ubuntu24.04安装vllm

时间: 2025-04-10 18:58:34 浏览: 153
<think>好的,我现在需要在Ubuntu 24.04上安装VLLM框架。首先,我得了解VLLM是什么,以及它的安装依赖。根据用户提供的参考信息,特别是引用[3]中的Docker命令和引用[4]中提到的部署DeepSeek R1 14B的方案,VLLM可能是一个用于大型语言模型推理的高效库,需要GPU支持。 首先,我需要确认系统环境。用户提到Ubuntu 24.04,可能已经安装了NVIDIA驱动,因为引用[2]中提到了NVIDIA cuBLAS的性能数据。安装VLLM可能需要CUDA工具包,所以第一步应该是检查CUDA和cuDNN的安装情况。如果系统没有安装,需要先安装这些依赖。 接下来,根据引用[3]中的Docker命令,用户可能使用了容器化部署,但问题是如何直接在Ubuntu上安装。可能需要使用Python的pip来安装vllm包。不过,VLLM的安装可能有特定的版本要求,比如需要Python 3.8以上,PyTorch的某个版本,以及相应的CUDA版本支持。 另外,引用[4]中的健康检查脚本使用了Ollama的API,但用户的问题是关于VLLM的安装,可能需要关注VLLM的官方文档。根据经验,VLLM通常需要安装vllm包,可能还需要安装特定的CUDA扩展或者依赖库,比如nvidia-cublas-cu12等。 可能的步骤包括: 1. 更新系统并安装必要的依赖,如Python3、pip、CUDA等。 2. 创建Python虚拟环境以隔离依赖。 3. 使用pip安装vllm,可能需要指定版本或添加额外的索引。 4. 验证安装是否成功,运行示例代码。 此外,引用[3]中的Docker命令涉及到了设备权限和卷挂载,这可能意味着在裸机安装时需要配置相应的设备访问权限,比如NVIDIA的GPU设备。可能需要安装nvidia-container-toolkit或者配置Docker环境,但如果用户不想使用容器,可能需要直接安装NVIDIA驱动和相关库。 在检查过程中,需要注意Ubuntu 24.04的软件源是否包含所需的软件包,或者是否需要添加第三方PPA。例如,安装CUDA可能需要从NVIDIA官网下载.run文件或通过APT仓库安装。 另外,引用[2]中提到不同发行版的数学库优化,Ubuntu 24.04使用的是NVIDIA cuBLAS,这可能对VLLM的性能有影响,因此在安装时需要确保CUDA正确配置,并且VLLM能够调用这些库。 可能的错误点包括:CUDA版本不兼容、Python环境冲突、缺少系统依赖库等。需要逐步检查每个步骤的输出,确保没有报错。例如,安装vllm时可能会提示需要安装CMake或Ninja等构建工具,因此需要提前安装这些依赖。 总结下来,安装步骤可能如下: - 安装NVIDIA驱动和CUDA工具包 - 安装Python虚拟环境 - 安装VLLM via pip - 测试安装 需要查阅VLLM的官方安装指南,确认最新的安装命令和依赖要求。例如,VLLM官方可能推荐使用pip install vllm,或者需要从源码编译,特别是如果使用特定版本的CUDA。 最后,根据用户提供的引用,可能需要考虑使用Docker来简化安装,如引用[3]中的命令,但用户明确询问的是在Ubuntu上安装,而不是使用Docker,所以需要提供裸机安装的步骤。</think>### 在 Ubuntu 24.04 上安装 VLLM 框架的步骤 #### 1. 安装系统依赖和 NVIDIA 驱动 确保系统已安装 NVIDIA 驱动和 CUDA 工具包(VLLM 需要 CUDA 11.8 或更高版本): ```bash # 检查 NVIDIA 驱动是否安装 nvidia-smi # 若未安装,添加官方驱动仓库并安装(以 535 驱动为例) sudo apt update sudo apt install ubuntu-drivers-common sudo ubuntu-drivers autoinstall sudo reboot # 安装 CUDA Toolkit(以 CUDA 12.1 为例) wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-ubuntu2404.pin sudo mv cuda-ubuntu2404.pin /etc/apt/preferences.d/cuda-repository-pin-600 wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda-repo-ubuntu2404-12-1-local_12.1.0-530.30.02-1_amd64.deb sudo dpkg -i cuda-repo-ubuntu2404-12-1-local_12.1.0-530.30.02-1_amd64.deb sudo apt update sudo apt install cuda-toolkit-12-1 ``` #### 2. 配置 Python 虚拟环境 ```bash # 安装 Python 3.10 和虚拟环境工具 sudo apt install python3.10-venv python3-pip # 创建并激活虚拟环境 python3 -m venv vllm-env source vllm-env/bin/activate ``` #### 3. 安装 VLLM 及其依赖 ```bash # 安装 PyTorch 和 VLLM(需匹配 CUDA 版本) pip install torch==2.3.0+cu121 --extra-index-url https://download.pytorch.org/whl/cu121 pip install vllm # 验证安装 python -c "from vllm import LLM; print('VLLM 安装成功!')" ``` #### 4. 测试 GPU 加速推理 ```python from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m") sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=64) outputs = llm.generate("Hello, my name is", sampling_params) print(outputs[0].outputs[0].text) ``` #### 5. 可选:Docker 部署(参考引用[3]) 若需容器化部署,可使用官方镜像: ```bash docker run --gpus all -p 8000:8000 --rm -itvllm/vllm-openai:latest ``` --- ### 关键配置说明 1. **CUDA 版本匹配**:VLLM 依赖 CUDA 12.1+,需与 PyTorch 的 CUDA 版本一致[^2] 2. **性能优化**:Ubuntu 24.04 默认使用 NVIDIA cuBLAS,可提升推理速度[^2] 3. **健康监控**:可参考引用[4]编写脚本监控 GPU 利用率 ---
阅读全文

相关推荐

zip
压缩包“与我的博士相关的Basilisk模拟_C_Shell_下载.zip”包含与使用Basilisk软件进行模拟研究相关的资料,重点涉及C语言编程和Shell脚本。Basilisk是一个开源软件,主要用于流体力学、地球物理和其他科学领域的数值模拟。该压缩包中包含以下内容: 1. **Basilisk框架**:由Jérôme Guégan开发,提供高效的C语言库,用于解决偏微分方程,代码设计简洁,适合科研。 2. **C语言编程**:需掌握基本语法、数据结构、内存管理等,以理解Basilisk的高效内存使用。 3. **数值方法**:如有限体积法、谱方法,用于将偏微分方程离散化并求解。 4. **科学计算**:涉及流体力学、地球物理等领域的模拟,需了解相关理论。 5. **Shell脚本**:用于自动化模拟执行,如参数扫描和结果分析,需掌握基本命令和脚本编写。 6. **版本控制**:文件名暗示可能涉及Git,需掌握代码版本管理。 7. **数据可视化**:使用工具如gnuplot、Paraview进行结果分析和图表制作。 8. **编译与调试**:需熟悉编译器(如GCC)和调试C代码的方法。 9. **并行计算**:支持OpenMP或MPI,需理解进程、线程和通信同步。 10. **文档阅读**:需学习项目提供的用户手册、教程和示例代码。 该资料涵盖从C语言到科学模拟的多个方面,对使用Basilisk进行博士研究具有重要价值。内容来源于网络分享,如有侵权请联系我删除。

大家在看

recommend-type

数字图像处理 冈萨雷斯 第三版 课后答案绝对完整

数字图像处理 冈萨雷斯 第三版 课后答案绝对完整
recommend-type

TB_QiangGou:淘宝抢购原始码

TB_强国 淘宝抢购原始码
recommend-type

用卷积滤波器matlab代码-USKneeCNN:使用卷积神经网络进行超声图像中的膝关节软骨分割

用卷积滤波器matlab代码介绍 该存储库将发布用于生成卷积神经网络的Matlab代码,以进行膝盖软骨分割。 该代码允许B模式图像和输入到网络中,以及使用2D Log Gabor过滤器的本地相位增强算法来增强输入到网络中的图像。 链接到Google云端硬盘的示例网络的U-Net平均为100 MB,堆叠U-Net和W-Net平均为200 MB。 此处使用的代码和网络已在罗格斯大学的贾斯汀·莫哈比尔(Justin Mohabir)的MS防御中使用。 以下示例网络可用: 网络说明 以“ B”或“ EN”开头的网络采用B模式和增强型图像,尺寸为256x256x1,而具有“两者”的网络则采用两者的组合,即256x256x2图像。
recommend-type

栈指纹OS识别技术-网络扫描器原理

栈指纹OS识别技术(一) 原理:根据各个OS在TCP/IP协议栈实现上的不同特点,采用黑盒测试方法,通过研究其对各种探测的响应形成识别指纹,进而识别目标主机运行的操作系统。根据采集指纹信息的方式,又可以分为主动扫描和被动扫描两种方式。
recommend-type

amesim培训资料(实时控制仿真)

amesim培训资料,针对amesim实时控制。

最新推荐

recommend-type

redis常用命令入门教程.md

redis常用命令入门教程.md
recommend-type

课程设计-jsp2159(CS)交通信号灯oracle-qlkrp.zip

课程设计 源代码数据库配套报告教程
recommend-type

Node+electron-vue聊天软件

分别给前后端安装依赖:npm i 后端运行:node app 前端运行:npm run dev 前端打包:npm run pack
recommend-type

Basilisk模拟与我的博士相关_C_Shell_下载

压缩包“与我的博士相关的Basilisk模拟_C_Shell_下载.zip”包含与使用Basilisk软件进行模拟研究相关的资料,重点涉及C语言编程和Shell脚本。Basilisk是一个开源软件,主要用于流体力学、地球物理和其他科学领域的数值模拟。该压缩包中包含以下内容: 1. **Basilisk框架**:由Jérôme Guégan开发,提供高效的C语言库,用于解决偏微分方程,代码设计简洁,适合科研。 2. **C语言编程**:需掌握基本语法、数据结构、内存管理等,以理解Basilisk的高效内存使用。 3. **数值方法**:如有限体积法、谱方法,用于将偏微分方程离散化并求解。 4. **科学计算**:涉及流体力学、地球物理等领域的模拟,需了解相关理论。 5. **Shell脚本**:用于自动化模拟执行,如参数扫描和结果分析,需掌握基本命令和脚本编写。 6. **版本控制**:文件名暗示可能涉及Git,需掌握代码版本管理。 7. **数据可视化**:使用工具如gnuplot、Paraview进行结果分析和图表制作。 8. **编译与调试**:需熟悉编译器(如GCC)和调试C代码的方法。 9. **并行计算**:支持OpenMP或MPI,需理解进程、线程和通信同步。 10. **文档阅读**:需学习项目提供的用户手册、教程和示例代码。 该资料涵盖从C语言到科学模拟的多个方面,对使用Basilisk进行博士研究具有重要价值。内容来源于网络分享,如有侵权请联系我删除。
recommend-type

AD电子线路绘制MP3工程项目

MP3元器件的绘制 MP3库的封装
recommend-type

Java算法:二叉树的前中后序遍历实现

在深入探讨如何用Java实现二叉树及其三种基本遍历(前序遍历、中序遍历和后序遍历)之前,我们需要了解一些基础知识。 首先,二叉树是一种被广泛使用的数据结构,它具有以下特性: 1. 每个节点最多有两个子节点,分别是左子节点和右子节点。 2. 左子树和右子树都是二叉树。 3. 每个节点都包含三个部分:值、左子节点的引用和右子节点的引用。 4. 二叉树的遍历通常用于访问树中的每个节点,且访问的顺序可以是前序、中序和后序。 接下来,我们将详细介绍如何用Java来构建这样一个树结构,并实现这些遍历方式。 ### Java实现二叉树结构 要实现二叉树结构,我们首先需要一个节点类(Node.java),该类将包含节点值以及指向左右子节点的引用。其次,我们需要一个树类(Tree.java),它将包含根节点,并提供方法来构建树以及执行不同的遍历。 #### Node.java ```java public class Node { int value; Node left; Node right; public Node(int value) { this.value = value; left = null; right = null; } } ``` #### Tree.java ```java import java.util.Stack; public class Tree { private Node root; public Tree() { root = null; } // 这里可以添加插入、删除等方法 // ... // 前序遍历 public void preOrderTraversal(Node node) { if (node != null) { System.out.print(node.value + " "); preOrderTraversal(node.left); preOrderTraversal(node.right); } } // 中序遍历 public void inOrderTraversal(Node node) { if (node != null) { inOrderTraversal(node.left); System.out.print(node.value + " "); inOrderTraversal(node.right); } } // 后序遍历 public void postOrderTraversal(Node node) { if (node != null) { postOrderTraversal(node.left); postOrderTraversal(node.right); System.out.print(node.value + " "); } } // 迭代形式的前序遍历 public void preOrderTraversalIterative() { Stack<Node> stack = new Stack<>(); stack.push(root); while (!stack.isEmpty()) { Node node = stack.pop(); System.out.print(node.value + " "); if (node.right != null) { stack.push(node.right); } if (node.left != null) { stack.push(node.left); } } System.out.println(); } // 迭代形式的中序遍历 public void inOrderTraversalIterative() { Stack<Node> stack = new Stack<>(); Node current = root; while (current != null || !stack.isEmpty()) { while (current != null) { stack.push(current); current = current.left; } current = stack.pop(); System.out.print(current.value + " "); current = current.right; } System.out.println(); } // 迭代形式的后序遍历 public void postOrderTraversalIterative() { Stack<Node> stack = new Stack<>(); Stack<Node> output = new Stack<>(); stack.push(root); while (!stack.isEmpty()) { Node node = stack.pop(); output.push(node); if (node.left != null) { stack.push(node.left); } if (node.right != null) { stack.push(node.right); } } while (!output.isEmpty()) { System.out.print(output.pop().value + " "); } System.out.println(); } } ``` ### Java实现的二叉树遍历详细解析 #### 前序遍历(Pre-order Traversal) 前序遍历是先访问根节点,然后递归地前序遍历左子树,接着递归地前序遍历右子树。遍历的顺序是:根 -> 左 -> 右。 #### 中序遍历(In-order Traversal) 中序遍历是先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。对于二叉搜索树来说,中序遍历可以按从小到大的顺序访问所有节点。遍历的顺序是:左 -> 根 -> 右。 #### 后序遍历(Post-order Traversal) 后序遍历是先递归地后序遍历左子树,然后递归地后序遍历右子树,最后访问根节点。遍历的顺序是:左 -> 右 -> 根。 ### 迭代形式的遍历 在上述`Tree.java`类中,我们还实现了迭代形式的遍历,通过使用栈来模拟递归过程。这种方法在处理大型树结构时,可以避免递归导致的栈溢出问题,并且可以提高效率。 ### 总结 通过上述代码和解释,我们可以看到,使用Java实现二叉树及其遍历方法相对直接。核心在于理解二叉树节点的结构和递归逻辑,以及如何使用栈来模拟递归过程。在实践中,了解并掌握这些基本算法对于解决复杂问题是非常有用的。此外,理解这些基本概念后,可以进一步探索更高级的二叉树算法,如平衡二叉树(AVL树)、红黑树等。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

grant usage on ** to bcc@*%

<think>我们正在处理一个关于MySQL权限授予的问题。用户的具体需求是:为数据库用户'bcc'@'%'授予对所有数据库的使用权限(USAGE)。根据引用[1]和引用[4],我们知道在MySQL中,使用GRANT语句来授予权限。注意:USAGE权限实际上是一个“无权限”的权限,它仅仅表示用户存在,但没有任何实际权限(除了连接数据库)。如果用户只想允许用户连接数据库而不做任何操作,那么授予USAGE是合适的。但是,用户要求的是“使用权限”,我们需要确认用户是否真的只需要USAGE权限,还是需要其他权限?根据问题描述,用户明确说“使用权限”,并且指定了USAGE(在问题中提到了grantusa
recommend-type

Nokia手机通用密码计算器:解锁神器

根据给定的文件信息,我们可以了解到一个关于诺基亚(Nokia)手机解锁密码生成工具的知识点。在这个场景中,文件标题“Nokia手机密码计算器”表明了这是一个专门用于生成Nokia手机解锁密码的应用程序。描述中提到的“输入手机串号,就可得到10位通用密码,用于解锁手机”说明了该工具的使用方法和功能。 知识点详解如下: 1. Nokia手机串号的含义: 串号(Serial Number),也称为序列号,是每部手机独一无二的标识,通常印在手机的电池槽内或者在手机的设置信息中可以查看。它对于手机的售后维修、技术支持以及身份识别等方面具有重要意义。串号通常由15位数字组成,能够提供制造商、型号、生产日期和制造地点等相关信息。 2. Nokia手机密码计算器的工作原理: Nokia手机密码计算器通过特定的算法将手机的串号转换成一个10位的数字密码。这个密码是为了帮助用户在忘记手机的PIN码(个人识别码)、PUK码(PIN解锁码)或者某些情况下手机被锁定时,能够解锁手机。 3. 通用密码与安全性: 这种“通用密码”是基于一定算法生成的,不是随机的。它通常适用于老型号的Nokia手机,因为这些手机在设计时通常会采用固定的算法来生成密码。然而,随着科技的发展和安全需求的提高,现代手机通常不会提供此类算法生成的通用密码,以防止未经授权的解锁尝试。 4. Nokia手机的安全机制: 老型号的Nokia手机在设计时,通常会考虑到用户可能忘记密码的情况。为了保证用户在这种情况下的手机依然能够被解锁使用,制造商设置了一套安全机制,即通用密码系统。但这同时也带来了潜在的安全风险,因为如果算法被破解,那么任何知道串号的人都可能解锁这部手机。 5. MasterCode.exe文件的作用: 文件列表中的“MasterCode.exe”很可能就是上述“Nokia手机密码计算器”的可执行文件。用户需要运行这个程序,并按照程序的指示输入手机的串号,程序便会根据内部的算法计算出用于解锁的密码。 6. 注意事项和法律风险: 尽管此类工具在技术上帮助了用户,但必须强调的是,使用此类解锁工具或破解手机可能会违反相关的法律法规,特别是如果手机并非属于解锁者本人。在大多数国家,未经授权解锁手机都是违法的,尤其是在手机是通过运营商签订合约购买的情况下。因此,用户在尝试使用通用密码解锁手机前,应确保了解当地的法律法规,并且只在合法和合理的范围内使用此类工具。 7. 替代解锁方法: 对于现代智能手机,如果用户忘记了解锁密码,通常需要通过官方的客户服务来解决,例如联系手机制造商的客服或到指定的维修点进行解锁。一些手机还提供了账号解锁的功能,比如Apple的“查找我的iPhone”功能,以及Google的账号解锁选项。 总结来说,Nokia手机密码计算器是一个基于特定算法的实用工具,可帮助用户在忘记密码时解锁其Nokia手机。然而,用户在使用此类工具时应谨慎,并且必须遵守当地的法律法规。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的