import copy import ray from ray import tune from egpo_utils.cql.cql import CQLTrainer from egpo_utils.common import evaluation_config, ILCallBack, CQLInputReader from egpo_utils.expert_guided_env import ExpertGuidedEnv from egpo_utils.train import get_train_parser from egpo_utils.train.train import train import os data_set_file_path = os.path.join(os.path.dirname(__file__), 'expert_traj_500.json') def get_data_sampler_func(ioctx): return CQLInputReader(data_set_file_path) eval_config = copy.deepcopy(evaluation_config) eval_config["input"] = "sampler" # important to use pgdrive online evaluation eval_config["env_config"]["random_spawn"] = True if __name__ == '__main__': print(data_set_file_path) try: file = open(data_set_file_path) except FileNotFoundError: raise FileExistsError("Please collect dataset by using collect_dataset.py at first") assert ray.__version__ == "1.3.0" or ray.__version__ == "1.2.0", "ray 1.3.0 is required" args = get_train_parser().parse_args() exp_name = "CQL" or args.exp_name stop = {"timesteps_total": 100_0000_00000} config = dict( # ===== Evaluation ===== env=ExpertGuidedEnv, env_config=evaluation_config["env_config"], input_evaluation=["simulation"], evaluation_interval=1, evaluation_num_episodes=30, evaluation_config=eval_config, evaluation_num_workers=2, metrics_smoothing_episodes=20, # ===== Training ===== # cql para lagrangian=False, # Automatic temperature (alpha prime) control temperature=5, # alpha prime in paper, 5 is best in pgdrive min_q_weight=0.2, # best bc_iters=20_0000, # bc_iters > 20_0000 has no obvious improvement # offline setting no_done_at_end=True, input=get_data_sampler_func, optimization=dict(actor_learning_rate=1e-4, critic_learning_rate=1e-4, entropy_learning_rate=1e-4), rollout_fragment_length=200, prioritized_replay=False, horizon=2000, target_network_update_freq=1, timesteps_per_iteration=1000, learning_starts=10000, clip_actions=False, normalize_actions=True, num_cpus_for_driver=0.5, # No extra worker used for learning. But this config impact the evaluation workers. num_cpus_per_worker=0.1, # num_gpus_per_worker=0.1 if args.num_gpus != 0 else 0, num_gpus=0.2 if args.num_gpus != 0 else 0, framework="torch" ) train( CQLTrainer, exp_name=exp_name, keep_checkpoints_num=5, stop=stop, config=config, num_gpus=args.num_gpus, # num_seeds=2, num_seeds=5, custom_callback=ILCallBack, # test_mode=True, # local_mode=True ) 运行结果怎么可视化

时间: 2025-04-05 09:14:29 浏览: 39
<think>好的,我现在需要帮助用户解决关于如何可视化他们运行的强化学习代码的结果的问题。首先,我得仔细看看用户提供的代码,了解他们使用的框架和工具。看起来他们用的是Ray的Tune库和CQLTrainer,可能是在训练一个保守Q学习(CQL)的模型,环境是ExpertGuidedEnv,可能和自动驾驶模拟相关,比如PGDrive。 用户的问题是运行结果如何可视化。我需要回忆一下Ray Tune通常如何处理结果输出和可视化。通常,Ray Tune在训练过程中会输出一些日志,包括指标如episode_reward_mean等。这些日志可以存储在不同的地方,比如TensorBoard、CSV文件,或者通过Ray自带的日志系统。 接下来,我需要考虑用户可能的可视化需求。通常,强化学习的训练过程可视化包括奖励曲线、Q值变化、策略损失等。用户可能想看到训练过程中这些指标的变化趋势,或者评估阶段的性能表现。此外,他们可能还想在环境中观察训练后的策略的实际表现,比如生成视频或实时渲染。 首先,我应该检查代码中是否有配置日志记录的部分。在用户提供的配置字典里,我注意到有evaluation相关的设置,比如evaluation_interval和evaluation_num_episodes。这说明在训练过程中会定期进行评估,并生成评估指标。这些评估结果应该会被记录下来,但用户可能需要知道如何访问这些数据。 然后,用户可能已经使用了TensorBoard,因为Ray Tune默认集成TensorBoard。需要确认代码中是否指定了log目录,并指导用户如何使用TensorBoard查看。例如,训练脚本可能会将结果保存在某个目录下,用户可以通过运行tensorboard --logdir=~/ray_results来查看。 另外,用户代码中的train函数可能来自egpo_utils库,这个库可能有一些自定义的回调或日志处理。比如,代码中使用了ILCallBack作为custom_callback,这个回调可能处理了一些日志记录或保存检查点的逻辑。需要查看ILCallBack的文档或源代码,看它是否生成了额外的日志文件或可视化数据。 此外,用户的数据集路径是expert_traj_500.json,可能涉及到专家轨迹的加载。在训练过程中,可能比较了学习策略与专家策略的表现,这部分的可视化可能需要对比两者的奖励或其他指标。 考虑到用户可能不太熟悉Ray Tune的可视化工具,我应该分步骤说明几种常见的可视化方法: 1. 使用TensorBoard:Ray Tune默认会将结果输出到TensorBoard,用户只需要运行TensorBoard并指向日志目录即可。需要指出日志的可能路径,如~/ray_results/exp_name。 2. 分析CSV日志:Ray Tune也会生成progress.csv和result.json等文件,用户可以用Pandas读取这些文件,并用Matplotlib或Seaborn绘制曲线图。例如,读取episode_reward_mean随时间步的变化。 3. 检查评估结果:代码中配置了评估间隔和评估次数,评估结果可能包含在日志中,用户需要提取这些数据并可视化。 4. 环境渲染:如果环境支持渲染,可能在评估时生成视频。需要检查ExpertGuidedEnv是否有渲染功能,并在配置中启用,比如设置record_env参数或使用环境特定的渲染方法。 另外,用户可能需要自定义可视化,比如比较不同种子的训练结果,或者查看特定超参数下的表现。这时候可能需要更详细的数据处理和绘图步骤。 还需要注意用户代码中的一些配置项,比如metrics_smoothing_episodes=20,这可能会影响指标的平滑处理,在可视化时需要注意是否使用平滑后的数据。 最后,用户可能在运行代码时遇到问题,比如没有正确安装TensorBoard,或者日志目录不正确,需要提醒用户检查这些方面。另外,如果用户希望实时监控训练进度,Ray Tune也提供了CLI工具或状态输出,可以查看训练过程中的实时指标。 总结一下,我需要分步骤说明如何通过TensorBoard、CSV文件分析、环境渲染等方法进行可视化,并给出具体的代码示例和命令行指令,确保用户能够逐步操作。同时,需要指出可能需要注意的配置项和常见问题,帮助用户顺利实现结果的可视化。</think>以下是针对该强化学习训练结果可视化的分步说明: ================== 强化学习训练可视化步骤 ================== 1. TensorBoard 可视化(推荐方法) ```bash # 安装依赖 pip install tensorboard # 启动TensorBoard(路径根据实际训练输出调整) tensorboard --logdir=~/ray_results/CQL ``` - 访问 localhost:6006 查看以下关键指标: * `episode_reward_mean` (平均回合奖励) * `evaluation/custom_metrics` (评估指标) * `policy_learning_rate` (策略网络学习率变化) * `td_error` (时序差分误差) 2. CSV 数据分析可视化(适合深度分析) ```python import pandas as pd import matplotlib.pyplot as plt # 读取训练日志 df = pd.read_csv("~/ray_results/CQL/experiment_state-2023-XX-XX.csv") # 绘制奖励曲线 plt.figure(figsize=(10,6)) plt.plot(df['timesteps_total'], df['episode_reward_mean'], label='训练奖励') plt.plot(df['timesteps_total'], df['evaluation/episode_reward_mean'], label='评估奖励') plt.xlabel('环境步数') plt.ylabel('平均奖励') plt.legend() plt.show() ``` 3. 策略行为可视化(需要环境支持) 在配置中添加渲染参数: ```python eval_config["env_config"]["render_mode"] = "rgb_array" # 启用图像渲染 eval_config["record_env"] = True # 记录视频 ``` 4. 关键指标监控清单: | 指标名称 | 健康范围 | 监控频率 | |---------------------------|----------------|------------| | evaluation/episode_reward | 持续上升趋势 | 每1次评估 | | td_error | < 10.0 | 实时监控 | | policy_entropy | 0.5-2.0 | 每5k步 | 5. 常见问题排查: - 问题:TensorBoard无数据显示 ▶ 检查日志路径是否正确 ▶ 确认训练至少完成1次评估周期 - 问题:评估奖励不增长 ▶ 检查`temperature`参数设置(当前值5.0) ▶ 验证`min_q_weight=0.2`是否合适 6. 高级分析建议: ```python # 多实验对比 from ray.tune.analysis import ExperimentAnalysis analysis = ExperimentAnalysis("~/ray_results/*") analysis.dataframe.plot(x="timesteps_total", y="episode_reward_mean") ``` 注:该代码中使用的CQL算法会生成两个关键曲线: - 离线数据集Q值分布 - 学习策略Q值估计 建议使用`seaborn`库的kdeplot进行概率密度可视化对比 建议定期检查`~/ray_results/CQL`目录下的checkpoint文件,可使用`CQLTrainer.restore()`加载模型进行策略可视化验证。
阅读全文

相关推荐

import copy import ray from ray import tune from egpo_utils.cql.cql import CQLTrainer from egpo_utils.common import evaluation_config, ILCallBack, CQLInputReader from egpo_utils.expert_guided_env import ExpertGuidedEnv from egpo_utils.train import get_train_parser from egpo_utils.train.train import train import os data_set_file_path = os.path.join(os.path.dirname(__file__), 'expert_traj_500.json') def get_data_sampler_func(ioctx): return CQLInputReader(data_set_file_path) eval_config = copy.deepcopy(evaluation_config) eval_config["input"] = "sampler" # important to use pgdrive online evaluation eval_config["env_config"]["random_spawn"] = True if __name__ == '__main__': print(data_set_file_path) try: file = open(data_set_file_path) except FileNotFoundError: raise FileExistsError("Please collect dataset by using collect_dataset.py at first") assert ray.__version__ == "1.3.0" or ray.__version__ == "1.2.0", "ray 1.3.0 is required" args = get_train_parser().parse_args() exp_name = "CQL" or args.exp_name stop = {"timesteps_total": 100_0000_00000} config = dict( # ===== Evaluation ===== env=ExpertGuidedEnv, env_config=evaluation_config["env_config"], input_evaluation=["simulation"], evaluation_interval=1, evaluation_num_episodes=30, evaluation_config=eval_config, evaluation_num_workers=2, metrics_smoothing_episodes=20, # ===== Training ===== # cql para lagrangian=False, # Automatic temperature (alpha prime) control temperature=5, # alpha prime in paper, 5 is best in pgdrive min_q_weight=0.2, # best bc_iters=20_0000, # bc_iters > 20_0000 has no obvious improvement # offline setting no_done_at_end=True, input=get_data_sampler_func, optimization=dict(actor_learning_rate=1e-4, critic_learning_rate=1e-4, entropy_learning_rate=1e-4), rollout_fragment_length=200, prioritized_replay=False, horizon=2000, target_network_update_freq=1, timesteps_per_iteration=1000, learning_starts=10000, clip_actions=False, normalize_actions=True, num_cpus_for_driver=0.5, # No extra worker used for learning. But this config impact the evaluation workers. num_cpus_per_worker=0.1, # num_gpus_per_worker=0.1 if args.num_gpus != 0 else 0, num_gpus=0.2 if args.num_gpus != 0 else 0, framework="torch" ) train( CQLTrainer, exp_name=exp_name, keep_checkpoints_num=5, stop=stop, config=config, num_gpus=args.num_gpus, # num_seeds=2, num_seeds=5, custom_callback=ILCallBack, # test_mode=True, # local_mode=True ) 怎么查看结果

2025-04-02 10:41:12,742 ERROR trial_runner.py:616 -- Trial CQL_ExpertGuidedEnv_5836b_00000: Error processing event. Traceback (most recent call last): File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trial_runner.py", line 586, in _process_trial results = self.trial_executor.fetch_result(trial) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/ray_trial_executor.py", line 609, in fetch_result result = ray.get(trial_future[0], timeout=DEFAULT_GET_TIMEOUT) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/_private/client_mode_hook.py", line 47, in wrapper return func(*args, **kwargs) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/worker.py", line 1456, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(TypeError): ray::CQL.train_buffered() (pid=15131, ip=10.200.84.15) File "python/ray/_raylet.pyx", line 480, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trainable.py", line 167, in train_buffered result = self.train() File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 529, in train raise e File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 515, in train result = Trainable.train(self) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trainable.py", line 226, in train result = self.step() File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py", line 157, in step evaluation_metrics = self._evaluate() File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 749, in _evaluate self._sync_weights_to_workers(worker_set=self.evaluation_workers) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 802, in _sync_weights_to_workers worker_set.foreach_worker(lambda w: w.restore(ray.get(weights))) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/evaluation/worker_set.py", line 164, in foreach_worker local_result = [func(self.local_worker())] File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 802, in <lambda> worker_set.foreach_worker(lambda w: w.restore(ray.get(weights))) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/evaluation/rollout_worker.py", line 1014, in restore self.policy_map[pid].set_state(state) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/policy/torch_policy.py", line 515, in set_state s, device=self.device) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/utils/torch_ops.py", line 111, in convert_to_torch_tensor return tree.map_structure(mapping, x) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/tree/__init__.py", line 435, in map_structure [func(*args) for args in zip(*map(flatten, structures))]) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/tree/__init__.py", line 435, in [func(*args) for args in zip(*map(flatten, structures))]) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/utils/torch_ops.py", line 105, in mapping tensor = torch.from_numpy(np.asarray(item)) TypeError: can't convert np.ndarray of type numpy.object_. The only supported types are: float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint8, and bool.

2025-04-02 09:53:44,008 ERROR trial_runner.py:616 – Trial CQL_ExpertGuidedEnv_5492d_00001: Error processing event. Traceback (most recent call last): File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trial_runner.py”, line 586, in _process_trial results = self.trial_executor.fetch_result(trial) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/ray_trial_executor.py”, line 609, in fetch_result result = ray.get(trial_future[0], timeout=DEFAULT_GET_TIMEOUT) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/_private/client_mode_hook.py”, line 47, in wrapper return func(*args, **kwargs) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/worker.py”, line 1456, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(TypeError): ray::CQL.train_buffered() (pid=5516, ip=10.200.84.15) File “python/ray/_raylet.pyx”, line 480, in ray._raylet.execute_task File “python/ray/_raylet.pyx”, line 432, in ray._raylet.execute_task.function_executor File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trainable.py”, line 167, in train_buffered result = self.train() File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py”, line 529, in train raise e File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py”, line 515, in train result = Trainable.train(self) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trainable.py”, line 226, in train result = self.step() File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py”, line 157, in step evaluation_metrics = self._evaluate() File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py”, line 749, in _evaluate self._sync_weights_to_workers(worker_set=self.evaluation_workers) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py”, line 802, in sync_weights_to_workers worker_set.foreach_worker(lambda w: w.restore(ray.get(weights))) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/evaluation/worker_set.py”, line 164, in foreach_worker local_result = [func(self.local_worker())] File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py”, line 802, in <lambda> worker_set.foreach_worker(lambda w: w.restore(ray.get(weights))) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/evaluation/rollout_worker.py”, line 1014, in restore self.policy_map[pid].set_state(state) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/policy/torch_policy.py”, line 515, in set_state s, device=self.device) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/utils/torch_ops.py”, line 111, in convert_to_torch_tensor return tree.map_structure(mapping, x) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/tree/init.py”, line 435, in map_structure [func(*args) for args in zip(*map(flatten, structures))]) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/tree/init.py”, line 435, in [func(*args) for args in zip(*map(flatten, structures))]) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/utils/torch_ops.py”, line 105, in mapping tensor = torch.from_numpy(np.asarray(item)) TypeError: can’t convert np.ndarray of type numpy.object. The only supported types are: float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint8, and bool.

from bertopic import BERTopic from sentence_transformers import SentenceTransformer from umap import UMAP from hdbscan import HDBSCAN from bertopic.vectorizers import ClassTfidfTransformer import plotly.io as pio import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from bertopic.representation import KeyBERTInspired data = pd.read_excel("数据.xlsx") # Step 1 - Embed documents embedding_model = SentenceTransformer('all-MiniLM-L12-v2') # Step 2 - Reduce dimensionality降维 # umap_model = UMAP(n_neighbors=15, n_components=5,min_dist=0.0, metric='cosine') umap_model = UMAP(n_neighbors=15, n_components=5,min_dist=0.0, metric='cosine', random_state=28) # Step 3 - Cluster reduced embeddings对降维向量聚类 hdbscan_model = HDBSCAN(min_cluster_size=15, metric='euclidean', prediction_data=True) # Step 4 - Create topic representation创造主题候选词 vectorizer_model = CountVectorizer(stop_words=None) # vectorizer_model = CountVectorizer(stop_words=["人工智能","ai","AI"]) # Step 5 - Create topic representation ctfidf_model = ClassTfidfTransformer() # Step 6 - (Optional) Fine-tune topic representations with a bertopic.representation model representation_model = KeyBERTInspired() # 训练bertopic主题模型 topic_model = BERTopic( embedding_model=embedding_model, # Step 1 - Extract embeddings umap_model=umap_model, # Step 2 - Reduce dimensionality hdbscan_model=hdbscan_model, # Step 3 - Cluster reduced embeddings vectorizer_model=vectorizer_model, # Step 4 - Tokenize topics ctfidf_model=ctfidf_model, # Step 5 - Extract topic words representation_model=representation_model, # Step 6 - (Optional) Fine-tune topic representations ) # 使用fit_transform对输入文本向量化,然后使用topic_model模型提取主题topics,并且计算主题文档概率probabilities filtered_text = data["内容"].astype(str).tolist() topics, probabilities = topic_model.fit_transform(filtered_text) document_info = topic_model.get_document_info(filtered_text) print(document_info) # 查看每个主题数量 topic_freq = topic_model.get_topic_freq() print(topic_freq) # 查看某个主题-词的概率分布 topic = topic_model.get_topic(0) print(topic) # 主题-词概率分布 pic_bar = topic_model.visualize_barchart() pio.show(pic_bar) # 文档主题聚类 embeddings = embedding_model.encode(filtered_text, show_progress_bar=False) pic_doc = topic_model.visualize_documents(filtered_text, embeddings=embeddings) pio.show(pic_doc) # 聚类分层 pic_hie = topic_model.visualize_hierarchy() pio.show(pic_hie) # 主题相似度热力图 pic_heat = topic_model.visualize_heatmap() pio.show(pic_heat) # 主题模排名图 pic_term_rank = topic_model.visualize_term_rank() pio.show(pic_term_rank) # 隐含主题主题分布图 pic_topics = topic_model.visualize_topics() pio.show(pic_topics) #DTM图 summary=data['内容'].astype(str).tolist() timepoint = data['时间'].tolist() timepoint = pd.Series(timepoint) print(timepoint[:10]) topics_over_time = topic_model.topics_over_time(summary, timepoint, datetime_format='mixed', nr_bins=20, evolution_tuning=True) DTM = topic_model.visualize_topics_over_time(topics_over_time, title='DTM',) pio.show(DTM)解释什么是调整min_cluster_size控制主题粒度

最新推荐

recommend-type

网络经济年度报告.docx

网络经济年度报告.docx
recommend-type

软件和信息服务业投融资典型案例分析.docx

软件和信息服务业投融资典型案例分析.docx
recommend-type

基于云计算大数据的图书馆创新发展模式研究.docx

基于云计算大数据的图书馆创新发展模式研究.docx
recommend-type

中国医疗大数据行业市场现状及发展趋势分析-技术应用环境将更加成熟.docx

中国医疗大数据行业市场现状及发展趋势分析-技术应用环境将更加成熟.docx
recommend-type

掌握Java端口扫描器:从入门到实践

标题中提到的“java端口扫描器”,从字面上理解,这是一个使用Java编程语言编写的网络端口扫描工具。端口扫描是一种网络探测技术,它用于确定哪些网络服务(应用层协议)在运行,并且哪些端口号上是开放的。端口扫描通常用于网络管理、故障排除、安全评估等场景。 描述中提到的“简单易懂”,意味着这款Java端口扫描器可能采用了简单直观的编程逻辑和用户界面设计,让即使是编程初学者也能够快速理解和使用它。 标签“java 端口 扫描器”强调了这项技术的三个关键词:Java编程语言、端口和扫描器。这意味着这项工作不仅涉及网络编程,还涉及到Java语言的特定知识。 至于“压缩包子文件的文件名称列表”,此处提及的“CH07”和“java端口扫描器”可能是相关代码或者文档的名称。在软件开发中,文件名称通常会反映文件内容或功能,比如“CH07”可能指的是某种教程或指南的第七章,而“java端口扫描器”很可能就是我们讨论的端口扫描器项目或代码文件的名称。 现在让我们详细探讨相关的知识点: 1. Java编程语言 Java是一种广泛使用的面向对象的编程语言,设计上具有跨平台兼容性。它运行在Java虚拟机(JVM)上,可以一次编写,到处运行。端口扫描器选择使用Java开发,可能是因为Java的跨平台特性,使得它可以在不同的操作系统上运行而无需修改代码。 2. 网络编程基础 网络编程主要涉及到使用套接字(sockets)进行网络通信。端口扫描器会使用套接字连接到目标服务器的不同端口,以尝试发现哪些端口是开放的。在Java中,这通常涉及到java.net包中的Socket和ServerSocket类的使用。 3. TCP/IP协议和端口 端口扫描器主要关注的是TCP/IP协议栈中的传输控制协议(TCP)和用户数据报协议(UDP)。端口是网络服务监听和接收请求的网络地址的一部分。常见的端口有21(FTP),22(SSH),25(SMTP),80(HTTP),443(HTTPS)等。端口扫描器通过尝试建立连接到这些端口来检查它们是否开放。 4. 端口扫描技术 端口扫描技术有多种,包括但不限于全连接扫描(TCP connect()扫描)、半开放扫描(SYN扫描)、UDP扫描、TCP ACK扫描等。全连接扫描是最基本也是最简单的一种扫描方法,它会尝试与目标端口建立完整的TCP连接。如果连接成功,说明端口是开放的。 5. 安全性考虑 尽管端口扫描在合法的情况下用于网络安全和维护,但未经授权的扫描可能违反法律法规。因此,端口扫描器的开发和使用应当遵守相关的法律法规和道德准则。 6. Java端口扫描器的实现 一个简单的Java端口扫描器可能会按照以下步骤实现: - 使用循环结构遍历要扫描的端口号。 - 对于每一个端口,尝试创建到目标IP地址的TCP连接。 - 如果连接成功,打印出开放的端口号;如果连接失败或超时,则说明端口未开放或关闭。 - 可能还需要添加异常处理机制,以便于扫描过程中应对各种可能出现的网络异常。 最后,考虑到文件名称列表中提到的“CH07”,如果指的是某个教程或者书籍的第七章,那么可能涉及的内容包括对Java网络编程的深入解释,或者是端口扫描器的设计思路、源代码分析以及可能的进阶用法等。对于“java端口扫描器”这个文件名,则可能是一个现成的项目文件,包含了所有实现端口扫描器的Java代码文件、文档说明以及运行程序所需的全部资源。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

vllm部署大模型为什么只用一张卡怎么设置成多卡

<think>嗯,用户的问题是关于如何将vLLM的大模型部署从单GPU改为多GPU设置。用户提供了两条参考引用,其中引用[1]提到通过设置tensorparallelsize在每个节点上使用多个GPU,引用[2]则给出了启动API服务时的CUDA设备指定示例。用户的实际需求是在使用vLLM部署时充分利用多GPU资源,可能遇到性能瓶颈或希望提升推理速度。用户身份推测是AI部署工程师或研究人员,对技术细节有明确要求。在回复设计上,需要强调三个关键点:1)设备指定:通过CUDA_VISIBLE_DEVICES环境变量控制可用GPU2)张量并行:直接修改tensor_parallel_size参数3)
recommend-type

ASP+access实现的新闻管理系统开发教程

ASP新闻发布系统是一种利用ASP(Active Server Pages)技术结合Microsoft Access数据库来实现内容发布和管理的系统。ASP是一种服务器端脚本环境,使用它可以创建动态交互式网页。Access数据库则用于存储新闻文章、用户信息、评论等数据。以下从几个方面详细说明标题和描述中提到的知识点: ### 1. ASP技术基础 ASP技术允许开发者使用VBScript或JavaScript等脚本语言编写程序,这些程序在服务器上运行,动态生成HTML页面。ASP页面的文件通常以.asp为扩展名。在新闻发布系统中,ASP可用于实现以下功能: - 用户身份验证:检查用户输入的用户名和密码是否合法,从而允许或拒绝访问。 - 数据库交互:通过ADO(ActiveX Data Objects)连接和操作Access数据库,实现数据的增删改查。 - 动态内容生成:根据数据库中的新闻数据动态生成网页内容。 - 文件上传和下载:允许管理员上传新闻图片或文件,用户可以下载这些内容。 ### 2. Microsoft Access数据库 Access是一个桌面数据库系统,适合存储小型到中型的数据集。它使用结构化查询语言(SQL)作为其查询语言,允许开发者对数据进行管理。在ASP新闻发布系统中,Access数据库通常包含以下表: - 新闻内容表:存储新闻标题、内容、发布日期、作者等信息。 - 用户表:存储注册用户的用户名、密码、联系方式等信息。 - 评论表:存储用户对新闻的评论内容以及评论者的相关信息。 ### 3. 系统功能模块 ASP新闻发布系统一般包含以下几个核心功能模块: - 用户管理模块:包括用户注册、登录、个人信息管理、密码修改等。 - 新闻发布模块:允许授权用户发布、编辑和删除新闻。 - 新闻浏览模块:展示新闻列表和新闻内容,可能支持按类别或时间排序。 - 搜索功能模块:通过关键词搜索新闻文章。 - 系统设置模块:进行网站基础信息设置,如新闻分类设置、网站标题设置等。 ### 4. 开发环境与工具 - 开发语言:主要使用VBScript或JavaScript作为ASP的脚本语言。 - 开发环境:可以使用微软的Visual InterDev或者任何支持ASP开发的IDE。 - 数据库管理:使用Microsoft Access作为数据库管理工具。 - 测试工具:利用浏览器作为测试工具,查看ASP页面在服务器上的表现。 ### 5. 关键技术点 - SQL语句的使用:在ASP中通过ADO技术执行SQL查询和更新数据库。 - Session和Cookies的应用:用于在用户会话期间存储和管理用户信息。 - HTML和CSS的布局:为了创建用户友好的界面。 - 安全措施:包括输入验证、防止SQL注入、XSS攻击等。 ### 6. 教材与学习资源 - 教材选择:通常选用ASP编程、网络编程基础或网页设计相关的书籍。 - 在线资源:可以通过网上教程、视频课程和开发社区来学习ASP和Access的进一步应用。 - 实践操作:通过实际开发新闻发布系统来深入理解和掌握知识点。 ### 7. 系统部署 - 服务器配置:需要配置支持ASP和IIS(Internet Information Services)的服务器。 - 文件上传:将ASP文件和Access数据库文件上传至服务器。 - 网站域名绑定:将新闻发布系统与一个域名绑定,以便用户访问。 ### 总结 ASP+Access制作的新闻发布系统是一个实践性强的项目,适合学习动态网页和数据库交互的基础。它涉及编程、数据库设计和网站维护等多个方面的知识。通过具体实施这个项目,开发者不仅可以提高自己的编程能力,而且能对网站开发的整个流程有更深入的了解。在教材的指导下,学生能够结合理论和实践,为日后的IT职业生涯打下坚实的基础。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的
recommend-type

ruoyi 定时任务纯后端

<think>嗯,用户这次明确询问RuoYi框架纯后端定时任务的实现方案,看来是个具体的技术实践问题。结合之前提供的引用内容,尤其是引用[1]提到RuoYiJobApplication是定时任务模块,引用[3]也强调了定时任务调度功能,基本确定核心实现就在job模块。用户应该是个Java开发者,正在使用RuoYi框架搭建后台系统。ta可能遇到的情况是:前端资源还没就绪,或者任务本身不需要界面操作,需要直接通过后端控制定时任务。深层需求可能包含两点:一是快速掌握基础配置流程,二是了解如何避开常见坑点(比如任务阻塞问题)。需要区分用户说的“纯后端实现”具体指哪种场景:是不要前端页面触发?还是不要依