活动介绍

pandas pd.DataFrame设置字段名

时间: 2023-08-14 14:11:11 浏览: 360
您可以使用`pd.DataFrame`的`columns`参数来设置DataFrame的字段名。以下是一个示例: ```python import pandas as pd # 创建一个空的DataFrame df = pd.DataFrame() # 设置字段名 df.columns = ['字段1', '字段2', '字段3'] # 打印DataFrame print(df) ``` 上述代码中,我们首先创建了一个空的DataFrame,然后通过将字段名赋值给`columns`属性来设置字段名。最后,我们打印DataFrame来验证字段名是否正确设置。 请根据您的实际需求修改字段名和DataFrame的内容。
相关问题

``` import pandas as pd def big_countries(world: pd.DataFrame) -> pd.DataFrame: return world.loc[(world['area'] >= 3000000) | (world['population'] >= 25000000), ['name', 'area', 'population']] import pandas as pd def big_countries(World: pd.DataFrame) -> pd.DataFrame: df = World[(World['area'] >= 3000000) | (World['population'] >= 25000000)] return df[['name', 'population', 'area']]```请解释这两段代码为什么不一样,语法↑有什么区别

<think>嗯,用户给了两段Python代码,都是用pandas处理数据,函数名都是big_countries,参数都是DataFrame,但具体实现有些不同。用户想知道这两段代码为什么不一样,语法上的区别在哪里。 首先,我需要仔细看看这两段代码。第一段用的是world.loc,条件放在loc里面,然后选取了['name', 'area', 'population']这三列。第二段是先筛选出符合条件的DataFrame,再返回特定的列。看起来都是要筛选出面积大于等于3百万或者人口大于等于2500万的国家,然后返回指定列。那为什么写法不同呢? 首先,注意到第一个函数参数是world,第二个是World,这里可能只是变量名大小写的区别,不过Python是区分大小写的,所以如果调用的时候传入的参数名不同可能会有问题。不过可能用户只是举例,实际可能不会有这个问题。 然后,第一段代码使用了loc方法,而第二段是直接通过布尔索引筛选。loc通常用于标签索引,但在这里,两者都是基于条件的布尔索引。两种方法都可以,但可能有性能上的差异吗?或者写法上的偏好? 另外,第一段代码返回的列顺序是name, area, population,而第二段返回的是name, population, area。所以列的顺序不同,这可能导致输出结果的列顺序不一样,但数据内容是一样的。用户可能注意到了这点不同。 还有,第一段代码的条件是用位运算符|,而pandas中处理多个条件时,需要使用括号将每个条件括起来,并且使用位运算符而不是逻辑运算符。但两段代码都正确使用了|,并且用括号括起来了,所以这部分没问题。 然后,第一段代码使用loc来同时筛选行和列,而第二段代码是先筛选行,再选择列。这两种方法在功能上是等价的,但写法不同。可能loc的方式更明确一些,而第二种方法更简洁。 另外,检查是否有语法错误。两段代码看起来语法都是正确的,只是写法不同。可能用户想知道哪种方式更好,或者为什么会有不同的写法。 总结一下,区别可能有几点:变量名大小写,loc的使用与否,列顺序的不同,以及筛选和列选择的顺序。需要逐一解释这些区别,并说明它们在功能上的影响,比如列顺序会影响输出结果的结构,变量名不同可能导致错误,但可能在上下文中被正确处理。</think>这两段代码的核心逻辑相同,但存在以下4个关键差异点: 1. **变量名大小写差异** - 第一段代码使用小写参数名 `world`,第二段使用首字母大写的 `World` - 这可能导致调用时因参数名不匹配报错(若传入参数名与定义不一致) 2. **筛选方式差异** - 第一段用 `.loc[]` 方法:`world.loc[条件, 列]` 显式使用标签索引器,同时处理行筛选和列选择 - 第二段用链式操作:`World[条件][列]` 先通过布尔索引筛选行,再通过列名切片选择列 3. **列顺序差异** - 第一段返回列顺序:`['name', 'area', 'population']` - 第二段返回列顺序:`['name', 'population', 'area']` - 输出结果的字段排列顺序不同(但数据内容一致) 4. **语法风格差异** - 第一段代码更符合PEP8规范: ```python return world.loc[(条件), [列列表]] # 直接返回表达式 ``` - 第二段代码分步操作: ```python df = World[条件] # 先创建中间变量 return df[[列列表]] ``` **等效性验证**: 用以下测试数据验证输出差异: ```python data = { 'name': ['A','B','C'], 'population': [10, 25000000, 30], 'area': [4000000, 20, 5000000] } df = pd.DataFrame(data) ``` 两段代码均会输出: ``` name population area 0 A 10 4000000 1 B 25000000 20 2 C 30 5000000 ``` 但列顺序会根据代码版本不同分别为: 第一段 `name | area | population`,第二段 `name | population | area` **最佳实践建议**: - 统一使用 `.loc[]` 方法可提升性能(避免创建中间对象) - 保持参数命名一致性防止调用错误 - 明确指定列顺序以满足具体需求

pd.DataFrame.join

`pd.DataFrame.join()` 是 Pandas 库中用于合并两个 DataFrame 的函数。它通常用于基于共享的键(index 或 columns)将数据从一个 DataFrame 添加到另一个 DataFrame 中。这种操作可以创建一个新的 DataFrame,新 DataFrame 包含源 DataFrame 的所有行和目标 DataFrame 的所有列,或者是仅包含匹配的行和列。 join 函数有多种变体,包括: - `inner_join`(默认):只保留两个 DataFrame 中都有的键值对,即交集部分。 - `left_join`:保留左 DataFrame 的所有行,并加入右 DataFrame 相关的键值对,如果右 DF 没有对应键,则用 NaN 填充。 - `right_join`:同理,但保留右 DataFrame 的所有行。 - `outer_join` 或 `full_join`:保留两个 DataFrame 的所有行,对于不存在的键,用 NaN 填充。 - `how` 参数可以进一步定制合并类型,如 `'exact'` (等于匹配) 或 `'suffixed_'` (添加后缀区分键名) 等。 例如: ```python df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value1': [1, 2, 3, 4]}) df2 = pd.DataFrame({'key': ['B', 'D', 'E', 'F'], 'value2': [5, 6, 7, 8]}) merged = df1.join(df2, on='key') # 默认内连接 # 输出结果可能类似: # key value1 value2 # 0 A 1.0 NaN # 1 B 2.0 5.0 # 2 C 3.0 NaN # 3 D 4.0 6.0 ``` **相关问题--:** 1. `pd.DataFrame.join()`支持哪些类型的键? 2. 当键列存在重复值时,`join`如何处理? 3. 如何利用`join`在保持原数据完整性的前提下,新增一列计算两表的关联字段?
阅读全文

相关推荐

第1关:Concat与Append操作 300 任务要求 参考答案 记录 评论3 任务描述 相关知识 合并时索引的处理 join和join_axes参数 append()方法 编程要求 测试说明 任务描述 本关任务:使用read_csv()读取两个csv文件中的数据,将两个数据集合并,将索引设为Ladder列,并将缺失值填充为0。 相关知识 在Numpy中,我们介绍过可以用np.concatenate、np.stack、np.vstack和np.hstack实现合并功能。Pandas中有一个pd.concat()函数与concatenate语法类似,但是配置参数更多,功能也更强大,主要参数如下。 参数名 说明 objs 参与连接的对象,必要参数 axis 指定轴,默认为0 join inner或者outer,默认为outer,指明其他轴的索引按哪种方式进行合并,inner表示取交集,outer表示取并集 join_axes 指明用于其他n-1条轴的索引,不执行并集/交集运算 keys 与连接对象有关的值,用于形成连接轴向上的层次化索引。可以是任意值的列表或数组 levels 指定用作层次化索引各级别上的索引 names 用于创建分层级别的名称,如果设置了keys和levels verify_integrity 检查结果对象新轴上的重复情况,如果发现则引发异常。默认False允许重复 ignore_index 不保留连接轴上的索引,产生一组新索引 pd.concat()可以简单地合并一维的Series或DataFrame对象。 # Series合并 ser1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3]) ser2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6]) pd.concat([ser1,ser2]) Out: 1 A 2 B 3 C 4 D 5 E 6 F dtype: object # DataFrame合并,将concat的axis参数设置为1即可横向合并 df1 = pd.DataFrame([["A1","B1"],["A2","B2"]],index=[1,2],columns=["A","B"]) df2 = pd.DataFrame([["A3","B3"],["A4","B4"]],index=[3,4],columns=["A","B"]) pd.concat([df1,df2]) Out: A B 1 A1 B1 2 A2 B2 3 A3 B3 4 A4 B4 合并时索引的处理 np.concatenate与pd.concat最主要的差异之一就是Pandas在合并时会保留索引,即使索引是重复的! df3 = pd.DataFrame([["A1","B1"],["A2","B2"]],index=[1,2],columns=["A","B"]) df4 = pd.DataFrame([["A1","B1"],["A2","B2"]],index=[1,2],columns=["A","B"]) pd.concat([df3,df4]) Out: A B 1 A1 B1 2 A2 B2 1 A3 B3 2 A4 B4 如果你想要检测pd.concat()合并的结果中是否出现了重复的索引,可以设置verify_integrity参数。将参数设置为True,合并时若有索引重复就会触发异常。 try: pd.concat([df3, df4], verify_integrity=True) except ValueError as e: print("ValueError:", e) Out: ValueError: Indexes have overlapping values: [0, 1] 有时索引无关紧要,那么合并时就可以忽略它们,可以通过设置 ignore_index参数为True来实现。 pd.concat([df3,df4],ignore_index=True) Out: A B 0 A0 B0 1 A1 B1 2 A2 B2 3 A3 B3 另一种处理索引重复的方法是通过keys参数为数据源设置多级索引标签,这样结果数据就会带上多级索引。 pd.concat([df3, df4], keys=['x', 'y']) Out: A B x 0 A0 B0 1 A1 B1 y 0 A2 B2 1 A3 B3 join和join_axes参数 前面介绍的简单示例都有一个共同特点,

1.给出模型的auc;2.模型的预测结果,第一列是did,第二列只保留点击概率最高的vid,第三列是预计的完播率,按照上面三个要求调整代码并检查无误:import pandas as pd import numpy as np import lightgbm as lgb from lightgbm import early_stopping, log_evaluation import gc import os import chardet from sklearn.model_selection import train_test_split from tqdm import tqdm import joblib from datetime import datetime # 1. 增强数据加载函数(添加列存在性检查) def load_data_safely(file_path, usecols=None, dtype=None, chunksize=100000): """安全加载大型CSV文件,优化内存使用""" try: if not os.path.exists(file_path): print(f"⚠️ 文件不存在: {file_path}") return pd.DataFrame() # 自动检测编码 with open(file_path, 'rb') as f: result = chardet.detect(f.read(100000)) encoding = result['encoding'] if result['confidence'] > 0.7 else 'latin1' # 分批读取并优化内存 chunks = [] reader = pd.read_csv( file_path, encoding=encoding, usecols=usecols, dtype=dtype, chunksize=chunksize, low_memory=False ) for chunk in tqdm(reader, desc=f"加载 {os.path.basename(file_path)}"): # 优化分类列内存 for col in chunk.columns: if dtype and col in dtype and dtype[col] == 'category': chunk[col] = chunk[col].astype('category').cat.as_ordered() chunks.append(chunk) if chunks: return pd.concat(chunks, ignore_index=True) return pd.DataFrame() except Exception as e: print(f"⚠️ 加载 {file_path} 失败: {str(e)}") return pd.DataFrame() # 2. 优化历史数据加载(添加列存在性检查) def load_historical_data(days=32): """高效加载历史数据,支持分批处理""" see_list, click_list, play_list = [], [], [] for day in tqdm(range(1, days + 1), desc="加载历史数据"): day_str = f"{day:02d}" # 加载曝光数据 see_path = f'see_{day_str}.csv' if os.path.exists(see_path): see = load_data_safely(see_path, usecols=['did', 'vid'], dtype={'did': 'category', 'vid': 'category'}) if not see.empty and 'did' in see.columns and 'vid' in see.columns: see_list.append(see) del see gc.collect() # 加载点击数据 click_path = f'click_{day_str}.csv' if os.path.exists(click_path): click = load_data_safely(click_path, usecols=['did', 'vid', 'click_time'], dtype={'did': 'category', 'vid': 'category'}) if not click.empty and 'click_time' in click.columns and 'did' in click.columns and 'vid' in click.columns: # 优化日期处理 click['date'] = pd.to_datetime(click['click_time'], errors='coerce').dt.date click = click.drop(columns=['click_time'], errors='ignore') click_list.append(click[['did', 'vid', 'date']]) del click gc.collect() # 加载播放数据 play_path = f'playplus_{day_str}.csv' if os.path.exists(play_path): play = load_data_safely(play_path, usecols=['did', 'vid', 'play_time'], dtype={'did': 'category', 'vid': 'category'}) if not play.empty and 'play_time' in play.columns and 'did' in play.columns and 'vid' in play.columns: play_list.append(play) del play gc.collect() gc.collect() # 确保返回三个DataFrame,即使某些为空 return ( pd.concat(see_list).drop_duplicates(['did', 'vid']) if see_list else pd.DataFrame(), pd.concat(click_list).drop_duplicates(['did', 'vid']) if click_list else pd.DataFrame(), pd.concat(play_list).drop_duplicates(['did', 'vid']) if play_list else pd.DataFrame() ) # 定义内存优化的数据类型(添加列存在性检查) dtypes = { 'did': 'category', 'vid': 'category', 'play_time': 'float32' } # 可选特征 - 只有在数据中存在时才添加 optional_features = { 'item_cid': 'category', 'item_type': 'category', 'item_assetSource': 'category', 'item_classify': 'category', 'item_isIntact': 'category', 'sid': 'category', 'stype': 'category' } # 添加特征字段 for i in range(88): dtypes[f'f{i}'] = 'float32' # 加载核心数据 print("开始加载核心数据...") did_features = load_data_safely('did_features_table.csv', dtype=dtypes) vid_info = load_data_safely('vid_info_table.csv', dtype=dtypes) # 添加可选特征到dtypes(仅当列存在时) for feature, dtype in optional_features.items(): if not vid_info.empty and feature in vid_info.columns: dtypes[feature] = dtype # 重新加载数据以确保所有列使用正确的数据类型 if os.path.exists('did_features_table.csv'): did_features = load_data_safely('did_features_table.csv', dtype=dtypes) else: print("⚠️ did_features_table.csv 不存在") did_features = pd.DataFrame() if os.path.exists('vid_info_table.csv'): vid_info = load_data_safely('vid_info_table.csv', dtype=dtypes) else: print("⚠️ vid_info_table.csv 不存在") vid_info = pd.DataFrame() # 加载历史数据 - 确保所有变量都被定义 print("开始加载历史数据...") hist_exposure, hist_click, hist_play = load_historical_data(days=32) # 打印历史数据状态 print(f"历史曝光数据形状: {hist_exposure.shape if not hist_exposure.empty else '空'}") print(f"历史点击数据形状: {hist_click.shape if not hist_click.empty else '空'}") print(f"历史播放数据形状: {hist_play.shape if not hist_play.empty else '空'}") # 3. 优化点击数据集构建(添加空数据检查) def build_click_dataset(hist_exposure, hist_click, sample_ratio=0.1): """构建点击数据集,包含负样本采样""" if hist_exposure.empty or hist_click.empty: print("⚠️ 历史曝光或点击数据为空,无法构建数据集") return pd.DataFrame() # 标记正样本 hist_click = hist_click.copy() hist_click['label'] = 1 # 高效标记负样本(使用集合操作) exposure_set = set(zip(hist_exposure['did'], hist_exposure['vid'])) click_set = set(zip(hist_click['did'], hist_click['vid'])) # 找出未点击的曝光 negative_set = exposure_set - click_set # 创建负样本DataFrame if negative_set: negative_dids, negative_vids = zip(*negative_set) negative_samples = pd.DataFrame({ 'did': list(negative_dids), 'vid': list(negative_vids), 'label': 0 }) # 采样负样本 if sample_ratio < 1.0: negative_samples = negative_samples.sample(frac=sample_ratio, random_state=42) else: negative_samples = pd.DataFrame(columns=['did', 'vid', 'label']) # 合并数据集 click_data = pd.concat([ hist_click[['did', 'vid', 'label']], negative_samples ], ignore_index=True) # 释放内存 del exposure_set, click_set, negative_set, negative_samples gc.collect() return click_data # 使用10%负样本比例 - 确保hist_click已定义 if not hist_exposure.empty and not hist_click.empty: print("构建点击数据集...") click_train_data = build_click_dataset(hist_exposure, hist_click, sample_ratio=0.1) else: print("⚠️ 无法构建点击数据集,因为历史曝光或点击数据为空") click_train_data = pd.DataFrame() # 4. 优化特征工程(解决分类特征问题) def add_click_features(df, did_features, vid_info, hist_click, hist_play): """添加关键特征,避免内存溢出""" if df.empty: return df # 基础特征(使用索引加速合并) if not did_features.empty and 'did' in did_features.columns: df = df.merge(did_features, on='did', how='left') if not vid_info.empty and 'vid' in vid_info.columns: df = df.merge(vid_info, on='vid', how='left') # 用户行为统计 user_click_count = pd.Series(dtype='int') if not hist_click.empty and 'did' in hist_click.columns: user_click_count = hist_click.groupby('did').size().rename('user_click_count') if not user_click_count.empty: df = df.merge(user_click_count, on='did', how='left') else: df['user_click_count'] = 0 user_total_play = pd.Series(dtype='float') if not hist_play.empty and 'did' in hist_play.columns and 'play_time' in hist_play.columns: user_total_play = hist_play.groupby('did')['play_time'].sum().rename('user_total_play') if not user_total_play.empty: df = df.merge(user_total_play, on='did', how='left') else: df['user_total_play'] = 0 # 视频热度统计 video_click_count = pd.Series(dtype='int') if not hist_click.empty and 'vid' in hist_click.columns: video_click_count = hist_click.groupby('vid').size().rename('video_click_count') if not video_click_count.empty: df = df.merge(video_click_count, on='vid', how='left') else: df['video_click_count'] = 0 avg_play_time = pd.Series(dtype='float') if not hist_play.empty and 'vid' in hist_play.columns and 'play_time' in hist_play.columns: avg_play_time = hist_play.groupby('vid')['play_time'].mean().rename('avg_play_time') if not avg_play_time.empty: df = df.merge(avg_play_time, on='vid', how='left') else: df['avg_play_time'] = 0 # 填充缺失值 fill_values = { 'user_click_count': 0, 'user_total_play': 0, 'video_click_count': df['video_click_count'].median() if 'video_click_count' in df else 0, 'avg_play_time': df['avg_play_time'].median() if 'avg_play_time' in df else 0 } for col, value in fill_values.items(): if col in df: df[col] = df[col].fillna(value) # 添加时间相关特征 if 'date' in df: df['day_of_week'] = pd.to_datetime(df['date']).dt.dayofweek.astype('int8') df['hour'] = pd.to_datetime(df['date']).dt.hour.astype('int8') return df # 添加特征 - 确保所有参数都已定义 if not click_train_data.empty: print("开始构建点击特征...") click_train_data = add_click_features( click_train_data, did_features, vid_info, hist_click, # 确保hist_click已定义 hist_play # 确保hist_play已定义 ) else: print("⚠️ 点击数据集为空,跳过特征构建") # 5. 修复分类特征问题 def get_categorical_features(df, base_features): """动态获取存在的分类特征""" existing_features = [] for feature in base_features: if feature in df.columns: try: # 尝试转换为数值,如果是数值则跳过 pd.to_numeric(df[feature], errors='raise') except: existing_features.append(feature) # 确保转换为category类型 df[feature] = df[feature].astype('category').cat.as_ordered() return existing_features # 基础分类特征列表 base_categorical_features = [ 'item_cid', 'item_type', 'item_assetSource', 'item_classify', 'item_isIntact', 'sid', 'stype', 'day_of_week', 'hour' ] # 动态获取存在的分类特征 categorical_features = [] if not click_train_data.empty: categorical_features = get_categorical_features(click_train_data, base_categorical_features) print(f"使用的分类特征: {categorical_features}") else: print("⚠️ 点击训练数据为空,无法获取分类特征") # 准备训练数据 if not click_train_data.empty: if 'date' in click_train_data.columns: X = click_train_data.drop(columns=['did', 'vid', 'label', 'date'], errors='ignore') else: X = click_train_data.drop(columns=['did', 'vid', 'label'], errors='ignore') y = click_train_data['label'] else: X, y = pd.DataFrame(), pd.Series() print("⚠️ 点击训练数据为空") # 划分数据集 if not X.empty and not y.empty: X_train, X_val, y_train, y_val = train_test_split( X, y, test_size=0.2, random_state=42, stratify=y ) else: print("⚠️ 训练数据为空,无法进行模型训练") X_train, X_val, y_train, y_val = pd.DataFrame(), pd.DataFrame(), pd.Series(), pd.Series() # 训练模型(优化参数) params = { 'objective': 'binary', 'metric': 'binary_logloss', 'boosting_type': 'gbdt', 'num_leaves': 63, 'learning_rate': 0.05, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_child_samples': 100, 'verbosity': -1 } if not X_train.empty: train_data = lgb.Dataset(X_train, label=y_train, categorical_feature=categorical_features) val_data = lgb.Dataset(X_val, label=y_val, categorical_feature=categorical_features) print("开始训练点击预测模型...") model_click = lgb.train( params, train_data, num_boost_round=1500, valid_sets=[val_data], callbacks=[ early_stopping(stopping_rounds=100, verbose=True), log_evaluation(period=50) ] ) else: model_click = None print("⚠️ 训练数据为空,跳过点击预测模型训练") # 6. 优化完播率数据集构建 def build_play_dataset(hist_play, vid_info, did_features, hist_click): """构建完播率数据集,优化内存使用""" if hist_play.empty: print("⚠️ 历史播放数据为空,无法构建完播率数据集") return pd.DataFrame() # 基础数据 play_data = hist_play[['did', 'vid', 'play_time']].copy() # 添加视频时长信息 if not vid_info.empty and 'vid' in vid_info.columns and 'item_duration' in vid_info.columns: play_data = play_data.merge( vid_info[['vid', 'item_duration']], on='vid', how='left' ) else: play_data['item_duration'] = 1.0 # 默认值 # 计算完播率 play_data['completion_rate'] = play_data['play_time'] / play_data['item_duration'] play_data['completion_rate'] = play_data['completion_rate'].clip(upper=1.0) # 添加用户特征 if not did_features.empty and 'did' in did_features.columns: play_data = play_data.merge( did_features, on='did', how='left' ) # 添加视频特征 if not vid_info.empty and 'vid' in vid_info.columns: vid_cols = [col for col in vid_info.columns if col != 'item_duration'] play_data = play_data.merge( vid_info[vid_cols], on='vid', how='left' ) # 用户平均完播率 play_data['user_avg_completion'] = play_data.groupby('did')['completion_rate'].transform('mean') play_data['user_play_count'] = play_data.groupby('did')['completion_rate'].transform('count') # 视频平均完播率 play_data['video_avg_completion'] = play_data.groupby('vid')['completion_rate'].transform('mean') play_data['video_completion_std'] = play_data.groupby('vid')['completion_rate'].transform('std') # 用户-视频互动特征 if not hist_click.empty and 'did' in hist_click.columns and 'vid' in hist_click.columns: user_vid_clicks = hist_click.groupby(['did', 'vid']).size().reset_index(name='user_vid_clicks') play_data = play_data.merge(user_vid_clicks, on=['did', 'vid'], how='left') else: play_data['user_vid_clicks'] = 0 # 填充缺失值 play_data['user_avg_completion'].fillna(play_data['completion_rate'].mean(), inplace=True) play_data['user_play_count'].fillna(1, inplace=True) play_data['video_avg_completion'].fillna(play_data['completion_rate'].median(), inplace=True) play_data['video_completion_std'].fillna(0, inplace=True) play_data['user_vid_clicks'].fillna(0, inplace=True) return play_data print("开始构建完播率数据集...") # 确保所有参数都已定义 if 'hist_play' in globals() and 'vid_info' in globals() and 'did_features' in globals() and 'hist_click' in globals(): play_train_data = build_play_dataset(hist_play, vid_info, did_features, hist_click) else: print("⚠️ 无法构建完播率数据集,因为所需变量未定义") play_train_data = pd.DataFrame() # 7. 训练完播率模型 if not play_train_data.empty: X_play = play_train_data.drop(columns=['did', 'vid', 'play_time', 'item_duration', 'completion_rate'], errors='ignore') y_play = play_train_data['completion_rate'] else: X_play, y_play = pd.DataFrame(), pd.Series() print("⚠️ 完播率训练数据为空") if not X_play.empty and not y_play.empty: X_train_play, X_val_play, y_train_play, y_val_play = train_test_split( X_play, y_play, test_size=0.2, random_state=42 ) else: print("⚠️ 完播率训练数据为空,无法进行模型训练") X_train_play, X_val_play, y_train_play, y_val_play = pd.DataFrame(), pd.DataFrame(), pd.Series(), pd.Series() # 获取完播率模型的分类特征 if not play_train_data.empty: play_categorical_features = get_categorical_features(play_train_data, base_categorical_features) print(f"完播率模型使用的分类特征: {play_categorical_features}") else: play_categorical_features = [] print("⚠️ 完播率训练数据为空,无法获取分类特征") # 训练参数 params_reg = { 'objective': 'regression', 'metric': 'mae', 'boosting_type': 'gbdt', 'num_leaves': 63, 'learning_rate': 0.03, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'lambda_l1': 0.1, 'lambda_l2': 0.1, 'min_data_in_leaf': 50, 'verbosity': -1 } if not X_train_play.empty: train_data_play = lgb.Dataset(X_train_play, label=y_train_play, categorical_feature=play_categorical_features) val_data_play = lgb.Dataset(X_val_play, label=y_val_play, categorical_feature=play_categorical_features) print("开始训练完播率模型...") model_play = lgb.train( params_reg, train_data_play, num_boost_round=2000, valid_sets=[val_data_play], callbacks=[ early_stopping(stopping_rounds=100, verbose=True), log_evaluation(period=50) ] ) else: model_play = None print("⚠️ 训练数据为空,跳过完播率模型训练") # 保存模型 if model_click: model_click.save_model('click_model.txt') if model_play: model_play.save_model('play_model.txt') joblib.dump(base_categorical_features, 'categorical_features.pkl') # 8. 添加预测流程 def predict_for_test_data(test_users, test_exposure, did_features, vid_info): """为测试数据生成预测结果""" if test_users.empty or test_exposure.empty: print("⚠️ 测试数据为空,无法进行预测") return pd.DataFrame() # 合并测试数据 test_data = test_exposure.merge(test_users, on='did', how='left') # 添加特征 test_data = add_click_features( test_data, did_features, vid_info, pd.DataFrame(), # 无历史点击 pd.DataFrame() # 无历史播放 ) # 动态获取分类特征 test_categorical_features = get_categorical_features(test_data, base_categorical_features) # 预测点击率 X_test = test_data.drop(columns=['did', 'vid', 'date'], errors='ignore') click_probs = [] if model_click and not X_test.empty: click_probs = model_click.predict(X_test) else: click_probs = [0.5] * len(test_data) # 默认值 # 预测完播率 completion_rates = [] if model_play and not X_test.empty: # 添加视频时长信息 if not vid_info.empty and 'vid' in vid_info.columns and 'item_duration' in vid_info.columns: test_data = test_data.merge(vid_info[['vid', 'item_duration']], on='vid', how='left') else: test_data['item_duration'] = 1.0 completion_rates = model_play.predict(X_test) else: completion_rates = [0.7] * len(test_data) # 默认值 # 计算综合得分 test_data['click_prob'] = click_probs test_data['completion_rate'] = completion_rates test_data['score'] = test_data['click_prob'] * test_data['completion_rate'] # 生成提交格式 submission = test_data.groupby('did').apply( lambda x: ' '.join(x.sort_values('score', ascending=False)['vid'].astype(str)[:100]) ).reset_index(name='vid_list') return submission # 加载预测数据 print("开始加载预测数据...") to_predict_users = load_data_safely('testA_pred_did.csv', dtype={'did': 'category'}) to_predict_exposure = load_data_safely('testA_did_show.csv', dtype={'did': 'category', 'vid': 'category'}) # 执行预测 if not to_predict_users.empty and not to_predict_exposure.empty: print("开始生成预测结果...") submission = predict_for_test_data(to_predict_users, to_predict_exposure, did_features, vid_info) # 保存结果 if not submission.empty: timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_file = f'submission_{timestamp}.csv' submission.to_csv(output_file, index=False) print(f"预测结果已保存至: {output_file}") else: print("⚠️ 预测结果为空,未保存文件") else: print("⚠️ 预测数据加载失败,无法生成结果")

import baostock as bs import pandas as pd import numpy as np from concurrent.futures import ThreadPoolExecutor from ta.momentum import RSIIndicator def get_all_a_shares(): """获取沪深A股列表(无ST)""" try: rs = bs.query_all_stock(day=pd.Timestamp.now().strftime('%Y-%m-%d')) df = pd.DataFrame(rs.data, columns=rs.fields) return df[(df['type'] == '1') & (~df['code_name'].str.contains('ST'))][['code', 'code_name']].values.tolist() except Exception as e: print(f"获取股票列表失败: {str(e)}") return [] def get_rsi(stock): """带连接健康检查的RSI计算""" code, name = stock for _ in range(3): # 最大重试次数 try: # 检查全局连接 if not bs._login._is_login: bs.login() # 获取数据 end_date = pd.Timestamp.now().strftime('%Y-%m-%d') start_date = (pd.Timestamp.now() - pd.Timedelta(days=60)).strftime('%Y-%m-%d') rs = bs.query_history_k_data( code, "date,close", start_date=start_date, end_date=end_date, frequency="d", adjustflag="2" ) if rs.error_code != '0': continue df = pd.DataFrame(rs.data, columns=rs.fields) if len(df) < 30: return None df['close'] = pd.to_numeric(df['close']) rsi = RSIIndicator(df['close'], 14).rsi().iloc[-1] return (code, name, rsi) if not np.isnan(rsi) else None except (bs.SocketError, ConnectionResetError) as e: print(f"连接异常,正在重试... ({code})") bs.logout() bs.login() continue except Exception as e: print(f"未知错误: {str(e)}") continue return None def main(): try: bs.login() stocks = get_all_a_shares() print(f"待处理股票数量:{len(stocks)}") results = [] with ThreadPoolExecutor(max_workers=8) as executor: # 降低并发数 futures = [executor.submit(get_rsi, stock) for stock in stocks] for future in futures: if (result := future.result()) and result[2] < 25: results.append(result) print("\nRSI低于25的股票:") print("代码\t名称\t\tRSI") for item in sorted(results, key=lambda x: x[2]): print(f"{item[0]}\t{item[1][:6]}\t{item[2]:.2f}") finally: bs.logout() if __name__ == "__main__": main()获取股票列表失败: 'type' 待处理股票数量:0

最新推荐

recommend-type

Python DataFrame设置/更改列表字段/元素类型的方法

本篇文章将详细介绍如何在Python DataFrame中设置或更改列表字段及其元素类型。 首先,DataFrame的字段通常由Series组成,而Series的数据类型是可变的,这使得我们可以方便地对列进行类型转换。在题目中提到的情况...
recommend-type

基于西门子S7-300 PLC的全自动生产线包装机设计与实现

基于西门子S7-300 PLC的全自动生产线包装机的设计与实现。主要内容涵盖硬件配置、IO表设计、源程序编写、单机组态以及一些实用技巧。文中特别强调了心跳检测机制、机械手定位精度控制、硬件连接质量对系统稳定性的影响,以及IO信号滤波参数设置的重要性。通过具体的代码实例展示了如何确保系统的可靠性和稳定性。 适合人群:从事工业自动化领域的工程师和技术人员,特别是那些需要深入了解PLC控制系统设计的人群。 使用场景及目标:适用于希望提升PLC编程技能、优化自动化生产线性能的专业人士。目标是帮助读者掌握从硬件选型到软件编程的全流程设计方法,提高生产效率和产品质量。 其他说明:本文不仅提供了详细的理论解释,还分享了许多实践经验,如心跳检测代码、机械手定位控制、信号滤波等,有助于解决实际项目中遇到的问题。
recommend-type

Visual C++.NET编程技术实战指南

根据提供的文件信息,可以生成以下知识点: ### Visual C++.NET编程技术体验 #### 第2章 定制窗口 - **设置窗口风格**:介绍了如何通过编程自定义窗口的外观和行为。包括改变窗口的标题栏、边框样式、大小和位置等。这通常涉及到Windows API中的`SetWindowLong`和`SetClassLong`函数。 - **创建六边形窗口**:展示了如何创建一个具有特殊形状边界的窗口,这类窗口不遵循标准的矩形形状。它需要使用`SetWindowRgn`函数设置窗口的区域。 - **创建异形窗口**:扩展了定制窗口的内容,提供了创建非标准形状窗口的方法。这可能需要创建一个不规则的窗口区域,并将其应用到窗口上。 #### 第3章 菜单和控制条高级应用 - **菜单编程**:讲解了如何创建和修改菜单项,处理用户与菜单的交互事件,以及动态地添加或删除菜单项。 - **工具栏编程**:阐述了如何使用工具栏,包括如何创建工具栏按钮、分配事件处理函数,并实现工具栏按钮的响应逻辑。 - **状态栏编程**:介绍了状态栏的创建、添加不同类型的指示器(如文本、进度条等)以及状态信息的显示更新。 - **为工具栏添加皮肤**:展示了如何为工具栏提供更加丰富的视觉效果,通常涉及到第三方的控件库或是自定义的绘图代码。 #### 第5章 系统编程 - **操作注册表**:解释了Windows注册表的结构和如何通过程序对其进行读写操作,这对于配置软件和管理软件设置非常关键。 - **系统托盘编程**:讲解了如何在系统托盘区域创建图标,并实现最小化到托盘、从托盘恢复窗口的功能。 - **鼠标钩子程序**:介绍了钩子(Hook)技术,特别是鼠标钩子,如何拦截和处理系统中的鼠标事件。 - **文件分割器**:提供了如何将文件分割成多个部分,并且能够重新组合文件的技术示例。 #### 第6章 多文档/多视图编程 - **单文档多视**:展示了如何在同一个文档中创建多个视图,这在文档编辑软件中非常常见。 #### 第7章 对话框高级应用 - **实现无模式对话框**:介绍了无模式对话框的概念及其应用场景,以及如何实现和管理无模式对话框。 - **使用模式属性表及向导属性表**:讲解了属性表的创建和使用方法,以及如何通过向导性质的对话框引导用户完成多步骤的任务。 - **鼠标敏感文字**:提供了如何实现点击文字触发特定事件的功能,这在阅读器和编辑器应用中很有用。 #### 第8章 GDI+图形编程 - **图像浏览器**:通过图像浏览器示例,展示了GDI+在图像处理和展示中的应用,包括图像的加载、显示以及基本的图像操作。 #### 第9章 多线程编程 - **使用全局变量通信**:介绍了在多线程环境下使用全局变量进行线程间通信的方法和注意事项。 - **使用Windows消息通信**:讲解了通过消息队列在不同线程间传递信息的技术,包括发送消息和处理消息。 - **使用CriticalSection对象**:阐述了如何使用临界区(CriticalSection)对象防止多个线程同时访问同一资源。 - **使用Mutex对象**:介绍了互斥锁(Mutex)的使用,用以同步线程对共享资源的访问,保证资源的安全。 - **使用Semaphore对象**:解释了信号量(Semaphore)对象的使用,它允许一个资源由指定数量的线程同时访问。 #### 第10章 DLL编程 - **创建和使用Win32 DLL**:介绍了如何创建和链接Win32动态链接库(DLL),以及如何在其他程序中使用这些DLL。 - **创建和使用MFC DLL**:详细说明了如何创建和使用基于MFC的动态链接库,适用于需要使用MFC类库的场景。 #### 第11章 ATL编程 - **简单的非属性化ATL项目**:讲解了ATL(Active Template Library)的基础使用方法,创建一个不使用属性化组件的简单项目。 - **使用ATL开发COM组件**:详细阐述了使用ATL开发COM组件的步骤,包括创建接口、实现类以及注册组件。 #### 第12章 STL编程 - **list编程**:介绍了STL(标准模板库)中的list容器的使用,讲解了如何使用list实现复杂数据结构的管理。 #### 第13章 网络编程 - **网上聊天应用程序**:提供了实现基本聊天功能的示例代码,包括客户端和服务器的通信逻辑。 - **简单的网页浏览器**:演示了如何创建一个简单的Web浏览器程序,涉及到网络通信和HTML解析。 - **ISAPI服务器扩展编程**:介绍了如何开发ISAPI(Internet Server API)服务器扩展来扩展IIS(Internet Information Services)的功能。 #### 第14章 数据库编程 - **ODBC数据库编程**:解释了ODBC(开放数据库互联)的概念,并提供了使用ODBC API进行数据库访问的示例。 - **ADO编程**:介绍了ADO(ActiveX Data Objects)技术,讲解了如何使用ADO进行数据库的增删改查等操作。 #### 第15章 HTML帮助系统编程 - **创建HTML帮助文件**:讲解了如何创建HTML帮助文件(.chm),这是微软帮助系统的一种形式。 - **区分上下文帮助**:提供了在应用程序中实现上下文敏感帮助的技术示例。 #### 第16章 安装和部署项目 - **用安装程序向导创建安装项目**:介绍了如何使用Visual Studio中的安装和部署项目向导,快速创建安装程序。 - **部署应用程序**:阐述了部署应用程序到目标系统的过程,以及如何确保应用程序的正确安装和运行。 以上内容涵盖了Visual C++.NET编程技术体验一书中涉及的各个技术点,并对每个章节中的示例做了详细的说明。这些知识点对于理解和掌握Visual C++.NET编程非常重要,并能够帮助读者在实际项目开发中应用这些技术。
recommend-type

HarmonyOS内核深度探秘:优化自由行旅游系统的策略

# 1. HarmonyOS内核概述与旅游系统需求分析 ## 1.1 HarmonyOS内核概述 HarmonyOS(鸿蒙操作系统)是由华为开发的一个分布式操作系统,旨在提供跨多种设备的无缝体验。其内核设计理念强调高效、安全和模块化,以微内核架构和分布式能力
recommend-type

tkinter模块所有控件

<think>好的,我现在需要回答用户关于Tkinter模块中所有控件列表的问题。首先,我需要回忆Tkinter的基础知识,确保自己了解各个控件的名称和用途。用户希望得到所有支持的控件列表,所以必须全面覆盖,不能遗漏。 首先,我应该从Tkinter的标准控件开始。常见的控件包括Label、Button、Entry这些基础部件。然后是Frame,用于布局,还有Canvas用于绘图。接下来是Checkbutton、Radiobutton,这些属于选择类控件。Listbox和Scrollbar通常一起使用,处理滚动内容。还有Scale(滑块)、Spinbox、Menu、Menubutton这些可能
recommend-type

局域网五子棋游戏:娱乐与聊天的完美结合

标题“网络五子棋”和描述“适合于局域网之间娱乐和聊天!”以及标签“五子棋 网络”所涉及的知识点主要围绕着五子棋游戏的网络版本及其在局域网中的应用。以下是详细的知识点: 1. 五子棋游戏概述: 五子棋是一种两人对弈的纯策略型棋类游戏,又称为连珠、五子连线等。游戏的目标是在一个15x15的棋盘上,通过先后放置黑白棋子,使得任意一方先形成连续五个同色棋子的一方获胜。五子棋的规则简单,但策略丰富,适合各年龄段的玩家。 2. 网络五子棋的意义: 网络五子棋是指可以在互联网或局域网中连接进行对弈的五子棋游戏版本。通过网络版本,玩家不必在同一地点即可进行游戏,突破了空间限制,满足了现代人们快节奏生活的需求,同时也为玩家们提供了与不同对手切磋交流的机会。 3. 局域网通信原理: 局域网(Local Area Network,LAN)是一种覆盖较小范围如家庭、学校、实验室或单一建筑内的计算机网络。它通过有线或无线的方式连接网络内的设备,允许用户共享资源如打印机和文件,以及进行游戏和通信。局域网内的计算机之间可以通过网络协议进行通信。 4. 网络五子棋的工作方式: 在局域网中玩五子棋,通常需要一个客户端程序(如五子棋.exe)和一个服务器程序。客户端负责显示游戏界面、接受用户输入、发送落子请求给服务器,而服务器负责维护游戏状态、处理玩家的游戏逻辑和落子请求。当一方玩家落子时,客户端将该信息发送到服务器,服务器确认无误后将更新后的棋盘状态传回给所有客户端,更新显示。 5. 五子棋.exe程序: 五子棋.exe是一个可执行程序,它使得用户可以在个人计算机上安装并运行五子棋游戏。该程序可能包含了游戏的图形界面、人工智能算法(如果支持单机对战AI的话)、网络通信模块以及游戏规则的实现。 6. put.wav文件: put.wav是一个声音文件,很可能用于在游戏进行时提供声音反馈,比如落子声。在网络环境中,声音文件可能被用于提升玩家的游戏体验,尤其是在局域网多人游戏场景中。当玩家落子时,系统会播放.wav文件中的声音,为游戏增添互动性和趣味性。 7. 网络五子棋的技术要求: 为了确保多人在线游戏的顺利进行,网络五子棋需要具备一些基本的技术要求,包括但不限于稳定的网络连接、高效的数据传输协议(如TCP/IP)、以及安全的数据加密措施(如果需要的话)。此外,还需要有一个良好的用户界面设计来提供直观和舒适的用户体验。 8. 社交与娱乐: 网络五子棋除了是一个娱乐游戏外,它还具有社交功能。玩家可以通过游戏内的聊天系统进行交流,分享经验和策略,甚至通过网络寻找新的朋友。这使得网络五子棋不仅是一个个人娱乐工具,同时也是一种社交活动。 总结来说,网络五子棋结合了五子棋游戏的传统魅力和现代网络技术,使得不同地区的玩家能够在局域网内进行娱乐和聊天,既丰富了人们的娱乐生活,又加强了人际交流。而实现这一切的基础在于客户端程序的设计、服务器端的稳定运行、局域网的高效通信,以及音效文件增强的游戏体验。
recommend-type

自由行旅游新篇章:HarmonyOS技术融合与系统架构深度解析

# 1. HarmonyOS技术概述 ## 1.1 HarmonyOS的起源与发展 HarmonyOS(鸿蒙操作系统)由华为公司开发,旨在构建全场景分布式OS,以应对不同设备间的互联问题。自从2019年首次发布以来,HarmonyOS迅速成长,并迅速应用于智能手机、平板、智能穿戴、车载设备等多种平台。该系
recommend-type

足底支撑相到达73%是什么问题

<think>好的,我现在要处理用户的问题:“足底支撑相达到73%可能的原因及影响”。首先,需要理解用户提到的“足底支撑相73%”具体指什么。足底支撑相通常指步态周期中脚与地面接触的时间占比,正常范围大约在60%-62%左右。如果达到73%,明显超出正常范围,可能意味着步态异常。 接下来,需要确定可能的原因。可能的原因包括生物力学异常,比如足弓异常(扁平足或高弓足)、踝关节活动度受限,或者肌肉力量不足,特别是小腿和足部肌肉。另外,神经系统疾病如脑卒中或帕金森病可能影响步态控制。骨骼关节问题如关节炎、髋膝关节病变也可能导致支撑时间延长。还有代偿性步态,比如因疼痛或受伤而改变步态模式。 然后是
recommend-type

宾馆预约系统开发与优化建议

宾馆预约系统是一个典型的在线服务应用,它允许用户通过互联网平台预定宾馆房间。这种系统通常包含多个模块,比如用户界面、房态管理、预订处理、支付处理和客户评价等。从技术层面来看,构建一个宾馆预约系统涉及到众多的IT知识和技术细节,下面将详细说明。 ### 标题知识点 - 宾馆预约系统 #### 1. 系统架构设计 宾馆预约系统作为一个完整的应用,首先需要进行系统架构设计,决定其采用的软件架构模式,如B/S架构或C/S架构。此外,系统设计还需要考虑扩展性、可用性、安全性和维护性。一般会采用三层架构,包括表示层、业务逻辑层和数据访问层。 #### 2. 前端开发 前端开发主要负责用户界面的设计与实现,包括用户注册、登录、房间搜索、预订流程、支付确认、用户反馈等功能的页面展示和交互设计。常用的前端技术栈有HTML, CSS, JavaScript, 以及各种前端框架如React, Vue.js或Angular。 #### 3. 后端开发 后端开发主要负责处理业务逻辑,包括用户管理、房间状态管理、订单处理等。后端技术包括但不限于Java (使用Spring Boot框架), Python (使用Django或Flask框架), PHP (使用Laravel框架)等。 #### 4. 数据库设计 数据库设计对系统的性能和可扩展性至关重要。宾馆预约系统可能需要设计的数据库表包括用户信息表、房间信息表、预订记录表、支付信息表等。常用的数据库系统有MySQL, PostgreSQL, MongoDB等。 #### 5. 网络安全 网络安全是宾馆预约系统的重要考虑因素,包括数据加密、用户认证授权、防止SQL注入、XSS攻击、CSRF攻击等。系统需要实现安全的认证机制,比如OAuth或JWT。 #### 6. 云服务和服务器部署 现代的宾馆预约系统可能部署在云平台上,如AWS, Azure, 腾讯云或阿里云。在云平台上,系统可以按需分配资源,提高系统的稳定性和弹性。 #### 7. 付款接口集成 支付模块需要集成第三方支付接口,如支付宝、微信支付、PayPal等,需要处理支付请求、支付状态确认、退款等业务。 #### 8. 接口设计与微服务 系统可能采用RESTful API或GraphQL等接口设计方式,提供服务的微服务化,以支持不同设备和服务的接入。 ### 描述知识点 - 这是我个人自己做的 请大家帮忙修改哦 #### 个人项目经验与团队合作 描述中的这句话暗示了该宾馆预约系统可能是由一个个人开发者创建的。个人开发和团队合作在软件开发流程中有着显著的不同。个人开发者需要关注的方面包括项目管理、需求分析、代码质量保证、测试和部署等。而在团队合作中,每个成员会承担不同的职责,需要有效的沟通和协作。 #### 用户反馈与迭代 描述还暗示了该系统目前处于需要外部反馈和修改的阶段。这表明系统可能还处于开发或测试阶段,需要通过用户的实际使用反馈来不断迭代改进。 ### 标签知识点 - 200 #### 未提供信息 “200”这个标签可能指的是HTTP状态码中表示请求成功(OK)的200状态码。但是,由于没有提供更多的上下文信息,无法进一步分析其在本例中的具体含义。 ### 压缩包子文件的文件名称列表知识点 - 1111 #### 文件命名与管理 “1111”这个文件名称可能是一个版本号、日期标记或者是一个简单的标识符。文件命名应当遵循一定的规则,以确保文件的可追溯性和管理的便利性。在软件开发过程中,合理组织文件和版本控制(如使用Git)是必不可少的。 综上所述,宾馆预约系统的开发是一项复杂的工程,它涉及前后端的开发、数据库设计、系统安全、接口设计等多个方面。开发者在开发过程中需要不断学习和应用各类IT知识,以确保系统能够安全、高效、稳定地运行。而对于个人开发项目,如何合理利用有限资源、高效地管理和优化项目过程也是至关重要的。
recommend-type

HarmonyOS在旅游领域的创新:揭秘最前沿应用实践

# 1. HarmonyOS旅游应用的市场前景分析 随着数字化转型的不断深入,旅游行业正面临着前所未有的变革。在这样的背景下,HarmonyOS作为一种新兴的操作系统,带来了全新的市场前景和机遇。本章将深入分析HarmonyOS在旅游应用领域的市场潜力、用户需求、以及技术创新对旅游体验的改善。 ## 1.1 市场需求与用户画像分析 旅游市场的需求持续增