(float x, float y) { cv::Mat measurement = (cv::Mat_<float>(2, 1) << x, y); kf.predict(); cv::Mat estimated = kf.correct(measurement); return cv::Point2f(estimated.at<float>(0), estimated.at<float>(1)); } private: cv::KalmanFilter kf; }; // ===== 新增:贝塞尔曲线生成工具(解决移动拖影,实现类人平滑路径)===== class BezierCurve { public: // 生成从起点到终点的贝塞尔曲线路径点 static std::vector<cv::Point2f> generatePoints( cv::Point2f start, cv::Point2f end, int num_points = 10) { // 路径点数量(越多越平滑)数值越大越慢 std::vector<cv::Point2f> points; // 生成随机内点(增加路径自然性) std::vector<cv::Point2f> control_points; control_points.push_back(start); // 添加2个随机内点(在起点和终点范围内) control_points.push_back(cv::Point2f( start.x + (end.x - start.x) * 0.3f + rand() % 5 - 2, // 微小随机偏移 start.y + (end.y - start.y) * 0.3f + rand() % 5 - 2 )); control_points.push_back(cv::Point2f( start.x + (end.x - start.x) * 0.7f + rand() % 5 - 2, start.y + (end.y - start.y) * 0.7f + rand() % 5 - 2 )); control_points.push_back(end); // 贝塞尔曲线采样 for (int i = 0; i < num_points; ++i) { float t = (float)i / (num_points - 1); points.push_back(bezier(t, control_points)); } return points; } private: // 贝塞尔曲线计算 static cv::Point2f bezier(float t, const std::vector<cv::Point2f>& points) { int n = points.size() - 1; cv::Point2f result(0, 0); for (int i = 0; i <= n; ++i) { float bernstein = binomial(n, i) * pow(t, i) * pow(1 - t, n - i); result.x += points[i].x * bernstein; result.y += points[i].y * bernstein; } return result; } // 二项式系数计算 static float binomial(int n, int k) { if (k < 0 || k > n) return 0; if (k == 0 || k == n) return 1; k = std::min(k, n - k); float res = 1; for (int i = 1; i <= k; ++i) { res = res * (n - k + i) / i; } return res; } }; // ===== 目标选择函数(安全封装)===== std::optional<Box> selectTarget( std::vector<Box>& filtered, int& tracked_id, int& tracking_counter, float anchor_x, float anchor_y, int width, int height ) { // 优先选择上次追踪目标 for (auto& box : filtered) { if (box.id == tracked_id) { tracking_counter++; return box; } } // 未找到则选择距离中心最近的目标 if (!filtered.empty()) { float min_dist = FLT_MAX; Box* best_target = nullptr; for (auto& box : filtered) { float cx = box.left + (box.right - box.left) * anchor_x; float cy = box.top + (box.bottom - box.top) * anchor_y; float dist = std::hypot(cx - width / 2.0f, cy - height / 2.0f); if (dist < min_dist) { min_dist = dist; best_target = &box; } } if (best_target) { tracked_id = best_target->id; tracking_counter = 1; return *best_target; } } return std::nullopt; } int main() { // ------ 新增:检查自身实例是否已在运行 开始 ------ // 通过创建全局命名互斥锁(Named Mutex)来判断是否已有一个实例在运行 HANDLE hInstanceMutex = CreateMutexW(nullptr, FALSE, L"Global\\GblidDemoVC_Mutex"); if (!hInstanceMutex || GetLastError() == ERROR_ALREADY_EXISTS) { MessageBoxW(NULL, L"请勿重复运行", L"提示", MB_OK | MB_ICONWARNING); if (hInstanceMutex) { CloseHandle(hInstanceMutex); } ExitProcess(0); // 已有实例,退出当前进程 } // ------ 新增:检查自身实例是否已在运行 结束 ------ // 隐藏控制台窗口 HWND consoleWindow = GetConsoleWindow(); // 获取当前控制台窗口句柄 ShowWindow(consoleWindow, SW_HIDE); // 隐藏控制台窗口(如果需要调试可以注释掉这行)//==========需要调试可以注释================== // ==== 加载配置 ==== Config config; if (!config.loadFromFile("./config.ini")) { printf("主程序-配置文件加载失败!\n"); return -1; } bool baim = (config.aim_part == 0); timeBeginPeriod(1); // 设置定时器精度为1ms // === 自动加载模型 === std::string model_dir = "onnx"; std::string model_path; for (const auto& entry : std::filesystem::directory_iterator(model_dir)) { if (entry.path().extension() == ".onnx") { model_path = entry.path().string(); break; } } if (model_path.empty()) { printf("主程序-未在 'onnx' 文件夹中找到任何 .onnx 模型文件!\n"); return -1; } printf("主程序-加载模型路径: %s\n", model_path.c_str()); // 初始化模型类 auto* frame = new IDML(); if (!frame->AnalyticalModel(model_path)) { printf("主程序-模型加载失败。\n"); return -2; } const auto& input_dims = frame->getInputDims(); if (input_dims.size() != 4) { printf("主程序-模型输入维度异常,当前维度数量: %llu\n", input_dims.size()); return -3; } int channels = static_cast<int>(input_dims[1]); int height = static_cast<int>(input_dims[2]); int width = static_cast<int>(input_dims[3]); printf("主程序-输入图像尺寸: %d x %d\n", width, height); // ==== 初始化控制器(*修改:新增ADRC控制器)==== PIDController pid_x(config.xkp, config.xki, config.xkd); PIDController pid_y(config.ykp, config.yki, config.ykd); // *ADRC参数(从配置文件读取,可根据动态目标特性调整) float adrc_dt = 0.016f; // 约60FPS的时间步长(1/60≈0.016s) ADRCController adrc_x(config.adrc_w0, config.adrc_b0, config.adrc_wn, config.adrc_sigma, adrc_dt); ADRCController adrc_y(config.adrc_w0, config.adrc_b0, config.adrc_wn, config.adrc_sigma, adrc_dt); KalmanFilter kf(config.kalman_Q, config.kalman_R); printf("主程序-控制参数: PID X[%.2f, %.3f, %.2f] Y[%.2f, %.3f, %.2f]\n", config.xkp, config.xki, config.xkd, config.ykp, config.yki, config.ykd); printf("主程序-ADRC参数: w0=%.1f, b0=%.2f, wn=%.1f, sigma=%.1f\n", config.adrc_w0, config.adrc_b0, config.adrc_wn, config.adrc_sigma); int screenW = GetSystemMetrics(SM_CXSCREEN); int screenH = GetSystemMetrics(SM_CYSCREEN); std::function<BYTE* ()> capture_func; void* cap_impl = nullptr; // 选择截图方式 if (config.screenshot_method == 0) { auto* c = new capture(screenW, screenH, width, height, "CrossFire"); cap_impl = c; capture_func = [c]() -> BYTE* { return (BYTE*)c->cap(); }; printf("主程序-截图方式: DXGI\n"); } else { auto* c = new capture_win32(screenW, screenH, width, height, "CrossFire"); cap_impl = c; capture_func = [c]() -> BYTE* { return c->cap(); }; printf("主程序-截图方式: Win32 BitBlt\n"); } // 初始化鼠标控制器 IMouseController* mouse = nullptr; if (config.move_type == 0) { mouse = new WinMouseController(); printf("主程序-使用鼠标控制器: WinMove\n"); } else if (config.move_type == 1) { mouse = new GBILMouseController(); printf("主程序-使用鼠标控制器: GBIL\n"); } else { printf("主程序-未知的 move_type 类型: %d,未启用鼠标移动!\n", config.move_type); } using Clock = std::chrono::high_resolution_clock; auto last_time = Clock::now(); float fps = 0.0f; // ==== 持续追踪状态 ==== static int tracked_id = -1; static int tracking_counter = 0; static int lost_counter = 0; // ==== 跟踪功能开关状态 ==== std::atomic<bool> tracking_enabled{ true }; bool last_tracking_toggle_state = false; bool last_exit_key_state = false; // ==== 新增:记录上一时刻鼠标位置(用于贝塞尔路径生成)==== cv::Point2f last_mouse_pos(0, 0); // ==== 主循环 ==== static bool target_locked = false; static int lock_frames_counter = 0; static float last_min_dist = FLT_MAX; while (true) { auto start = Clock::now(); // ==== 检查退出键 ==== bool current_exit_state = (GetAsyncKeyState(config.exit_key) & 0x8000) != 0; if (current_exit_state && !last_exit_key_state) { // 使用MB_SYSTEMMODAL标志使对话框置顶 [1,8](@ref) int result = MessageBoxA( NULL, "确定要退出YAK吗?", "退出确认", MB_OKCANCEL | MB_ICONQUESTION | MB_SYSTEMMODAL // 添加MB_SYSTEMMODAL标志 ); if (result == IDOK) { break; } } last_exit_key_state = current_exit_state; // ==== 检查跟踪开关键 ==== bool current_tracking_toggle = (GetAsyncKeyState(config.tracking_toggle_key) & 0x8000) != 0; if (current_tracking_toggle && !last_tracking_toggle_state) { tracking_enabled = !tracking_enabled; printf("主程序-跟踪功能已%s\n", tracking_enabled ? "开启" : "关闭"); } last_tracking_toggle_state = current_tracking_toggle; // 截图 BYTE* s = capture_func(); auto after_cap = Clock::now(); // 目标检测 float* data = frame->Detect(s); auto after_detect = Clock::now(); // 计算性能指标 float capture_ms = std::chrono::duration<float, std::milli>(after_cap - start).count(); float detect_ms = std::chrono::duration<float, std::milli>(after_detect - after_cap).count(); float frame_time = std::chrono::duration<float>(after_detect - last_time).count(); last_time = after_detect; fps = 1.0f / frame_time; std::vector<Box> oldbox; std::vector<Box> newbox = generate_yolo_proposals(data, oldbox, frame->out1, frame->out2, config.conf_threshold, config.nms_threshold); // ==== 目标过滤 ==== static std::vector<Box> filtered; filtered.clear(); for (auto& box : newbox) { if (config.valid_classes.empty() || std::find(config.valid_classes.begin(), config.valid_classes.end(), box.class_label) != config.valid_classes.end()) { filtered.push_back(box); } } // ==== 目标选择与锁定机制 ==== std::optional<Box> current_target = std::nullopt; if (tracking_enabled) { if (target_locked) { for (auto& box : filtered) { if (box.id == tracked_id) { current_target = box; tracking_counter++; lost_counter = 0; break; } } if (!current_target) { if (++lost_counter > 5) { target_locked = false; tracked_id = -1; tracking_counter = 0; lost_counter = 0; last_min_dist = FLT_MAX; } } } else if (!filtered.empty()) { float min_dist = FLT_MAX; Box* best_target = nullptr; for (auto& box : filtered) { float cx = box.left + (box.right - box.left) * config.anchor_x; float cy = box.top + (box.bottom - box.top) * config.anchor_y; float dist = std::hypot(cx - width / 2.0f, cy - height / 2.0f); if (dist < min_dist && (tracked_id == -1 || dist < last_min_dist * 0.8f)) { min_dist = dist; best_target = &box; } } if (best_target) { current_target = *best_target; tracked_id = best_target->id; tracking_counter = 1; last_min_dist = min_dist; if (min_dist < config.lock_threshold) { if (++lock_frames_counter >= config.lock_frames) { target_locked = true; lock_frames_counter = 0; } } else { lock_frames_counter = 0; } } } } // ==== 鼠标控制逻辑(*核心修改:PID+ADRC级联控制+贝塞尔路径平滑)==== bool aim_key_pressed = (GetAsyncKeyState(config.aim_key) & 0x8000) != 0; bool aim_key1_pressed = (GetAsyncKeyState(config.aim_key1) & 0x8000) != 0; bool any_aim_key_pressed = aim_key_pressed || aim_key1_pressed; if (any_aim_key_pressed && mouse && tracking_enabled) { if (current_target) { // 计算锚点位置 float center_x = current_target->left + (current_target->right - current_target->left) * config.anchor_x; float center_y = current_target->top + (current_target->bottom - current_target->top) * config.anchor_y; cv::Point2f smoothed; if (config.kalman_enable) { smoothed = kf.predict(center_x, center_y); } else { smoothed = cv::Point2f(center_x, center_y); } // 计算原始偏移(目标与屏幕中心的偏差) float raw_dx = smoothed.x - width / 2.0f; float raw_dy = smoothed.y - height / 2.0f; // *步骤1:PID计算基础移动量(比例+积分+微分) float pid_dx = pid_x.compute(raw_dx); float pid_dy = pid_y.compute(raw_dy); // *步骤2:ADRC补偿动态扰动(解决动态目标跟踪延迟) float adrc_dx = adrc_x.update(pid_dx, raw_dx); // 输入PID输出和原始偏差 float adrc_dy = adrc_y.update(pid_dy, raw_dy); // *步骤3:贝塞尔曲线生成平滑路径(解决移动拖影) cv::Point2f target_pos(last_mouse_pos.x + adrc_dx, last_mouse_pos.y + adrc_dy); std::vector<cv::Point2f> path = BezierCurve::generatePoints(last_mouse_pos, target_pos); // *步骤4:按平滑路径移动鼠标 for (const auto& p : path) { mouse->updateTarget(p.x - last_mouse_pos.x, p.y - last_mouse_pos.y); last_mouse_pos = p; // 更新当前鼠标位置 Sleep(1); // 微小延迟,确保平滑效果 } } else { // 无目标时重置 mouse->updateTarget(0.0f, 0.0f); pid_x.reset(); pid_y.reset(); adrc_x.reset(); // *重置ADRC adrc_y.reset(); last_mouse_pos = cv::Point2f(0, 0); target_locked = false; tracked_id = -1; lock_frames_counter = 0; } } else { // 未按触发键时重置 if (mouse) mouse->updateTarget(0.0f, 0.0f); target_locked = false; tracked_id = -1; tracking_counter = 0; lock_frames_counter = 0; pid_x.reset(); pid_y.reset(); adrc_x.reset(); // *重置ADRC adrc_y.reset(); last_mouse_pos = cv::Point2f(0, 0); } // ==== 调试窗口显示 ==== if (config.show_window) { cv::Mat a(height, width, CV_8UC3, s); if (!newbox.empty()) { for (const Box& detection : newbox) { cv::Scalar color = (current_target && detection.id == current_target->id) ? cv::Scalar(0, 0, 255) : cv::Scalar(0, 255, 0); int thickness = (current_target && detection.id == current_target->id) ? 2 : 1; cv::rectangle(a, cv::Point((int)detection.left, (int)detection.top), cv::Point((int)detection.right, (int)detection.bottom), color, thickness ); std::string class_str = std::to_string(detection.class_label); char conf_str[16]; snprintf(conf_str, sizeof(conf_str), "%.2f", detection.confidence); int fontFace = cv::FONT_HERSHEY_SIMPLEX; double fontScale = 0.4; int textThickness = 1; cv::Point textOrg((int)detection.left, (int)detection.top - 4); if (textOrg.y < 10) textOrg.y = 10; cv::putText(a, class_str, textOrg, fontFace, fontScale, cv::Scalar(0, 0, 255), textThickness); cv::Size textSize = cv::getTextSize(class_str, fontFace, fontScale, textThickness, nullptr); cv::Point confOrg = textOrg + cv::Point(textSize.width + 4, 0); cv::putText(a, conf_str, confOrg, fontFace, fontScale, cv::Scalar(0, 255, 0), textThickness); } } // 绘制锚点和追踪线 if (current_target && any_aim_key_pressed && tracking_enabled) { int anchor_x_pos = current_target->left + (current_target->right - current_target->left) * config.anchor_x; int anchor_y_pos = current_target->top + (current_target->bottom - current_target->top) * config.anchor_y; cv::circle(a, cv::Point(anchor_x_pos, anchor_y_pos), 5, cv::Scalar(255, 0, 255), -1); cv::line(a, cv::Point(width / 2, height / 2), cv::Point(anchor_x_pos, anchor_y_pos), cv::Scalar(0, 255, 255), 1); } // 性能指标显示 int base_y = 20; int line_height = 18; double font_scale = 0.5; int thickness = 1; auto draw_metric = [&](const std::string& label, const std::string& value, int line) { int y = base_y + line * line_height; cv::putText(a, label, cv::Point(10, y), cv::FONT_HERSHEY_SIMPLEX, font_scale, cv::Scalar(0, 0, 255), thickness); cv::putText(a, value, cv::Point(80, y), cv::FONT_HERSHEY_SIMPLEX, font_scale, cv::Scalar(0, 255, 0), thickness); }; draw_metric("FPS:", std::to_string((int)fps), 0); draw_metric("CAPTURE:", std::to_string((int)capture_ms) + "ms", 1); draw_metric("DETECT:", std::to_string((int)detect_ms) + "ms", 2); draw_metric("TRACK:", tracking_enabled ? "ON" : "OFF", 3); // 状态信息显示 if (current_target) { std::string track_info = "TRACK: " + std::to_string(tracking_counter); cv::putText(a, track_info, cv::Point(width - 120, 30), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(200, 200, 0), 1); } if (target_locked) { std::string lock_info = "LOCKED: " + std::to_string(tracked_id); cv::putText(a, lock_info, cv::Point(width - 120, 60), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(0, 200, 255), 1); } if (lost_counter > 0) { std::string lost_info = "LOST: " + std::to_string(lost_counter); cv::putText(a, lost_info, cv::Point(width - 120, 90), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(0, 200, 200), 1); } // 窗口置顶设置 static bool topmost_set = false; if (!topmost_set) { HWND hwnd = FindWindowA(NULL, "c"); if (hwnd) { SetWindowPos(hwnd, HWND_TOPMOST, 0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE | SWP_SHOWWINDOW); } topmost_set = true; } cv::imshow("c", a); cv::waitKey(1); } } // 退出前释放资源 if (mouse) { mouse->stop(); delete mouse; mouse = nullptr; } delete frame; if (cap_impl) { if (config.screenshot_method == 0) { delete static_cast<capture*>(cap_impl); } else { delete static_cast<capture_win32*>(cap_impl); } } timeEndPeriod(1); return 0; }以上代码你详细的分析一下,为什么会跟不上目标,跟踪的时候还有拖影

Return SnapshotManager::CreateUpdateSnapshots(const DeltaArchiveManifest& manifest) { auto lock = LockExclusive(); if (!lock) return Return::Error(); auto update_state = ReadUpdateState(lock.get()); if (update_state != UpdateState::Initiated) { LOG(ERROR) << "Cannot create update snapshots in state " << update_state; return Return::Error(); } // TODO(b/134949511): remove this check. Right now, with overlayfs mounted, the scratch // partition takes up a big chunk of space in super, causing COW images to be created on // retrofit Virtual A/B devices. if (device_->IsOverlayfsSetup()) { LOG(ERROR) << "Cannot create update snapshots with overlayfs setup. Run adb enable-verity" << ", reboot, then try again."; return Return::Error(); } const auto& opener = device_->GetPartitionOpener(); auto current_suffix = device_->GetSlotSuffix(); uint32_t current_slot = SlotNumberForSlotSuffix(current_suffix); auto target_suffix = device_->GetOtherSlotSuffix(); uint32_t target_slot = SlotNumberForSlotSuffix(target_suffix); auto current_super = device_->GetSuperDevice(current_slot); auto current_metadata = MetadataBuilder::New(opener, current_super, current_slot); if (current_metadata == nullptr) { LOG(ERROR) << "Cannot create metadata builder."; return Return::Error(); } auto target_metadata = MetadataBuilder::NewForUpdate(opener, current_super, current_slot, target_slot); if (target_metadata == nullptr) { LOG(ERROR) << "Cannot create target metadata builder."; return Return::Error(); } // Delete partitions with target suffix in |current_metadata|. Otherwise, // partition_cow_creator recognizes these left-over partitions as used space. for (const auto& group_name : current_metadata->ListGroups()) { if (android::base::EndsWith(group_name, target_suffix)) { current_metadata->RemoveGroupAndPartitions(group_name); } } SnapshotMetadataUpdater metadata_updater(target_metadata.get(), target_slot, manifest); if (!metadata_updater.Update()) { LOG(ERROR) << "Cannot calculate new metadata."; return Return::Error(); } // Delete previous COW partitions in current_metadata so that PartitionCowCreator marks those as // free regions. UnmapAndDeleteCowPartition(current_metadata.get()); // Check that all these metadata is not retrofit dynamic partitions. Snapshots on // devices with retrofit dynamic partitions does not make sense. // This ensures that current_metadata->GetFreeRegions() uses the same device // indices as target_metadata (i.e. 0 -> "super"). // This is also assumed in MapCowDevices() call below. CHECK(current_metadata->GetBlockDevicePartitionName(0) == LP_METADATA_DEFAULT_PARTITION_NAME && target_metadata->GetBlockDevicePartitionName(0) == LP_METADATA_DEFAULT_PARTITION_NAME); std::map<std::string, SnapshotStatus> all_snapshot_status; // In case of error, automatically delete devices that are created along the way. // Note that "lock" is destroyed after "created_devices", so it is safe to use |lock| for // these devices. AutoDeviceList created_devices; const auto& dap_metadata = manifest.dynamic_partition_metadata(); CowOptions options; CowWriter writer(options); bool cow_format_support = true; if (dap_metadata.cow_version() < writer.GetCowVersion()) { cow_format_support = false; } LOG(INFO) << " dap_metadata.cow_version(): " << dap_metadata.cow_version() << " writer.GetCowVersion(): " << writer.GetCowVersion(); bool use_compression = IsCompressionEnabled() && dap_metadata.vabc_enabled() && !device_->IsRecovery() && cow_format_support; std::string compression_algorithm; if (use_compression) { compression_algorithm = dap_metadata.vabc_compression_param(); if (compression_algorithm.empty()) { // Older OTAs don't set an explicit compression type, so default to gz. compression_algorithm = "gz"; } } else { compression_algorithm = "none"; } PartitionCowCreator cow_creator{ .target_metadata = target_metadata.get(), .target_suffix = target_suffix, .target_partition = nullptr, .current_metadata = current_metadata.get(), .current_suffix = current_suffix, .update = nullptr, .extra_extents = {}, .compression_enabled = use_compression, .compression_algorithm = compression_algorithm, }; auto ret = CreateUpdateSnapshotsInternal(lock.get(), manifest, &cow_creator, &created_devices, &all_snapshot_status); if (!ret.is_ok()) return ret; auto exported_target_metadata = target_metadata->Export(); if (exported_target_metadata == nullptr) { LOG(ERROR) << "Cannot export target metadata"; return Return::Error(); } ret = InitializeUpdateSnapshots(lock.get(), target_metadata.get(), exported_target_metadata.get(), target_suffix, all_snapshot_status); if (!ret.is_ok()) return ret; if (!UpdatePartitionTable(opener, device_->GetSuperDevice(target_slot), *exported_target_metadata, target_slot)) { LOG(ERROR) << "Cannot write target metadata"; return Return::Error(); } // If compression is enabled, we need to retain a copy of the old metadata // so we can access original blocks in case they are moved around. We do // not want to rely on the old super metadata slot because we don't // guarantee its validity after the slot switch is successful. if (cow_creator.compression_enabled) { auto metadata = current_metadata->Export(); if (!metadata) { LOG(ERROR) << "Could not export current metadata"; return Return::Error(); } auto path = GetOldPartitionMetadataPath(); if (!android::fs_mgr::WriteToImageFile(path, *metadata.get())) { LOG(ERROR) << "Cannot write old metadata to " << path; return Return::Error(); } } SnapshotUpdateStatus status = ReadSnapshotUpdateStatus(lock.get()); status.set_state(update_state); status.set_compression_enabled(cow_creator.compression_enabled); if (cow_creator.compression_enabled) { if (!device()->IsTestDevice()) { bool userSnapshotsEnabled = IsUserspaceSnapshotsEnabled(); const std::string UNKNOWN = "unknown"; const std::string vendor_release = android::base::GetProperty( "ro.vendor.build.version.release_or_codename", UNKNOWN); // No user-space snapshots if vendor partition is on Android 12 if (vendor_release.find("12") != std::string::npos) { LOG(INFO) << "Userspace snapshots disabled as vendor partition is on Android: " << vendor_release; userSnapshotsEnabled = false; } // Userspace snapshots is enabled only if compression is enabled status.set_userspace_snapshots(userSnapshotsEnabled); if (userSnapshotsEnabled) { is_snapshot_userspace_ = true; status.set_io_uring_enabled(IsIouringEnabled()); LOG(INFO) << "Userspace snapshots enabled"; } else { is_snapshot_userspace_ = false; LOG(INFO) << "Userspace snapshots disabled"; } // Terminate stale daemon if any std::unique_ptr<SnapuserdClient> snapuserd_client = SnapuserdClient::Connect(kSnapuserdSocket, 5s); if (snapuserd_client) { snapuserd_client->DetachSnapuserd(); snapuserd_client->CloseConnection(); snapuserd_client = nullptr; } // Clear the cached client if any if (snapuserd_client_) { snapuserd_client_->CloseConnection(); snapuserd_client_ = nullptr; } } else { bool userSnapshotsEnabled = true; const std::string UNKNOWN = "unknown"; const std::string vendor_release = android::base::GetProperty( "ro.vendor.build.version.release_or_codename", UNKNOWN); // No user-space snapshots if vendor partition is on Android 12 if (vendor_release.find("12") != std::string::npos) { LOG(INFO) << "Userspace snapshots disabled as vendor partition is on Android: " << vendor_release; userSnapshotsEnabled = false; } userSnapshotsEnabled = (userSnapshotsEnabled && !IsDmSnapshotTestingEnabled()); status.set_userspace_snapshots(userSnapshotsEnabled); if (!userSnapshotsEnabled) { is_snapshot_userspace_ = false; LOG(INFO) << "User-space snapshots disabled for testing"; } else { is_snapshot_userspace_ = true; LOG(INFO) << "User-space snapshots enabled for testing"; } } } if (!WriteSnapshotUpdateStatus(lock.get(), status)) { LOG(ERROR) << "Unable to write new update state"; return Return::Error(); } created_devices.Release(); LOG(INFO) << "Successfully created all snapshots for target slot " << target_suffix; return Return::Ok(); }解析王法

最新推荐

recommend-type

MATLAB常用函数说明(1).doc

MATLAB常用函数说明(1).doc
recommend-type

电子商务下的物流仓储管理教材(1).pptx

电子商务下的物流仓储管理教材(1).pptx
recommend-type

精选Java案例开发技巧集锦

从提供的文件信息中,我们可以看出,这是一份关于Java案例开发的集合。虽然没有具体的文件名称列表内容,但根据标题和描述,我们可以推断出这是一份包含了多个Java编程案例的开发集锦。下面我将详细说明与Java案例开发相关的一些知识点。 首先,Java案例开发涉及的知识点相当广泛,它不仅包括了Java语言的基础知识,还包括了面向对象编程思想、数据结构、算法、软件工程原理、设计模式以及特定的开发工具和环境等。 ### Java基础知识 - **Java语言特性**:Java是一种面向对象、解释执行、健壮性、安全性、平台无关性的高级编程语言。 - **数据类型**:Java中的数据类型包括基本数据类型(int、short、long、byte、float、double、boolean、char)和引用数据类型(类、接口、数组)。 - **控制结构**:包括if、else、switch、for、while、do-while等条件和循环控制结构。 - **数组和字符串**:Java数组的定义、初始化和多维数组的使用;字符串的创建、处理和String类的常用方法。 - **异常处理**:try、catch、finally以及throw和throws的使用,用以处理程序中的异常情况。 - **类和对象**:类的定义、对象的创建和使用,以及对象之间的交互。 - **继承和多态**:通过extends关键字实现类的继承,以及通过抽象类和接口实现多态。 ### 面向对象编程 - **封装、继承、多态**:是面向对象编程(OOP)的三大特征,也是Java编程中实现代码复用和模块化的主要手段。 - **抽象类和接口**:抽象类和接口的定义和使用,以及它们在实现多态中的不同应用场景。 ### Java高级特性 - **集合框架**:List、Set、Map等集合类的使用,以及迭代器和比较器的使用。 - **泛型编程**:泛型类、接口和方法的定义和使用,以及类型擦除和通配符的应用。 - **多线程和并发**:创建和管理线程的方法,synchronized和volatile关键字的使用,以及并发包中的类如Executor和ConcurrentMap的应用。 - **I/O流**:文件I/O、字节流、字符流、缓冲流、对象序列化的使用和原理。 - **网络编程**:基于Socket编程,使用java.net包下的类进行网络通信。 - **Java内存模型**:理解堆、栈、方法区等内存区域的作用以及垃圾回收机制。 ### Java开发工具和环境 - **集成开发环境(IDE)**:如Eclipse、IntelliJ IDEA等,它们提供了代码编辑、编译、调试等功能。 - **构建工具**:如Maven和Gradle,它们用于项目构建、依赖管理以及自动化构建过程。 - **版本控制工具**:如Git和SVN,用于代码的版本控制和团队协作。 ### 设计模式和软件工程原理 - **设计模式**:如单例、工厂、策略、观察者、装饰者等设计模式,在Java开发中如何应用这些模式来提高代码的可维护性和可扩展性。 - **软件工程原理**:包括软件开发流程、项目管理、代码审查、单元测试等。 ### 实际案例开发 - **项目结构和构建**:了解如何组织Java项目文件,合理使用包和模块化结构。 - **需求分析和设计**:明确项目需求,进行系统设计,如数据库设计、系统架构设计等。 - **代码编写和实现**:根据设计编写符合要求的代码,实现系统的各个模块功能。 - **测试和维护**:进行单元测试、集成测试,确保代码质量,对项目进行维护和升级。 ### 其他相关知识点 - **Java虚拟机(JVM)**:了解JVM的基本工作原理,包括类加载机制、内存管理、垃圾回收算法等。 - **常用Java框架**:比如Spring、Hibernate、MyBatis等,在实际开发中常常与Java基础结合使用,提高开发效率。 以上知识点可以作为学习Java案例开发的基础框架。在实际的开发实践中,开发者需要结合具体的项目需求,对这些知识点进行灵活运用。通过反复的案例实践,可以加深对Java编程的理解,并逐步提升开发技能。这份集锦可能包含的案例可能涉及上述知识点的具体应用,能够帮助学习者更好地理解理论与实践的结合,从而快速提升个人的Java开发能力。
recommend-type

【VASP报错深度解析】:5大技巧识别并永久解决离子距离太近警告

# 1. VASP软件简介及离子距离太近问题概述 ## 1.1 VASP软件简介 **VASP(Vienna Ab initio Simulation Package)** 是一款广泛应用于计算材料科学的软件,它基于密度泛函理论(DFT)计算固体、表面和分子的电子结构和性质。
recommend-type

npm error A complete log of this run can be found in: D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log

<think>好的,我需要帮助用户找到npm的错误调试日志位置,并解决他们遇到的npm错误。首先,用户已经提供了一个具体的日志路径:'D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log',但看起来这个路径可能有问题,因为日期是2025年,这可能是一个示例或输入错误。我需要确认正确的日志路径生成方式。 根据npm的默认配置,日志文件通常位于npm的缓存目录下的_logs文件夹中。默认情况下,Windows系统中npm的缓存路径是%AppData%\npm-cache,而日志文件会以当前日期和
recommend-type

深入理解内存技术文档详解

由于文件内容无法查看,仅能根据文件的标题、描述、标签以及文件名称列表来构建相关知识点。以下是对“内存详解”这一主题的详细知识点梳理。 内存,作为计算机硬件的重要组成部分,负责临时存放CPU处理的数据和指令。理解内存的工作原理、类型、性能参数等对优化计算机系统性能至关重要。本知识点将从以下几个方面来详细介绍内存: 1. 内存基础概念 内存(Random Access Memory,RAM)是易失性存储器,这意味着一旦断电,存储在其中的数据将会丢失。内存允许计算机临时存储正在执行的程序和数据,以便CPU可以快速访问这些信息。 2. 内存类型 - 动态随机存取存储器(DRAM):目前最常见的RAM类型,用于大多数个人电脑和服务器。 - 静态随机存取存储器(SRAM):速度较快,通常用作CPU缓存。 - 同步动态随机存取存储器(SDRAM):在时钟信号的同步下工作的DRAM。 - 双倍数据速率同步动态随机存取存储器(DDR SDRAM):在时钟周期的上升沿和下降沿传输数据,大幅提升了内存的传输速率。 3. 内存组成结构 - 存储单元:由存储位构成的最小数据存储单位。 - 地址总线:用于选择内存中的存储单元。 - 数据总线:用于传输数据。 - 控制总线:用于传输控制信号。 4. 内存性能参数 - 存储容量:通常用MB(兆字节)或GB(吉字节)表示,指的是内存能够存储多少数据。 - 内存时序:指的是内存从接受到请求到开始读取数据之间的时间间隔。 - 内存频率:通常以MHz或GHz为单位,是内存传输数据的速度。 - 内存带宽:数据传输速率,通常以字节/秒为单位,直接关联到内存频率和数据位宽。 5. 内存工作原理 内存基于电容器和晶体管的工作原理,电容器存储电荷来表示1或0的状态,晶体管则用于读取或写入数据。为了保持数据不丢失,动态内存需要定期刷新。 6. 内存插槽与安装 - 计算机主板上有专用的内存插槽,常见的有DDR2、DDR3、DDR4和DDR5等不同类型。 - 安装内存时需确保兼容性,并按照正确的方向插入内存条,避免物理损坏。 7. 内存测试与优化 - 测试:可以使用如MemTest86等工具测试内存的稳定性和故障。 - 优化:通过超频来提高内存频率,但必须确保稳定性,否则会导致数据损坏或系统崩溃。 8. 内存兼容性问题 不同内存条可能由于制造商、工作频率、时序、电压等参数的不匹配而产生兼容性问题。在升级或更换内存时,必须检查其与主板和现有系统的兼容性。 9. 内存条的常见品牌与型号 诸如金士顿(Kingston)、海盗船(Corsair)、三星(Samsung)和芝奇(G.Skill)等知名品牌提供多种型号的内存条,针对不同需求的用户。 由于“内存详解.doc”是文件标题指定的文件内容,我们可以预期在该文档中将详细涵盖以上知识点,并有可能包含更多的实践案例、故障排查方法以及内存技术的最新发展等高级内容。在实际工作中,理解并应用这些内存相关的知识点对于提高计算机性能、解决计算机故障有着不可估量的价值。
recommend-type

【机械特性分析进阶秘籍】:频域与时域对比的全面研究

# 1. 机械特性分析的频域与时域概述 ## 1.1 频域与时域分析的基本概念 机械特性分析是通
recommend-type

dslicsrv安装报错Too many errors

<think>好的,用户遇到了安装dslicsrv时出现“Too many errors”的问题,需要帮助解决。首先,我需要明确dslicsrv是什么。可能是指某个特定的软件服务,但根据常见软件库和搜索引擎的信息,没有直接对应的结果。可能是拼写错误,或者是某个特定领域的专有软件?比如,可能与Dell的某个服务有关?例如,Dell System License Manager Service(dsLicSvc)可能更接近。假设用户可能拼写错误,将dslicsrv理解为dsLicSvc,即Dell的系统许可证管理服务。 接下来,用户遇到的错误是安装时出现“Too many errors”,这通常
recommend-type

深入解析Pro Ajax与Java技术的综合应用框架

根据提供的文件信息,我们可以推断出一系列与标题《Pro Ajax and Java》相关的IT知识点。这本书是由Apress出版,关注的是Ajax和Java技术。下面我将详细介绍这些知识点。 ### Ajax技术 Ajax(Asynchronous JavaScript and XML)是一种无需重新加载整个页面即可更新网页的技术。它通过在后台与服务器进行少量数据交换,实现了异步更新网页内容的目的。 1. **异步通信**:Ajax的核心是通过XMLHttpRequest对象或者现代的Fetch API等技术实现浏览器与服务器的异步通信。 2. **DOM操作**:利用JavaScript操作文档对象模型(DOM),能够实现页面内容的动态更新,而无需重新加载整个页面。 3. **数据交换格式**:Ajax通信中常使用的数据格式包括XML和JSON,但近年来JSON因其轻量级和易用性更受青睐。 4. **跨浏览器兼容性**:由于历史原因,实现Ajax的JavaScript代码需要考虑不同浏览器的兼容性问题。 5. **框架和库**:有许多流行的JavaScript库和框架支持Ajax开发,如jQuery、Dojo、ExtJS等,这些工具简化了Ajax的实现和数据操作。 ### Java技术 Java是一种广泛使用的面向对象编程语言,其在企业级应用、移动应用开发(Android)、Web应用开发等方面有着广泛应用。 1. **Java虚拟机(JVM)**:Java程序运行在Java虚拟机上,这使得Java具有良好的跨平台性。 2. **Java标准版(Java SE)**:包含了Java的核心类库和API,是Java应用开发的基础。 3. **Java企业版(Java EE)**:为企业级应用提供了额外的API和服务,如Java Servlet、JavaServer Pages(JSP)、Enterprise JavaBeans(EJB)等。 4. **面向对象编程(OOP)**:Java是一种纯粹的面向对象语言,它的语法和机制支持封装、继承和多态性。 5. **社区和生态系统**:Java拥有庞大的开发者社区和丰富的第三方库和框架,如Spring、Hibernate等,这些资源极大丰富了Java的应用范围。 ### 结合Ajax和Java 在结合使用Ajax和Java进行开发时,我们通常会采用MVC(模型-视图-控制器)架构模式,来构建可维护和可扩展的应用程序。 1. **服务器端技术**:Java经常被用来构建服务器端应用逻辑。例如,使用Servlet来处理客户端的请求,再将数据以Ajax请求的响应形式返回给客户端。 2. **客户端技术**:客户端的JavaScript(或使用框架库如jQuery)用于发起Ajax请求,并更新页面内容。 3. **数据格式**:Java后端通常会使用JSON或XML格式与Ajax进行数据交换。 4. **安全性**:Ajax请求可能涉及敏感数据,因此需要考虑如跨站请求伪造(CSRF)等安全问题。 5. **性能优化**:合理使用Ajax可以提升用户体验,但同时也需要注意对服务器和网络的负载,以及客户端脚本的执行性能。 ### 出版信息及文件信息 《Pro Ajax and Java》由Apress出版社出版,通常这种出版物会包含丰富的实例代码、开发指导、最佳实践以及相关的技术讨论。它旨在帮助开发者深化对Ajax和Java技术的理解和应用能力。 文件名“Apress.Pro.Ajax.and.Java.Frameworks.Jul.2006.HAPPY.NEW.YEAR.pdf”暗示了这份文档可能是一本专业的技术书籍。从文件名可以看出,该书还可能包含了框架使用方面的内容,并且是2006年出版的。标题中的“HAPPY.NEW.YEAR”可能仅仅是为了庆祝新年而加入的非标准部分。 总结而言,了解Ajax和Java的结合使用,不仅需要掌握两种技术的基本原理和使用方法,还要熟悉如何将它们整合到实际项目中,解决可能出现的技术挑战,从而构建功能强大且用户友好的Web应用。
recommend-type

【频域分析深度解读】:揭秘机械系统分析中的实用应用

# 1. 频域分析基础理论 频域分析是信号处理领域的一个重要分支,其核心在于研究信号在频率维度上的特性。与时域分析不同,频域分析关注的是信号频率成分的组成,这允许我们以一种直观的方式识别和处理信号中的特定频率特征。通过对信号进行傅里叶变换,原始的时域信号可以被转换为频域信号,这样就可以清晰地显示出各频率成分的幅度和相位信息。这种分析手段对于信号去噪、特征提取、压缩编码等应用场景至关重