活动介绍

绘制mse和snr的matlab作图

时间: 2024-01-02 19:00:54 浏览: 332
要绘制MSE(均方误差)和SNR(信噪比)的MATLAB作图,我们可以使用plot函数来完成。 首先,我们需要准备好数据。假设我们有一个长度为N的信号x,以及一个相同长度的估计信号x_hat。那么MSE可以计算为: MSE = sum((x - x_hat)^2) / N SNR可以计算为: SNR = 10 * log10(sum(x^2) / sum((x - x_hat)^2)) 接下来,我们可以创建一个长度为N的误差向量error,其中error(i) = (x - x_hat)^2。然后,我们可以使用cumsum函数计算误差的累积和。使用mean函数计算累积均值,即MSE。 我们还可以计算信号的能量,即sum(x^2),并将其与误差的累积和进行比较,然后使用log10函数计算SNR。最后,我们可以使用plot函数将MSE和SNR作为函数的输入来绘制图形。 下面是MATLAB代码的示例: ```MATLAB % 准备数据 N = 100; % 信号长度 x = randn(N, 1); % 原始信号 x_hat = x + randn(N, 1); % 估计信号 % 计算误差和MSE error = (x - x_hat).^2; % 误差向量 cumulative_sum_error = cumsum(error); % 误差的累积和 mse = cumulative_sum_error ./ (1:N)'; % MSE % 计算SNR signal_energy = sum(x.^2); % 信号能量 snr = 10 * log10(signal_energy ./ cumulative_sum_error); % SNR % 绘制图形 plot(1:N, mse, 'b', 'LineWidth', 1.5); % MSE为蓝色 hold on; plot(1:N, snr, 'r', 'LineWidth', 1.5); % SNR为红色 legend('MSE', 'SNR'); xlabel('样本序列'); ylabel('值'); title('MSE和SNR的变化'); grid on; ``` 通过运行以上代码,我们将得到一个显示MSE和SNR的变化的MATLAB作图。
阅读全文

相关推荐

Fs = 100e6; % 采样频率100MHz f = 40e6; % 信号频率40MHz tau_true = 15; % 真实时延(采样点) N = 1024; % 信号长度 SNR_dB = [-5, 5, 10]; % 信噪比 num_monte = 100; % 蒙特卡洛模拟次数 methods = {'基本互相关', 'PATH', 'ROTH', 'SCOT'}; mse = zeros(length(SNR_dB), length(methods)); % 存储各SNR和各方法的MSE for snr_idx = 1:length(SNR_dB) snr = SNR_dB(snr_idx); tau_estimates = zeros(num_monte, length(methods)); for mc = 1:num_monte % 生成信号 t = (0:N-1)/Fs; s = cos(2*pi*f*t); s_delayed = [zeros(1,tau_true), s(1:end-tau_true)]; % 添加噪声 Ps = mean(s.^2); % 信号功率 Pn = Ps / (10^(snr/10)); noise_x1 = sqrt(Pn)*randn(1,N); noise_x2 = sqrt(Pn)*randn(1,N); x1 = s + noise_x1; x2 = s_delayed + noise_x2; % 基本互相关 [corr_base, lags] = xcorr(x1, x2, 'coeff'); [~, idx] = max(abs(corr_base)); tau_est_base = lags(idx); tau_estimates(mc,1) = tau_est_base; % 广义互相关 nfft = 2^nextpow2(2*N-1); X1 = fft(x1, nfft); X2 = fft(x2, nfft); Pxy = X1 .* conj(X2); Pxx1 = X1 .* conj(X1); Pxx2 = X2 .* conj(X2); % PATH G_PATH = 1 ./ (abs(Pxy) + eps); GCC_PATH = ifft(Pxy .* G_PATH); GCC_PATH = [GCC_PATH(end-N+2:end); GCC_PATH(1:N)]; % 调整延迟轴 [~, idx_PATH] = max(abs(GCC_PATH)); tau_est_PATH = idx_PATH - N; % 可能需要调整索引到lags tau_estimates(mc,2) = tau_est_PATH; % ROTH G_ROTH = 1 ./ (Pxx1 + eps); GCC_ROTH = ifft(Pxy .* G_ROTH); GCC_ROTH = [GCC_ROTH(end-N+2:end); GCC_ROTH(1:N)]; [~, idx_ROTH] = max(abs(GCC_ROTH)); tau_est_ROTH = idx_ROTH - N; tau_estimates(mc,3) = tau_est_ROTH; % SCOT G_SCOT = 1 ./ sqrt(Pxx1 .* Pxx2 + eps); GCC_SCOT = ifft(Pxy .* G_SCOT); GCC_SCOT = [GCC_SCOT(end-N+2:end); GCC_SCOT(1:N)]; [~, idx_SCOT] = max(abs(GCC_SCOT)); tau_est_SCOT = idx_SCOT - N; tau_estimates(mc,4) = tau_est_SCOT; end % 计算MSE for m = 1:length(methods) mse(snr_idx, m) = mean( (tau_estimates(:,m) - tau_true).^2 ); end end % 绘制MSE随SNR变化的曲线 figure; hold on; colors = {'r', 'g', 'b', 'm'}; markers = {'o', 's', 'd', '^'}; for m = 1:length(methods) plot(SNR_dB, mse(:,m), [colors{m} markers{m} '-'], 'LineWidth', 1.5, 'MarkerSize', 8); end xlabel('SNR (dB)'); ylabel('MSE'); title('时延估计的MSE比较'); legend(methods); grid on; hold off; % 绘制某一SNR下的互相关函数示例(如SNR=-5dB) snr_example = -5; % 重新生成一次信号并计算 t = (0:N-1)/Fs; s = cos(2*pi*f*t); s_delayed = [zeros(1,tau_true), s(1:end-tau_true)]; Ps = mean(s.^2); Pn = Ps / (10^(snr_example/10)); noise_x1 = sqrt(Pn)*randn(1,N); noise_x2 = sqrt(Pn)*randn(1,N); x1 = s + noise_x1; x2 = s_delayed + noise_x2; % 计算各方法互相关 [corr_base, lags] = xcorr(x1, x2, 'coeff'); nfft = 2^nextpow2(2*N-1); X1 = fft(x1, nfft); X2 = fft(x2, nfft); Pxy = X1 .* conj(X2); Pxx1 = X1 .* conj(X1); Pxx2 = X2 .* conj(X2); % PATH G_PATH = 1 ./ (abs(Pxy) + eps); GCC_PATH = ifft(Pxy .* G_PATH); GCC_PATH = [GCC_PATH(end-N+2:end); GCC_PATH(1:N)]; % ROTH G_ROTH = 1 ./ (Pxx1 + eps); GCC_ROTH = ifft(Pxy .* G_ROTH); GCC_ROTH = [GCC_ROTH(end-N+2:end); GCC_ROTH(1:N)]; % SCOT G_SCOT = 1 ./ sqrt(Pxx1 .* Pxx2 + eps); GCC_SCOT = ifft(Pxy .* G_SCOT); GCC_SCOT = [GCC_SCOT(end-N+2:end); GCC_SCOT(1:N)]; % 绘制互相关曲线 figure; subplot(2,2,1); plot(lags, abs(corr_base), 'b'); title('基本互相关'); xlabel('时延(采样点)'); ylabel('幅值'); xlim([0, 30]); subplot(2,2,2); plot(lags, abs(GCC_PATH), 'r'); title('PATH广义互相关'); xlabel('时延(采样点)'); ylabel('幅值'); xlim([0, 30]); subplot(2,2,3); plot(lags, abs(GCC_ROTH), 'g'); title('ROTH广义互相关'); xlabel('时延(采样点)'); ylabel('幅值'); xlim([0, 30]); subplot(2,2,4); plot(lags, abs(GCC_SCOT), 'm'); title('SCOT广义互相关'); xlabel('时延(采样点)'); ylabel('幅值'); xlim([0, 30]); sgtitle(['SNR = ' num2str(snr_example) ' dB时的互相关函数对比']);

Fs = 100e6; % 采样频率 f = 40e6; % 信号频率 tau_true = 15; % 真实时延(采样点) N = 1024; % 信号长度 SNR_dB = [-5,5,10]; % 信噪比 num_monte = 1000; % 蒙特卡洛模拟次数 % 预分配存储 mse = zeros(length(SNR_dB), 4); for snr_idx = 1:length(SNR_dB) snr = SNR_dB(snr_idx); estimates = zeros(num_monte, 4); for mc = 1:num_monte % 生成信号与延迟 t = (0:N-1)/Fs; s = cos(2*pi*f*t); s_delayed = [zeros(1,tau_true), s(1:end-tau_true)]; % 添加噪声 Ps = 0.5; % 余弦信号功率为0.5 Pn = Ps / 10^(snr/10); x1 = s + sqrt(Pn)*randn(1,N); x2 = s_delayed + sqrt(Pn)*randn(1,N); % 基本互相关 [corr_base, lags] = xcorr(x1, x2); [~, idx] = max(abs(corr_base)); estimates(mc,1) = lags(idx); % 广义互相关(频域) nfft = 2^nextpow2(2*N-1); X1 = fft(x1, nfft); X2 = fft(x2, nfft); Pxy = X1 .* conj(X2); Pxx1 = X1 .* conj(X1); Pxx2 = X2 .* conj(X2); % PATH G_PATH = 1./(abs(Pxy) + eps); GCC_PATH = ifft(Pxy .* G_PATH); GCC_PATH = fftshift(GCC_PATH); [~, idx] = max(abs(GCC_PATH)); estimates(mc,2) = idx - nfft/2 -1; % ROTH G_ROTH = 1./(Pxx1 + eps); GCC_ROTH = ifft(Pxy .* G_ROTH); GCC_ROTH = fftshift(GCC_ROTH); [~, idx] = max(abs(GCC_ROTH)); estimates(mc,3) = idx - nfft/2 -1; % SCOT G_SCOT = 1./(sqrt(Pxx1.*Pxx2) + eps); GCC_SCOT = ifft(Pxy .* G_SCOT); GCC_SCOT = fftshift(GCC_SCOT); [~, idx] = max(abs(GCC_SCOT)); estimates(mc,4) = idx - nfft/2 -1; end % 绘制互相关曲线 figure; subplot(2,2,1); plot(lags, abs(corr_base), 'b'); title('基本互相关'); xlabel('时延(采样点)'); ylabel('幅值'); xlim([0, 30]); subplot(2,2,2); plot(lags, abs(GCC_PATH), 'r'); title('PATH广义互相关'); xlabel('时延(采样点)'); ylabel('幅值'); xlim([0, 30]); subplot(2,2,3); plot(lags, abs(GCC_ROTH), 'g'); title('ROTH广义互相关'); xlabel('时延(采样点)'); ylabel('幅值'); xlim([0, 30]); subplot(2,2,4); plot(lags, abs(GCC_SCOT), 'm'); title('SCOT广义互相关'); xlabel('时延(采样点)'); ylabel('幅值'); xlim([0, 30]); sgtitle(['SNR = ' num2str(snr_example) ' dB时的互相关函数对比']); % 计算MSE for m = 1:4 mse(snr_idx, m) = mean((estimates(:,m) - tau_true).^2); end end以上代码出现错误错误使用 plot 向量长度必须相同。 出错 shiyan (第 71 行) plot(lags, abs(GCC_PATH), ‘r’)怎么修改并给出改后的代码

优化一下下面的代码,给我优化后的完整的代码:classdef TDMPerformanceAnalyzer < TDMSystem properties analysisResults % 分析结果结构体 snrRange % SNR测试范围 slotRange % 时隙数量测试范围 iterationData % 迭代分析数据 comparisonData % 比较分析数据 efficiencyData % 效率分析数据 summaryTable % 汇总结果表格 end methods function obj = TDMPerformanceAnalyzer(params) % 构造函数 - 验证和初始化参数 if ~isstruct(params) error('输入参数必须是结构体'); end % 调用父类构造函数 obj@TDMSystem(params); % 初始化分析参数 if ~isfield(params, 'snrRange') % 从其他代码中获取的SNR值 obj.snrRange = [15 25 35]; % 使用前面三个代码中的SNR值 else obj.snrRange = params.snrRange; end if ~isfield(params, 'slotRange') % 从其他代码中获取的时隙值 obj.slotRange = [30 60 90]; % 使用前面三个代码中的时隙值 else obj.slotRange = params.slotRange; end % 初始化结果存储 obj.analysisResults = struct(); obj.iterationData = struct(); obj.comparisonData = struct(); obj.efficiencyData = struct(); obj.summaryTable = table(); end function obj = runPerformanceAnalysis(obj) % 运行全面性能分析 fprintf('开始TDM系统性能分析...\n'); try % 1. 基础性能分析 fprintf('执行基础性能分析...\n'); obj = obj.runBaseAnalysis(); % 2. SNR敏感性分析 fprintf('执行SNR敏感性分析...\n'); obj = obj.runSNRAnalysis(); % 3. 时隙数量分析 fprintf('执行时隙数量分析...\n'); obj = obj.runSlotAnalysis(); % 4. 策略比较分析 fprintf('执行策略比较分析...\n'); obj = obj.runStrategyComparison(); % 5. 效率分析 fprintf('执行系统效率分析...\n'); obj = obj.runEfficiencyAnalysis(); % 6. 生成汇总表格 fprintf('生成性能对比汇总表...\n'); obj = obj.generateSummaryTable(); % 7. 可视化分析结果 fprintf('可视化分析结果...\n'); obj.visualizeAnalysisResults(); % 8. 导出汇总表格 obj.exportSummaryTable(); fprintf('性能分析完成!\n'); catch ME fprintf('分析过程中发生错误: %s\n', ME.message); rethrow(ME); end end function obj = runBaseAnalysis(obj) % 执行基础性能分析 % 复用父类的仿真逻辑 obj = obj.runSimulation(); % 保存基础分析结果 obj.analysisResults.base = struct(); obj.analysisResults.base.ber = obj.ber; obj.analysisResults.base.snr = obj.performance.snr; obj.analysisResults.base.corr = obj.performance.corr; obj.analysisResults.base.slotAllocation = obj.allocatedSlots; obj.analysisResults.base.slotUtilization = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; end function obj = runSNRAnalysis(obj) % 执行SNR敏感性分析 numSignals = obj.params.numSignals; numSNR = length(obj.snrRange); % 预分配结果数组 berResults = zeros(numSignals, numSNR); snrResults = zeros(numSignals, numSNR); corrResults = zeros(numSignals, numSNR); slotUtilization = zeros(numSNR, 1); % 保存当前SNR设置 originalSNR = obj.params.snrDb; % 对每个SNR值执行仿真 for i = 1:numSNR fprintf('SNR分析: %d/%d (SNR = %.1f dB)\n', i, numSNR, obj.snrRange(i)); % 设置当前SNR obj.params.snrDb = obj.snrRange(i); % 运行仿真 obj = obj.runSimulation(); % 保存结果 berResults(:, i) = obj.ber; snrResults(:, i) = obj.performance.snr; corrResults(:, i) = obj.performance.corr; slotUtilization(i) = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; end % 恢复原始SNR设置 obj.params.snrDb = originalSNR; % 保存SNR分析结果 obj.analysisResults.snr = struct(); obj.analysisResults.snr.range = obj.snrRange; obj.analysisResults.snr.ber = berResults; obj.analysisResults.snr.snr = snrResults; obj.analysisResults.snr.corr = corrResults; obj.analysisResults.snr.slotUtilization = slotUtilization; end function obj = runSlotAnalysis(obj) % 执行时隙数量分析 numSignals = obj.params.numSignals; numSlots = length(obj.slotRange); % 预分配结果数组 berResults = zeros(numSignals, numSlots); snrResults = zeros(numSignals, numSlots); corrResults = zeros(numSignals, numSlots); efficiency = zeros(numSlots, 1); slotUtilization = zeros(numSlots, 1); % 保存当前时隙设置 originalSlots = obj.params.totalSlots; % 对每个时隙数量执行仿真 for i = 1:numSlots fprintf('时隙分析: %d/%d (时隙数 = %d)\n', i, numSlots, obj.slotRange(i)); % 设置当前时隙数量 obj.params.totalSlots = obj.slotRange(i); % 运行仿真 obj = obj.runSimulation(); % 保存结果 berResults(:, i) = obj.ber; snrResults(:, i) = obj.performance.snr; corrResults(:, i) = obj.performance.corr; efficiency(i) = sum(obj.performance.snr) / numSignals; slotUtilization(i) = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; end % 恢复原始时隙设置 obj.params.totalSlots = originalSlots; % 保存时隙分析结果 obj.analysisResults.slots = struct(); obj.analysisResults.slots.range = obj.slotRange; obj.analysisResults.slots.ber = berResults; obj.analysisResults.slots.snr = snrResults; obj.analysisResults.slots.corr = corrResults; obj.analysisResults.slots.efficiency = efficiency; obj.analysisResults.slots.slotUtilization = slotUtilization; end function obj = runStrategyComparison(obj) % 执行不同时隙分配策略的比较分析 numSignals = obj.params.numSignals; strategies = {'fixed', 'priority', 'dynamic'}; numStrategies = length(strategies); % 预分配结果数组 berResults = zeros(numSignals, numStrategies); snrResults = zeros(numSignals, numStrategies); corrResults = zeros(numSignals, numStrategies); slotAllocation = zeros(numSignals, numStrategies); efficiency = zeros(numStrategies, 1); slotUtilization = zeros(numStrategies, 1); % 保存当前策略设置 originalStrategy = obj.params.strategy; % 对每个策略执行仿真 for i = 1:numStrategies fprintf('策略比较: %d/%d (策略 = %s)\n', i, numStrategies, strategies{i}); % 设置当前策略 obj.params.strategy = strategies{i}; % 运行仿真 try obj = obj.runSimulation(); % 保存结果 berResults(:, i) = obj.ber; snrResults(:, i) = obj.performance.snr; corrResults(:, i) = obj.performance.corr; slotAllocation(:, i) = obj.allocatedSlots; efficiency(i) = sum(obj.performance.snr) / numSignals; slotUtilization(i) = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; catch ME fprintf('策略 "%s" 仿真失败: %s\n', strategies{i}, ME.message); fprintf('使用默认策略继续分析\n'); % 使用默认策略运行仿真 obj.params.strategy = originalStrategy; obj = obj.runSimulation(); % 保存默认策略结果作为替代 berResults(:, i) = obj.ber; snrResults(:, i) = obj.performance.snr; corrResults(:, i) = obj.performance.corr; slotAllocation(:, i) = obj.allocatedSlots; efficiency(i) = sum(obj.performance.snr) / numSignals; slotUtilization(i) = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; end end % 恢复原始策略设置 obj.params.strategy = originalStrategy; % 保存策略比较结果 obj.analysisResults.strategy = struct(); obj.analysisResults.strategy.names = strategies; obj.analysisResults.strategy.ber = berResults; obj.analysisResults.strategy.snr = snrResults; obj.analysisResults.strategy.corr = corrResults; obj.analysisResults.strategy.slotAllocation = slotAllocation; obj.analysisResults.strategy.efficiency = efficiency; obj.analysisResults.strategy.slotUtilization = slotUtilization; end function obj = runEfficiencyAnalysis(obj) % 执行系统效率分析 numIterations = 10; % 分析迭代次数 numSignals = obj.params.numSignals; % 预分配结果数组 berHistory = zeros(numIterations, numSignals); snrHistory = zeros(numIterations, numSignals); slotAllocationHistory = zeros(numIterations, numSignals); efficiencyHistory = zeros(numIterations, 1); slotUtilizationHistory = zeros(numIterations, 1); % 保存当前SNR设置 originalSNR = obj.params.snrDb; % 逐步降低SNR,分析系统效率 snrStep = originalSNR / (numIterations - 1); for i = 1:numIterations currentSNR = originalSNR - (i-1) * snrStep; fprintf('效率分析: %d/%d (SNR = %.1f dB)\n', i, numIterations, currentSNR); % 设置当前SNR obj.params.snrDb = currentSNR; % 运行仿真 obj = obj.runSimulation(); % 保存结果 berHistory(i, :) = obj.ber; snrHistory(i, :) = obj.performance.snr; slotAllocationHistory(i, :) = obj.allocatedSlots; efficiencyHistory(i) = sum(obj.performance.snr) / numSignals; slotUtilizationHistory(i) = sum(obj.allocatedSlots) / obj.params.totalSlots * 100; end % 恢复原始SNR设置 obj.params.snrDb = originalSNR; % 保存效率分析结果 obj.efficiencyData = struct(); obj.efficiencyData.snr = originalSNR - (0:numIterations-1) * snrStep; obj.efficiencyData.ber = berHistory; obj.efficiencyData.snrValues = snrHistory; obj.efficiencyData.slotAllocation = slotAllocationHistory; obj.efficiencyData.efficiency = efficiencyHistory; obj.efficiencyData.slotUtilization = slotUtilizationHistory; end function obj = generateSummaryTable(obj) % 生成性能对比汇总表 % 1. 基础性能数据 baseData = table(); baseData.Metric = {'平均BER', '平均SNR', '平均相关系数', '时隙利用率'}; baseData.Value = [mean(obj.analysisResults.base.ber); mean(obj.analysisResults.base.snr); mean(obj.analysisResults.base.corr); obj.analysisResults.base.slotUtilization]; baseData.Value = round(baseData.Value, 4); baseData.Type = {'基础性能', '基础性能', '基础性能', '基础性能'}; % 2. SNR分析关键数据 [~, bestSNRIdx] = min(mean(obj.analysisResults.snr.ber)); snrData = table(); snrData.Metric = {'最佳SNR', '对应BER', '对应时隙利用率'}; snrData.Value = [obj.analysisResults.snr.range(bestSNRIdx); mean(obj.analysisResults.snr.ber(:, bestSNRIdx)); obj.analysisResults.snr.slotUtilization(bestSNRIdx)]; snrData.Value = round(snrData.Value, 4); snrData.Type = {'SNR分析', 'SNR分析', 'SNR分析'}; % 3. 时隙分析关键数据 [~, bestSlotIdx] = max(mean(obj.analysisResults.slots.snr)); slotData = table(); slotData.Metric = {'最佳时隙数', '对应平均SNR', '对应时隙利用率'}; slotData.Value = [obj.analysisResults.slots.range(bestSlotIdx); mean(obj.analysisResults.slots.snr(:, bestSlotIdx)); obj.analysisResults.slots.slotUtilization(bestSlotIdx)]; slotData.Value = round(slotData.Value, 4); slotData.Type = {'时隙分析', '时隙分析', '时隙分析'}; % 4. 策略比较数据 strategyData = table(); strategyData.Metric = obj.analysisResults.strategy.names'; strategyData.Value = obj.analysisResults.strategy.efficiency; strategyData.Value = round(strategyData.Value, 4); strategyData.Type = {'策略比较'}; strategyData.Type = repmat(strategyData.Type, height(strategyData), 1); % 5. 效率分析关键数据 [~, bestEffIdx] = max(obj.efficiencyData.efficiency); efficiencyData = table(); efficiencyData.Metric = {'最高效率SNR', '最高系统效率', '对应时隙利用率'}; efficiencyData.Value = [obj.efficiencyData.snr(bestEffIdx); obj.efficiencyData.efficiency(bestEffIdx); obj.efficiencyData.slotUtilization(bestEffIdx)]; efficiencyData.Value = round(efficiencyData.Value, 4); efficiencyData.Type = {'效率分析', '效率分析', '效率分析'}; % 合并所有表格 obj.summaryTable = [baseData; snrData; slotData; strategyData; efficiencyData]; % 添加单位列 units = cell(height(obj.summaryTable), 1); for i = 1:height(obj.summaryTable) switch obj.summaryTable.Metric{i} case {'平均BER', '对应BER'} units{i} = '无单位'; case {'平均SNR', '最佳SNR', '对应平均SNR', '最高效率SNR', '最高系统效率'} units{i} = 'dB'; case {'平均相关系数'} units{i} = '无单位'; case endsWith(obj.summaryTable.Metric{i}, '时隙利用率') units{i} = '%'; case {'最佳时隙数'} units{i} = '个'; otherwise units{i} = 'dB'; end end obj.summaryTable.Properties.VariableNames{2} = '值'; obj.summaryTable.单位 = units; end function visualizeAnalysisResults(obj) % 可视化所有分析结果 % 创建主图窗 mainFig = figure('Name', 'TDM系统性能分析结果', 'Position', [100, 100, 1600, 1200]); % 1. 基础性能指标 subplot(3, 2, 1); bar(obj.analysisResults.base.ber); title('基础误码率 (MSE)'); xlabel('信号编号'); ylabel('MSE'); grid on; xticks(1:length(obj.analysisResults.base.ber)); % 2. SNR敏感性分析 subplot(3, 2, 2); hold on; colors = lines(length(obj.analysisResults.base.ber)); for i = 1:length(obj.analysisResults.base.ber) plot(obj.analysisResults.snr.range, obj.analysisResults.snr.ber(i, :), 'Color', colors(i, :), 'LineWidth', 1.5); end hold off; title('SNR对误码率的影响'); xlabel('SNR (dB)'); ylabel('MSE'); grid on; legend(arrayfun(@(x) sprintf('信号%d', x), 1:length(obj.analysisResults.base.ber), 'UniformOutput', false), 'Location', 'best'); % 3. 时隙数量分析 subplot(3, 2, 3); hold on; for i = 1:length(obj.analysisResults.base.ber) plot(obj.analysisResults.slots.range, obj.analysisResults.slots.snr(i, :), 'Color', colors(i, :), 'LineWidth', 1.5); end hold off; title('时隙数量对SNR的影响'); xlabel('时隙数量'); ylabel('SNR (dB)'); grid on; legend(arrayfun(@(x) sprintf('信号%d', x), 1:length(obj.analysisResults.base.ber), 'UniformOutput', false), 'Location', 'best'); % 4. 策略比较分析 subplot(3, 2, 4); bar(obj.analysisResults.strategy.efficiency); title('不同策略的系统效率比较'); xlabel('分配策略'); ylabel('平均SNR (dB)'); grid on; xticks(1:length(obj.analysisResults.strategy.names)); xticklabels(obj.analysisResults.strategy.names); % 5. 效率分析 subplot(3, 2, 5); plot(obj.efficiencyData.snr, obj.efficiencyData.efficiency, 'LineWidth', 1.5); title('系统效率随SNR变化'); xlabel('SNR (dB)'); ylabel('系统效率 (平均SNR)'); grid on; % 6. 时隙利用率分析 subplot(3, 2, 6); hold on; for i = 1:length(obj.analysisResults.base.ber) plot(obj.analysisResults.slots.range, obj.analysisResults.slots.corr(i, :), 'Color', colors(i, :), 'LineWidth', 1.5); end hold off; title('时隙数量对信号相关性的影响'); xlabel('时隙数量'); ylabel('相关系数'); grid on; legend(arrayfun(@(x) sprintf('信号%d', x), 1:length(obj.analysisResults.base.ber), 'UniformOutput', false), 'Location', 'best'); % 添加整体标题 sgtitle(sprintf('TDM系统性能分析 - %d个信号, %d个时隙, %s策略', ... obj.params.numSignals, obj.params.totalSlots, obj.params.strategy)); % 保存图像 try timestamp = datestr(now, 'yyyymmdd_HHMMSS'); filename = sprintf('tdm_performance_analysis_%s.png', timestamp); saveas(mainFig, filename); fprintf('分析结果图像已保存为 %s\n', filename); catch fprintf('无法保存分析结果图像\n'); end % 创建汇总表格图窗 if ~isempty(obj.summaryTable) tableFig = figure('Name', 'TDM系统性能分析汇总表', 'Position', [100, 100, 800, 600]); uitable('Parent', tableFig, 'Data', obj.summaryTable{:, 2:end}, ... 'ColumnName', obj.summaryTable.Properties.VariableNames(2:end), ... 'RowName', obj.summaryTable.Metric, ... 'Position', [20, 20, 760, 560], ... 'FontSize', 10); title(sprintf('TDM系统性能分析汇总表 - %d个信号, %d个时隙, %s策略', ... obj.params.numSignals, obj.params.totalSlots, obj.params.strategy)); % 保存表格图像 try tableFilename = sprintf('tdm_performance_summary_%s.png', timestamp); saveas(tableFig, tableFilename); fprintf('分析汇总表图像已保存为 %s\n', tableFilename); catch fprintf('无法保存分析汇总表图像\n'); end end end function exportSummaryTable(obj, filename) % 导出汇总表格到CSV文件 if nargin < 2 timestamp = datestr(now, 'yyyymmdd_HHMMSS'); filename = sprintf('tdm_performance_summary_%s.csv', timestamp); end if ~isempty(obj.summaryTable) try writetable(obj.summaryTable, filename); fprintf('分析汇总表已导出到 %s\n', filename); catch fprintf('无法导出分析汇总表\n'); end end end function exportAnalysisResults(obj, filename) % 导出分析结果到MAT文件 if nargin < 2 timestamp = datestr(now, 'yyyymmdd_HHMMSS'); filename = sprintf('tdm_analysis_results_%s.mat', timestamp); end results = struct(); results.params = obj.params; results.analysisResults = obj.analysisResults; results.efficiencyData = obj.efficiencyData; results.summaryTable = obj.summaryTable; save(filename, 'results'); fprintf('分析结果已导出到 %s\n', filename); end end methods (Static) function params = createDefaultAnalysisParams() % 创建默认分析参数 params = TDMSystem.createDefaultParams(); params.snrRange = [15 25 35]; % 使用前面三个代码中的SNR值 params.slotRange = [30 60 90]; % 使用前面三个代码中的时隙值 end end end

优化下面的代码,不显示星座图分析和频谱分析,具体显示其他分析,给我优化后完整的代码:classdef TDMPerformanceAnalyzer < TDMSystem properties analysisFigure % 独立分析窗口 performanceMetrics % 扩展的性能指标 constellationAxes % 星座图坐标轴 spectrumAxes % 频谱分析坐标轴 timeDomainAxes % 时域波形坐标轴 (替换眼图) correlationAxes % 相关分析坐标轴 metricTable % 性能指标表格 systemMetricsLabel % 系统级指标标签 berTrendAxes % BER趋势分析坐标轴 (新增) end methods function obj = TDMPerformanceAnalyzer(params) % 调用父类构造函数 obj = obj@TDMSystem(params); % 初始化扩展性能指标 obj.performanceMetrics = struct(... 'evm', [], ... % 误差矢量幅度 'throughput', [], ... % 系统吞吐量 'latency', [], ... % 系统延迟 'spectralEfficiency', [], ... % 频谱效率 'totalThroughput', [], ... % 系统总吞吐量 'overallSpectralEfficiency', [] ... % 总体频谱效率 ); end function obj = runPerformanceAnalysis(obj) % 运行基础仿真流程 obj = runSimulation(obj); % 计算扩展性能指标 obj = obj.calculateExtendedMetrics(); % 创建独立分析窗口 obj.createAnalysisWindow(); % 绘制综合性能分析 obj.plotComprehensiveAnalysis(); end function obj = calculateExtendedMetrics(obj) % 计算扩展性能指标 numSignals = obj.params.numSignals; obj.performanceMetrics.evm = zeros(1, numSignals); obj.performanceMetrics.throughput = zeros(1, numSignals); obj.performanceMetrics.latency = zeros(1, numSignals); obj.performanceMetrics.spectralEfficiency = zeros(1, numSignals); totalSymbols = 0; totalBits = 0; bandwidth = obj.params.fs; % 系统带宽 for i = 1:numSignals % 检查信号存在性 if size(obj.originalSignals, 1) < i || ... size(obj.syncedSignals, 1) < i || ... isempty(obj.originalSignals) || ... isempty(obj.syncedSignals) obj.performanceMetrics.evm(i) = NaN; obj.performanceMetrics.latency(i) = NaN; continue; end % 获取信号并确保行向量 orig = obj.originalSignals(i, :); decoded = obj.syncedSignals(i, :); orig = orig(:).'; % 强制转为行向量 decoded = decoded(:).'; % 强制转为行向量 % 确保信号长度匹配 minLen = min(length(orig), length(decoded)); if minLen < 10 obj.performanceMetrics.evm(i) = NaN; obj.performanceMetrics.latency(i) = NaN; continue; end % 截取相同长度部分 orig = orig(1:minLen); decoded = decoded(1:minLen); % 计算误差矢量幅度(EVM) evm = sqrt(mean(abs(orig - decoded).^2)) / ... sqrt(mean(abs(orig).^2)); obj.performanceMetrics.evm(i) = evm * 100; % 百分比 % 计算吞吐量 (bps) modType = obj.modulationParams.signalModulations{i}; bitsPerSymbol = obj.getBitsPerSymbol(modType); symbolRate = obj.params.fs / bitsPerSymbol; obj.performanceMetrics.throughput(i) = symbolRate * bitsPerSymbol; % 估计延迟 (ms) - 基于同步过程 [corr, lags] = xcorr(orig, decoded); if ~isempty(corr) [~, idx] = max(abs(corr)); delay = lags(idx) / obj.params.fs * 1000; % 转换为毫秒 obj.performanceMetrics.latency(i) = delay; else obj.performanceMetrics.latency(i) = NaN; end % 计算频谱效率 (bps/Hz) obj.performanceMetrics.spectralEfficiency(i) = ... obj.performanceMetrics.throughput(i) / bandwidth; % 统计总符号和比特数 if length(obj.modulatedSignals) >= i totalSymbols = totalSymbols + length(obj.modulatedSignals{i}); end if length(obj.encodedSignals) >= i totalBits = totalBits + length(obj.encodedSignals{i}); end end % 系统级指标 if totalBits > 0 && obj.params.duration > 0 obj.performanceMetrics.totalThroughput = totalBits / obj.params.duration; else obj.performanceMetrics.totalThroughput = 0; end obj.performanceMetrics.overallSpectralEfficiency = ... obj.performanceMetrics.totalThroughput / bandwidth; end function createAnalysisWindow(obj) % 创建独立分析窗口 obj.analysisFigure = uifigure('Name', 'TDM系统性能综合分析', ... 'Position', [100, 100, 1200, 850], ... 'Color', [0.95, 0.95, 0.95]); % 创建网格布局 (4行3列) gridLayout = uigridlayout(obj.analysisFigure, [4, 3]); gridLayout.RowHeight = {'1x', '1x', '0.5x', 40}; % 第4行固定高度 gridLayout.ColumnWidth = {'1x', '1x', '1x'}; gridLayout.Padding = [10, 10, 10, 10]; gridLayout.RowSpacing = 5; gridLayout.ColumnSpacing = 10; gridLayout.BackgroundColor = [0.95, 0.95, 0.95]; % === 星座图坐标轴 === obj.constellationAxes = uiaxes(gridLayout); obj.constellationAxes.Layout.Row = 1; obj.constellationAxes.Layout.Column = 1; title(obj.constellationAxes, '星座图分析'); xlabel(obj.constellationAxes, '同相分量 (I)'); ylabel(obj.constellationAxes, '正交分量 (Q)'); grid(obj.constellationAxes, 'on'); axis(obj.constellationAxes, 'equal'); % === 频谱分析坐标轴 === obj.spectrumAxes = uiaxes(gridLayout); obj.spectrumAxes.Layout.Row = 1; obj.spectrumAxes.Layout.Column = 2; title(obj.spectrumAxes, '频谱分析'); xlabel(obj.spectrumAxes, '频率 (kHz)'); ylabel(obj.spectrumAxes, '功率谱密度 (dB/Hz)'); grid(obj.spectrumAxes, 'on'); % === 时域波形坐标轴 (替换眼图) === obj.timeDomainAxes = uiaxes(gridLayout); obj.timeDomainAxes.Layout.Row = 1; obj.timeDomainAxes.Layout.Column = 3; title(obj.timeDomainAxes, '时域波形对比'); xlabel(obj.timeDomainAxes, '样本索引'); ylabel(obj.timeDomainAxes, '幅度'); grid(obj.timeDomainAxes, 'on'); % === BER趋势分析坐标轴 (新增) === obj.berTrendAxes = uiaxes(gridLayout); obj.berTrendAxes.Layout.Row = 2; obj.berTrendAxes.Layout.Column = 1; title(obj.berTrendAxes, 'BER随SNR变化趋势'); xlabel(obj.berTrendAxes, 'SNR (dB)'); ylabel(obj.berTrendAxes, 'BER'); grid(obj.berTrendAxes, 'on'); set(obj.berTrendAxes, 'YScale', 'log'); % === 相关分析坐标轴 === obj.correlationAxes = uiaxes(gridLayout); obj.correlationAxes.Layout.Row = 2; obj.correlationAxes.Layout.Column = [2, 3]; title(obj.correlationAxes, '信号相关性分析'); xlabel(obj.correlationAxes, '滞后 (样本)'); ylabel(obj.correlationAxes, '相关系数'); grid(obj.correlationAxes, 'on'); % === 性能指标表格 === obj.metricTable = uitable(gridLayout); obj.metricTable.Layout.Row = 3; obj.metricTable.Layout.Column = [1, 3]; obj.metricTable.ColumnName = {'信号', 'BER', 'SNR (dB)', 'MSE', 'EVM (%)', ... '吞吐量 (bps)', '延迟 (ms)', '频谱效率 (bps/Hz)'}; obj.metricTable.RowName = {}; obj.metricTable.FontName = 'Consolas'; obj.metricTable.ColumnWidth = {60, 80, 80, 80, 80, 100, 80, 120}; % === 系统级指标标签 === obj.systemMetricsLabel = uilabel(gridLayout); obj.systemMetricsLabel.Layout.Row = 4; obj.systemMetricsLabel.Layout.Column = [1, 3]; obj.systemMetricsLabel.Text = '系统总吞吐量: 计算中...'; obj.systemMetricsLabel.HorizontalAlignment = 'center'; obj.systemMetricsLabel.BackgroundColor = [0.9, 0.9, 0.9]; obj.systemMetricsLabel.FontSize = 12; obj.systemMetricsLabel.FontWeight = 'bold'; end function plotComprehensiveAnalysis(obj) % 绘制星座图 plotConstellation(obj); % 绘制频谱分析 plotSpectrumAnalysis(obj); % 绘制时域波形对比 (替换眼图) plotTimeDomain(obj); % 绘制BER趋势 (新增) plotBERTrend(obj); % 绘制信号相关性 plotSignalCorrelation(obj); % 更新性能指标表格 updateMetricTable(obj); % 更新系统级指标标签 if ~isempty(obj.performanceMetrics.totalThroughput) && ... ~isempty(obj.performanceMetrics.overallSpectralEfficiency) obj.systemMetricsLabel.Text = sprintf(... '系统总吞吐量: %.2f Mbps | 总频谱效率: %.2f bps/Hz', ... obj.performanceMetrics.totalThroughput/1e6, ... obj.performanceMetrics.overallSpectralEfficiency); else obj.systemMetricsLabel.Text = '系统指标计算失败'; end end function plotConstellation(obj) % 绘制第一个信号的星座图 signalIdx = 1; if length(obj.demuxSignals) >= signalIdx signal = obj.demuxSignals{signalIdx}; signal = signal(:); % 确保列向量 if length(signal) < 10 text(obj.constellationAxes, 0.5, 0.5, '样本不足', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end % 提取实部和虚部 I = real(signal); Q = imag(signal); % 确保维度匹配 if length(I) ~= length(Q) minLen = min(length(I), length(Q)); I = I(1:minLen); Q = Q(1:minLen); end % 绘制星座图 scatter(obj.constellationAxes, I, Q, 15, ... 'filled', 'MarkerFaceAlpha', 0.6, 'MarkerEdgeColor', 'none'); title(obj.constellationAxes, sprintf('信号%d星座图 (%s调制)', ... signalIdx, obj.modulationParams.signalModulations{signalIdx})); % 添加EVM信息 if ~isnan(obj.performanceMetrics.evm(signalIdx)) text(obj.constellationAxes, ... 0.05, 0.95, ... % 归一化位置 sprintf('EVM: %.2f%%', obj.performanceMetrics.evm(signalIdx)), ... 'Units', 'normalized', ... 'BackgroundColor', [1, 1, 0.8], ... 'Margin', 3, ... 'FontSize', 10, ... 'VerticalAlignment', 'top'); end else text(obj.constellationAxes, 0.5, 0.5, '无可用信号数据', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); end end function plotSpectrumAnalysis(obj) % 分析TDM信号的频谱 fs = obj.params.fs; if isempty(obj.tdmSignal) text(obj.spectrumAxes, 0.5, 0.5, '无TDM信号', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end signal = obj.tdmSignal(:); % 强制列向量 if length(signal) < 1024 text(obj.spectrumAxes, 0.5, 0.5, '信号长度不足', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end % 计算功率谱密度 [psd, freq] = pwelch(signal, hamming(1024), 512, 1024, fs); % 确保频率和PSD长度匹配 minLen = min(length(freq), length(psd)); freq = freq(1:minLen); psd = psd(1:minLen); % 验证向量方向一致性 freq = freq(:); % 强制列向量 psd = psd(:); % 强制列向量 % 绘制频谱 plot(obj.spectrumAxes, freq/1e3, 10*log10(psd), ... 'LineWidth', 1.5, 'Color', [0, 0.4470, 0.7410]); xlim(obj.spectrumAxes, [0, fs/2/1e3]); % 添加带宽信息 try bandwidth = obw(signal, fs)/1e3; % 占用带宽(kHz) text(obj.spectrumAxes, ... 0.05, 0.95, ... % 归一化位置 sprintf('占用带宽: %.2f kHz', bandwidth), ... 'Units', 'normalized', ... 'BackgroundColor', [1, 1, 0.8], ... 'Margin', 3, ... 'FontSize', 10, ... 'VerticalAlignment', 'top'); catch % 带宽计算失败时跳过 end end function plotTimeDomain(obj) % 绘制时域波形对比 (替换眼图) signalIdx = 1; maxSamples = 200; % 最多显示200个样本 if size(obj.originalSignals, 1) >= signalIdx && ... size(obj.syncedSignals, 1) >= signalIdx orig = obj.originalSignals(signalIdx, :); decoded = obj.syncedSignals(signalIdx, :); % 强制行向量并截取相同长度 orig = orig(:).'; decoded = decoded(:).'; minLen = min(length(orig), length(decoded)); if minLen < 10 text(obj.timeDomainAxes, 0.5, 0.5, '信号长度不足', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end % 截取前maxSamples个样本 plotLen = min(minLen, maxSamples); orig = orig(1:plotLen); decoded = decoded(1:plotLen); % 绘制时域波形 plot(obj.timeDomainAxes, 1:plotLen, real(orig), 'b', 'LineWidth', 1.5, 'DisplayName', '原始信号'); hold(obj.timeDomainAxes, 'on'); plot(obj.timeDomainAxes, 1:plotLen, real(decoded), 'r--', 'LineWidth', 1.2, 'DisplayName', '解码信号'); hold(obj.timeDomainAxes, 'off'); title(obj.timeDomainAxes, sprintf('信号%d时域波形对比', signalIdx)); legend(obj.timeDomainAxes, 'Location', 'best'); grid(obj.timeDomainAxes, 'on'); % 添加SNR信息 if ~isnan(obj.performance.snr(signalIdx)) text(obj.timeDomainAxes, ... 0.05, 0.95, ... % 归一化位置 sprintf('SNR: %.1f dB', obj.performance.snr(signalIdx)), ... 'Units', 'normalized', ... 'BackgroundColor', [1, 1, 0.8], ... 'Margin', 3, ... 'FontSize', 10, ... 'VerticalAlignment', 'top'); end else text(obj.timeDomainAxes, 0.5, 0.5, '无信号数据', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); end end function plotBERTrend(obj) % 绘制BER随SNR变化趋势 (新增) if isempty(obj.performance.snr) || isempty(obj.performance.ber) text(obj.berTrendAxes, 0.5, 0.5, '无BER/SNR数据', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end % 获取所有信号的SNR和BER数据 snrValues = obj.performance.snr; berValues = obj.performance.ber; % 绘制BER趋势 semilogy(obj.berTrendAxes, snrValues, berValues, ... 'bo-', 'LineWidth', 1.5, 'MarkerSize', 8, 'MarkerFaceColor', 'b'); title(obj.berTrendAxes, 'BER随SNR变化趋势'); grid(obj.berTrendAxes, 'on'); % 添加理论BER曲线 (以QPSK为例) try snrRange = min(snrValues):0.5:max(snrValues); theoreticalBER = berawgn(snrRange, 'psk', 4, 'nondiff'); hold(obj.berTrendAxes, 'on'); semilogy(obj.berTrendAxes, snrRange, theoreticalBER, ... 'r--', 'LineWidth', 2, 'DisplayName', '理论QPSK'); hold(obj.berTrendAxes, 'off'); legend(obj.berTrendAxes, '实测BER', '理论QPSK', 'Location', 'southwest'); catch legend(obj.berTrendAxes, '实测BER', 'Location', 'southwest'); end end function plotSignalCorrelation(obj) % 分析原始信号与解码信号的相关性 signalIdx = 1; if size(obj.originalSignals, 1) >= signalIdx && ... size(obj.syncedSignals, 1) >= signalIdx orig = obj.originalSignals(signalIdx, :); decoded = obj.syncedSignals(signalIdx, :); % 强制行向量并截取相同长度 orig = orig(:).'; decoded = decoded(:).'; minLen = min(length(orig), length(decoded)); if minLen < 10 text(obj.correlationAxes, 0.5, 0.5, '信号长度不足', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end orig = orig(1:minLen); decoded = decoded(1:minLen); % 计算互相关 try [corr, lags] = xcorr(orig, decoded, 'normalized'); % 检查空结果 if isempty(corr) || isempty(lags) text(obj.correlationAxes, 0.5, 0.5, '互相关计算失败', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end % 确保维度匹配 if length(lags) ~= length(corr) minLen = min(length(lags), length(corr)); lags = lags(1:minLen); corr = corr(1:minLen); end % 统一向量方向 lags = lags(:); corr = corr(:); % 绘制相关结果 stem(obj.correlationAxes, lags, corr, ... 'filled', 'MarkerSize', 4, 'MarkerFaceColor', [0.3010, 0.7450, 0.9330]); title(obj.correlationAxes, '原始信号与解码信号互相关'); % 标记峰值位置 if ~isempty(corr) [maxCorr, maxIdx] = max(abs(corr)); maxLag = lags(maxIdx); hold(obj.correlationAxes, 'on'); plot(obj.correlationAxes, maxLag, maxCorr, 'ro', 'MarkerSize', 8, 'LineWidth', 1.5); text(obj.correlationAxes, maxLag, maxCorr, ... sprintf(' 延迟: %d 样本 (%.2f ms)', maxLag, maxLag/obj.params.fs*1000), ... 'VerticalAlignment', 'bottom', ... 'FontSize', 10, ... 'BackgroundColor', [1, 1, 0.8]); hold(obj.correlationAxes, 'off'); end catch ME % 捕获并显示相关计算错误 warning('相关计算错误: %s (信号长度: %d)', ME.message, length(orig)); text(obj.correlationAxes, 0.5, 0.5, '相关计算失败', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); end else text(obj.correlationAxes, 0.5, 0.5, '无信号相关性数据', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); end end function updateMetricTable(obj) % 准备表格数据 numSignals = obj.params.numSignals; tableData = cell(numSignals, 8); for i = 1:numSignals tableData{i, 1} = sprintf('信号 %d', i); % 处理BER数据 if i <= length(obj.performance.ber) && ~isempty(obj.performance.ber) tableData{i, 2} = sprintf('%.2e', obj.performance.ber(i)); else tableData{i, 2} = 'N/A'; end % 处理SNR数据 if i <= length(obj.performance.snr) && ~isempty(obj.performance.snr) tableData{i, 3} = sprintf('%.1f', obj.performance.snr(i)); else tableData{i, 3} = 'N/A'; end % 处理其他指标 tableData{i, 4} = sprintf('%.2e', obj.performance.mse(i)); tableData{i, 5} = formatNumber(obj.performanceMetrics.evm(i), '%.2f%%'); tableData{i, 6} = formatNumber(obj.performanceMetrics.throughput(i), 'bps'); tableData{i, 7} = formatNumber(obj.performanceMetrics.latency(i), '%.2f ms'); tableData{i, 8} = formatNumber(obj.performanceMetrics.spectralEfficiency(i), '%.4f bps/Hz'); end % 设置表格数据 obj.metricTable.Data = tableData; end end end % 增强型辅助函数:格式化数字和单位 function str = formatNumber(num, formatSpec) if nargin < 2 formatSpec = '%.2f'; end if isempty(num) || isnan(num) str = 'N/A'; return; end % 处理带单位的格式化 if contains(formatSpec, 'bps') if num >= 1e9 str = sprintf([formatSpec ' Gbps'], num/1e9); elseif num >= 1e6 str = sprintf([formatSpec ' Mbps'], num/1e6); elseif num >= 1e3 str = sprintf([formatSpec ' Kbps'], num/1e3); else str = sprintf([formatSpec ' bps'], num); end else % 直接应用格式规范 str = sprintf(formatSpec, num); end end

优化代码,解决“将坐标指定为大小相同的向量或矩阵,或指定为至少一个维度的长度相同的向量和矩阵。”的问题,给我优化后完整的代码,代码:classdef TDMPerformanceAnalyzer < TDMSystem properties analysisFigure % 独立分析窗口 performanceMetrics % 性能指标 timeDomainAxes % 时域波形坐标轴 correlationAxes % 相关分析坐标轴 metricTable % 性能指标表格 systemMetricsAxes % 系统级指标坐标轴 berTrendAxes % BER趋势分析坐标轴 throughputAxes % 吞吐量分析坐标轴 end methods function obj = TDMPerformanceAnalyzer(params) % 调用父类构造函数 obj = obj@TDMSystem(params); % 初始化性能指标 obj.performanceMetrics = struct(... 'evm', [], ... % 误差矢量幅度 'throughput', [], ... % 系统吞吐量 'latency', [], ... % 系统延迟 'spectralEfficiency', [], ... % 频谱效率 'totalThroughput', [], ... % 系统总吞吐量 'overallSpectralEfficiency', [] ... % 总体频谱效率 ); end function obj = runPerformanceAnalysis(obj) % 运行基础仿真流程 obj = runSimulation(obj); % 计算扩展性能指标 obj = obj.calculateExtendedMetrics(); % 创建独立分析窗口 obj.createAnalysisWindow(); % 绘制综合性能分析 obj.plotComprehensiveAnalysis(); end function obj = calculateExtendedMetrics(obj) % 计算扩展性能指标 numSignals = obj.params.numSignals; obj.performanceMetrics.evm = zeros(1, numSignals); obj.performanceMetrics.throughput = zeros(1, numSignals); obj.performanceMetrics.latency = zeros(1, numSignals); obj.performanceMetrics.spectralEfficiency = zeros(1, numSignals); totalSymbols = 0; totalBits = 0; bandwidth = obj.params.fs; % 系统带宽 for i = 1:numSignals % 检查信号存在性 if size(obj.originalSignals, 1) < i || ... size(obj.syncedSignals, 1) < i || ... isempty(obj.originalSignals) || ... isempty(obj.syncedSignals) obj.performanceMetrics.evm(i) = NaN; obj.performanceMetrics.latency(i) = NaN; continue; end % 获取信号并确保行向量 orig = obj.originalSignals(i, :); decoded = obj.syncedSignals(i, :); orig = orig(:).'; % 强制转为行向量 decoded = decoded(:).'; % 强制转为行向量 % 确保信号长度匹配 minLen = min(length(orig), length(decoded)); if minLen < 10 obj.performanceMetrics.evm(i) = NaN; obj.performanceMetrics.latency(i) = NaN; continue; end % 截取相同长度部分 orig = orig(1:minLen); decoded = decoded(1:minLen); % 计算误差矢量幅度(EVM) evm = sqrt(mean(abs(orig - decoded).^2)) / ... sqrt(mean(abs(orig).^2)); obj.performanceMetrics.evm(i) = evm * 100; % 百分比 % 计算吞吐量 (bps) modType = obj.modulationParams.signalModulations{i}; bitsPerSymbol = obj.getBitsPerSymbol(modType); symbolRate = obj.params.fs / bitsPerSymbol; obj.performanceMetrics.throughput(i) = symbolRate * bitsPerSymbol; % 估计延迟 (ms) - 基于同步过程 [corr, lags] = xcorr(orig, decoded); if ~isempty(corr) [~, idx] = max(abs(corr)); delay = lags(idx) / obj.params.fs * 1000; % 转换为毫秒 obj.performanceMetrics.latency(i) = delay; else obj.performanceMetrics.latency(i) = NaN; end % 计算频谱效率 (bps/Hz) obj.performanceMetrics.spectralEfficiency(i) = ... obj.performanceMetrics.throughput(i) / bandwidth; % 统计总符号和比特数 if length(obj.modulatedSignals) >= i totalSymbols = totalSymbols + length(obj.modulatedSignals{i}); end if length(obj.encodedSignals) >= i totalBits = totalBits + length(obj.encodedSignals{i}); end end % 系统级指标 if totalBits > 0 && obj.params.duration > 0 obj.performanceMetrics.totalThroughput = totalBits / obj.params.duration; else obj.performanceMetrics.totalThroughput = 0; end obj.performanceMetrics.overallSpectralEfficiency = ... obj.performanceMetrics.totalThroughput / bandwidth; end function createAnalysisWindow(obj) % 创建独立分析窗口 obj.analysisFigure = uifigure('Name', 'TDM系统性能综合分析', ... 'Position', [100, 100, 1200, 850], ... 'Color', [0.95, 0.95, 0.95]); % 创建网格布局 (4行3列) gridLayout = uigridlayout(obj.analysisFigure, [4, 3]); gridLayout.RowHeight = {'1x', '1x', '1x', '0.5x'}; gridLayout.ColumnWidth = {'1x', '1x', '1x'}; gridLayout.Padding = [10, 10, 10, 10]; gridLayout.RowSpacing = 5; gridLayout.ColumnSpacing = 10; gridLayout.BackgroundColor = [0.95, 0.95, 0.95]; % === 时域波形坐标轴 === obj.timeDomainAxes = uiaxes(gridLayout); obj.timeDomainAxes.Layout.Row = 1; obj.timeDomainAxes.Layout.Column = [1, 3]; % 全宽 title(obj.timeDomainAxes, '多信号时域波形对比'); xlabel(obj.timeDomainAxes, '样本索引'); ylabel(obj.timeDomainAxes, '幅度'); grid(obj.timeDomainAxes, 'on'); % === BER趋势分析坐标轴 === obj.berTrendAxes = uiaxes(gridLayout); obj.berTrendAxes.Layout.Row = 2; obj.berTrendAxes.Layout.Column = 1; title(obj.berTrendAxes, 'BER随SNR变化趋势'); xlabel(obj.berTrendAxes, 'SNR (dB)'); ylabel(obj.berTrendAxes, 'BER'); grid(obj.berTrendAxes, 'on'); set(obj.berTrendAxes, 'YScale', 'log'); % === 吞吐量分析坐标轴 === obj.throughputAxes = uiaxes(gridLayout); obj.throughputAxes.Layout.Row = 2; obj.throughputAxes.Layout.Column = 2; title(obj.throughputAxes, '信号吞吐量对比'); xlabel(obj.throughputAxes, '信号索引'); ylabel(obj.throughputAxes, '吞吐量 (Mbps)'); grid(obj.throughputAxes, 'on'); % === 系统效率分析坐标轴 === obj.systemMetricsAxes = uiaxes(gridLayout); obj.systemMetricsAxes.Layout.Row = 2; obj.systemMetricsAxes.Layout.Column = 3; title(obj.systemMetricsAxes, '系统效率指标'); xlabel(obj.systemMetricsAxes, ''); grid(obj.systemMetricsAxes, 'on'); % === 相关分析坐标极 === obj.correlationAxes = uiaxes(gridLayout); obj.correlationAxes.Layout.Row = 3; obj.correlationAxes.Layout.Column = [1, 3]; % 全宽 title(obj.correlationAxes, '信号互相关分析'); xlabel(obj.correlationAxes, '滞后 (样本)'); ylabel(obj.correlationAxes, '相关系数'); grid(obj.correlationAxes, 'on'); % === 性能指标表格 === obj.metricTable = uitable(gridLayout); obj.metricTable.Layout.Row = 4; obj.metricTable.Layout.Column = [1, 3]; obj.metricTable.ColumnName = {'信号', 'BER', 'SNR (dB)', 'MSE', 'EVM (%)', ... '吞吐量 (bps)', '延迟 (ms)', '频谱效率 (bps/Hz)'}; obj.metricTable.RowName = {}; obj.metricTable.FontName = 'Consolas'; obj.metricTable.ColumnWidth = {60, 80, 80, 80, 80, 100, 80, 120}; end function plotComprehensiveAnalysis(obj) % 绘制多信号时域波形对比 plotMultiSignalTimeDomain(obj); % 绘制BER趋势 plotBERTrend(obj); % 绘制吞吐量分析 plotThroughputAnalysis(obj); % 绘制系统效率指标 plotSystemMetrics(obj); % 绘制信号互相关分析 plotSignalCorrelation(obj); % 更新性能指标表格 updateMetricTable(obj); end function plotMultiSignalTimeDomain(obj) % 绘制所有信号的时域波形对比 maxSamples = 200; % 最多显示200个样本 numSignals = min(obj.params.numSignals, 5); % 最多显示5个信号 % 清除坐标轴 cla(obj.timeDomainAxes); % 获取颜色映射 colors = lines(numSignals); % 确定所有信号的最小公共长度 minLength = Inf; for i = 1:numSignals if size(obj.originalSignals, 1) >= i sigLength = length(obj.originalSignals(i, :)); minLength = min(minLength, sigLength); end if size(obj.syncedSignals, 1) >= i sigLength = length(obj.syncedSignals(i, :)); minLength = min(minLength, sigLength); end end plotLen = min(minLength, maxSamples); % 创建统一的时间向量 timeVector = 1:plotLen; % 初始化Y轴范围 yMin = inf; yMax = -inf; % 绘制原始信号 for i = 1:numSignals if size(obj.originalSignals, 1) >= i signal = obj.originalSignals(i, :); signal = signal(:).'; % 确保信号长度一致 if length(signal) >= plotLen sigData = real(signal(1:plotLen)); else % 如果信号不足,用NaN填充 sigData = [real(signal), nan(1, plotLen - length(signal))]; end % 偏移量使信号分离 offset = (i-1) * 2; sigData = sigData + offset; % 更新Y轴范围 validData = sigData(isfinite(sigData)); if ~isempty(validData) yMin = min(yMin, min(validData)); yMax = max(yMax, max(validData)); end % 绘图 plot(obj.timeDomainAxes, timeVector, sigData, ... 'LineWidth', 1.5, 'Color', colors(i,:), 'DisplayName', sprintf('信号%d原始', i)); hold(obj.timeDomainAxes, 'on'); end end % 绘制解码信号 for i = 1:numSignals if size(obj.syncedSignals, 1) >= i signal = obj.syncedSignals(i, :); signal = signal(:).'; % 确保信号长度一致 if length(signal) >= plotLen sigData = real(signal(1:plotLen)); else % 如果信号不足,用NaN填充 sigData = [real(signal), nan(1, plotLen - length(signal))]; end % 偏移量使信号分离 offset = (i-1) * 2; sigData = sigData + offset; % 更新Y轴范围 validData = sigData(isfinite(sigData)); if ~isempty(validData) yMin = min(yMin, min(validData)); yMax = max(yMax, max(validData)); end % 绘图 plot(obj.timeDomainAxes, timeVector, sigData, ... '--', 'LineWidth', 1.2, 'Color', colors(i,:), 'DisplayName', sprintf('信号%d解码', i)); end end hold(obj.timeDomainAxes, 'off'); % 设置图例和标题 legend(obj.timeDomainAxes, 'Location', 'eastoutside'); title(obj.timeDomainAxes, '多信号时域波形对比 (原始 vs 解码)'); grid(obj.timeDomainAxes, 'on'); % 添加信号分隔线 for i = 1:numSignals-1 yPos = (i*2) - 1; line(obj.timeDomainAxes, [1, plotLen], [yPos, yPos], ... 'Color', [0.7, 0.7, 0.7], 'LineStyle', ':', 'LineWidth', 0.5); end % 添加信号标签 for i = 1:numSignals yPos = (i-1)*2; text(obj.timeDomainAxes, 0.02, yPos+0.2, sprintf('信号%d', i), ... 'Units', 'normalized', 'FontSize', 10, 'Color', colors(i,:)); end % 动态调整Y轴范围 if isfinite(yMin) && isfinite(yMax) && yMin < yMax yRange = yMax - yMin; set(obj.timeDomainAxes, 'YLim', [yMin - 0.1*yRange, yMax + 0.1*yRange]); end % 动态调整X轴范围 set(obj.timeDomainAxes, 'XLim', [1, plotLen]); end function plotBERTrend(obj) % 绘制BER随SNR变化趋势 cla(obj.berTrendAxes); % 清除坐标轴 if isempty(obj.performance.snr) || isempty(obj.performance.ber) text(obj.berTrendAxes, 0.5, 0.5, '无BER/SNR数据', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end % 获取所有信号的SNR和BER数据 snrValues = obj.performance.snr; berValues = obj.performance.ber; % 确保向量长度一致 minLen = min(length(snrValues), length(berValues)); if minLen == 0 text(obj.berTrendAxes, 0.5, 0.5, '数据不足', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end snrValues = snrValues(1:minLen); berValues = berValues(1:minLen); % 绘制BER趋势 semilogy(obj.berTrendAxes, snrValues, berValues, ... 'bo-', 'LineWidth', 1.5, 'MarkerSize', 8, 'MarkerFaceColor', 'b'); title(obj.berTrendAxes, 'BER随SNR变化趋势'); grid(obj.berTrendAxes, 'on'); % 添加理论BER曲线 (以QPSK为例) try snrRange = min(snrValues):0.5:max(snrValues); theoreticalBER = berawgn(snrRange, 'psk', 4, 'nondiff'); hold(obj.berTrendAxes, 'on'); semilogy(obj.berTrendAxes, snrRange, theoreticalBER, ... 'r--', 'LineWidth', 2, 'DisplayName', '理论QPSK'); hold(obj.berTrendAxes, 'off'); legend(obj.berTrendAxes, '实测BER', '理论QPSK', 'Location', 'southwest'); catch legend(obj.berTrendAxes, '实测BER', 'Location', 'southwest'); end % 动态调整坐标轴范围 if ~isempty(snrValues) && ~isempty(berValues) xRange = max(snrValues) - min(snrValues); xMargin = max(0.1*xRange, 1); set(obj.berTrendAxes, 'XLim', [min(snrValues)-xMargin, max(snrValues)+xMargin]); validBER = berValues(berValues > 0); if ~isempty(validBER) minBER = min(validBER); maxBER = max(berValues); set(obj.berTrendAxes, 'YLim', [minBER/10, maxBER*10]); end end end function plotThroughputAnalysis(obj) % 绘制信号吞吐量对比分析 cla(obj.throughputAxes); % 清除坐标轴 if isempty(obj.performanceMetrics.throughput) text(obj.throughputAxes, 0.5, 0.5, '无吞吐量数据', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end % 获取吞吐量数据 (转换为Mbps) validIdx = ~isnan(obj.performanceMetrics.throughput); throughputs = obj.performanceMetrics.throughput(validIdx) / 1e6; signalIndices = find(validIdx); % 确保向量长度一致 if isempty(signalIndices) || isempty(throughputs) text(obj.throughputAxes, 0.5, 0.5, '数据不足', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end if length(signalIndices) ~= length(throughputs) signalIndices = 1:length(throughputs); end % 绘制柱状图 bar(obj.throughputAxes, signalIndices, throughputs, 0.6, ... 'FaceColor', [0.3010, 0.7450, 0.9330]); % 添加数据标签 maxThroughput = max(throughputs); for i = 1:length(throughputs) if i <= length(signalIndices) && i <= length(throughputs) yPos = throughputs(i); % 智能标签位置 - 避免超出坐标轴 if yPos > maxThroughput * 0.8 textY = yPos * 0.9; vertAlign = 'top'; else textY = yPos + 0.05 * maxThroughput; vertAlign = 'bottom'; end text(obj.throughputAxes, signalIndices(i), textY, ... sprintf('%.2f', throughputs(i)), ... 'HorizontalAlignment', 'center', ... 'VerticalAlignment', vertAlign); end end title(obj.throughputAxes, '各信号吞吐量对比 (Mbps)'); xlabel(obj.throughputAxes, '信号索引'); ylabel(obj.throughputAxes, '吞吐量 (Mbps)'); grid(obj.throughputAxes, 'on'); % 设置X轴刻度 set(obj.throughputAxes, 'XTick', signalIndices); % 动态调整Y轴范围 if ~isempty(throughputs) yMax = max(throughputs) * 1.2; set(obj.throughputAxes, 'YLim', [0, yMax]); end end function plotSystemMetrics(obj) % 绘制系统效率指标饼图 cla(obj.systemMetricsAxes); % 清除坐标轴 if isempty(obj.performanceMetrics.totalThroughput) || ... isempty(obj.performanceMetrics.overallSpectralEfficiency) text(obj.systemMetricsAxes, 0.5, 0.5, '无系统指标数据', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end % 计算各指标占比 throughput = obj.performanceMetrics.totalThroughput / 1e6; % Mbps efficiency = obj.performanceMetrics.overallSpectralEfficiency; % 创建虚拟数据用于饼图 values = [throughput, efficiency*10, max(0, 100-throughput-efficiency*10)]; labels = {sprintf('吞吐量\n%.2f Mbps', throughput), ... sprintf('频谱效率\n%.2f bps/Hz', efficiency), ... '其他指标'}; % 绘制饼图 pie(obj.systemMetricsAxes, values, labels); title(obj.systemMetricsAxes, '系统效率指标分布'); end function plotSignalCorrelation(obj) % 分析所有信号之间的互相关性 cla(obj.correlationAxes); % 清除坐标轴 numSignals = min(obj.params.numSignals, 5); % 最多分析5个信号 if numSignals < 2 text(obj.correlationAxes, 0.5, 0.5, '信号数量不足', ... 'HorizontalAlignment', 'center', 'Units', 'normalized'); return; end % 准备信号数据 - 确定最小公共长度 maxLen = 500; % 最大分析长度 minLength = Inf; for i = 1:numSignals if size(obj.syncedSignals, 1) >= i sigLength = length(obj.syncedSignals(i, :)); minLength = min(minLength, sigLength); end end commonLen = min(minLength, maxLen); % 提取相同长度的信号段 signals = cell(1, numSignals); for i = 1:numSignals if size(obj.syncedSignals, 1) >= i sig = obj.syncedSignals(i, :); signals{i} = sig(1:commonLen); else signals{i} = zeros(1, commonLen); % 用零填充缺失信号 end end % 计算互相关矩阵 corrMatrix = zeros(numSignals, numSignals); for i = 1:numSignals for j = 1:numSignals if i ~= j && ~isempty(signals{i}) && ~isempty(signals{j}) % 确保向量长度一致 if length(signals{i}) == length(signals{j}) corrVal = max(abs(xcorr(signals{i}, signals{j}, 'coeff'))); corrMatrix(i, j) = corrVal; else corrMatrix(i, j) = NaN; % 长度不一致时标记为NaN end end end end % 绘制热力图 imagesc(obj.correlationAxes, corrMatrix); colorbar(obj.correlationAxes); title(obj.correlationAxes, '信号互相关矩阵'); xlabel(obj.correlationAxes, '信号索引'); ylabel(obj.correlationAxes, '信号索引'); % 添加数值标签 for i = 1:numSignals for j = 1:numSignals if i ~= j && ~isnan(corrMatrix(i,j)) text(obj.correlationAxes, j, i, sprintf('%.2f', corrMatrix(i,j)), ... 'HorizontalAlignment', 'center', 'Color', 'w'); elseif i ~= j text(obj.correlationAxes, j, i, 'N/A', ... 'HorizontalAlignment', 'center', 'Color', 'w'); end end end % 设置坐标轴 set(obj.correlationAxes, 'XTick', 1:numSignals, 'YTick', 1:numSignals); axis(obj.correlationAxes, 'equal'); % 动态调整颜色范围 validCorr = corrMatrix(~isnan(corrMatrix) & corrMatrix > 0); if ~isempty(validCorr) caxis(obj.correlationAxes, [min(validCorr), max(validCorr)]); end end function updateMetricTable(obj) % 准备表格数据 numSignals = obj.params.numSignals; tableData = cell(numSignals, 8); for i = 1:numSignals tableData{i, 1} = sprintf('信号 %d', i); % 处理BER数据 if i <= length(obj.performance.ber) && ~isempty(obj.performance.ber) tableData{i, 2} = sprintf('%.2e', obj.performance.ber(i)); else tableData{i, 2} = 'N/A'; end % 处理SNR数据 if i <= length(obj.performance.snr) && ~isempty(obj.performance.snr) tableData{i, 3} = sprintf('%.1f', obj.performance.snr(i)); else tableData{i, 3} = 'N/A'; end % 处理其他指标 tableData{i, 4} = sprintf('%.2e', obj.performance.mse(i)); tableData{i, 5} = formatNumber(obj.performanceMetrics.evm(i), '%.2f%%'); tableData{i, 6} = formatNumber(obj.performanceMetrics.throughput(i), 'bps'); tableData{i, 7} = formatNumber(obj.performanceMetrics.latency(i), '%.2f ms'); tableData{i, 8} = formatNumber(obj.performanceMetrics.spectralEfficiency(i), '%.4f bps/Hz'); end % 设置表格数据 obj.metricTable.Data = tableData; end end end % 增强型辅助函数:格式化数字和单位 function str = formatNumber(num, formatSpec) if nargin < 2 formatSpec = ‘%.2f’; end if isempty(num) || isnan(num) str = 'N极/A'; return; end % 处理带单位的格式化 if contains(formatSpec, 'bps') if num >= 1e9 str = sprintf([formatSpec ' Gbps'], num/1e9); elseif num >= 1e6 str = sprintf([formatSpec ' Mbps'], num/1e6); elseif num >= 1e3 str = sprintf([formatSpec ' Kbps'], num/1e3); else str = sprintf([formatSpec ' bps'], num); end else % 直接应用格式规范 str = sprintf(formatSpec, num); end end

优化下面的代码,解决“错误使用 TDMApp8888 文件: TDMApp8888.m 行: 160 列: 43 '=' 运算符的使用不正确。 '=' 用于为变量赋值,'==' 用于比较值的相等性。”的问题,代码:classdef TDMApp8888 < matlab.apps.AppBase % Properties corresponding to app components properties (Access = public) UIFigure matlab.ui.Figure SignalConfigPanel matlab.ui.container.Panel NumSignalsEditField matlab.ui.control.NumericEditField NumSignalsLabel matlab.ui.control.Label SignalTypeDropDown matlab.ui.control.DropDown SignalTypeLabel matlab.ui.control.Label FrequencyEditField matlab.ui.control.NumericEditField FrequencyLabel matlab.ui.control.Label AddSignalButton matlab.ui.control.Button RemoveSignalButton matlab.ui.control.Button SignalsListBox matlab.ui.control.ListBox SignalsListLabel matlab.ui.control.Label StrategyPanel matlab.ui.container.P FixedRadioButton matlab.ui.control.RadioButton PriorityRadioButton matlab.ui.control.RadioButton StrategyButtonGroup matlab.ui.container.ButtonGroup TotalSlotsEditField matlab.ui.control.NumericEditField TotalSlotsLabel matlab.ui.control.Label SimulationPanel matlab.ui.container.Panel RunSimulationButton matlab.ui.control.Button RunFeedbackButton matlab.ui.control.Button RunAnalysisButton matlab.ui.control.Button ResultsTabGroup matlab.ui.container.TabGroup SignalsTab matlab.ui.container.Tab OriginalAxes matlab.ui.control.UIAxes TDMAxes matlab.ui.control.UIAxes DemuxAxes matlab.ui.control.UIAxes SyncedAxes matlab.ui.control.UIAxes PerformanceTab matlab.ui.container.Tab BERAxes matlab.ui.control.UIAxes ParametersTab matlab.ui.container.Tab ParametersTextArea matlab.ui.control.TextArea StatusLabel matlab.ui.control.Label ProgressBar matlab.ui.control.Lamp SNREditField matlab.ui.control.NumericEditField SNRLabel matlab.ui.control.Label IterationsEditField mat.ui.control.NumericEditField IterationsLabel matlab.ui.control.Label DurationEditField matlab.ui.control.NumericEditField DurationLabel matlab.ui.control.Label SamplingRateEditField matlab.ui.control.NumericEditField SamplingRateLabel matlab.ui.control.Label % 编码配置控件 EncodingPanel matlab.ui.container.Panel EncodingTypeDropDown matlab.ui.control.DropDown EncodingTypeLabel matlab.ui.control.Label QuantBitsEditField matlab.ui.control.NumericEditField QuantBitsLabel matlab.ui.control.Label StepSizeEditField matlab.ui.control.NumericEditField StepSizeLabel matlab.ui.control.Label % 调制配置控件 ModulationPanel matlab.ui.container.Panel ModulationTypeDropDown matlab.ui.control.DropDown ModulationTypeLabel matlab.ui.control.Label % 帧配置控件 FrameConfigPanel matlab.ui.container.Panel FrameHeaderEditField matlab.ui.control.EditField FrameHeaderLabel matlab.ui.control.Label CRCCheckBox matlab.ui.control.CheckBox end properties (Access = private) signals % 存储信号配置的cell数组 params % 系统参数结构体 tdmSystem % TDMSystem实例 controller % TDMFeedbackController实例 analyzer % TDMPerformanceAnalyzer实例 end methods (Access = private) function updateParams(app) % 更新系统参数 app.params = struct(); app.params.fs = app.SamplingRateEditField.Value; app.params.duration = app.DurationEditField.Value; app.params.numSignals = numel(app.signals); app.params.snrDb = app.SNREditField.Value; app.params.iterations = app.IterationsEditField.Value; app.params.totalots = app.TotalSlotsEditField.Value; % 编码参数 app.params.encodingType = app.EncodingTypeDropDown.Value; app.params.quantBits = app.QuantBitsEditField.Value; app.params.stepSize = app.StepSizeEditField.Value; % 调制参数 app.params.modulationType = app.ModulationTypeDropDown.Value; % 帧配置 app.params.frameHeader = app.FrameHeaderEditField.Value; app.params.useCRC = app.CRCCheckBox.Value; % 时隙分配策略 if app.FixedRadioButton.Value app.params.strategy = 'fixed'; else app.params.strategy = 'priority'; end % 设置信号调制方式和时钟漂移 app.params.signalModulations = cell(1, app.params.numSignals); app.params.clockDrift = zeros(1, app.params.numSignals); for i = 1:app.params.numSignals app.params.signalModulations{i} = app.signals{i}.modulation; % 设置时钟漂移 (确保长度与信号数量匹配) if i == 1 app.params.clockDrift(i) = 0.001; elseif i == 2 app.params.clockDrift(i) = 0.002; else app.params.clockDrift(i) = -0.001; end end end function generateSignals(app) % 生成信号数据 (使用linspace确保精确采样点) t = linspace(0, app.params.duration, app.params.fs * app.params.duration); app.tdmSystem.originalSignals = zeros(app.params.numSignals, length(t)); app.tdmSystem.signalInfo = cell(app.params.numSignals, 1); for i = 1:app.params.numSignals sigConfig = app.signals{i}; switch sigConfig.type case '正弦波' freq = sigConfig.frequency; app.tdmSystem.originalSignals(i, :) = sin(2*pi*freq*t); app.tdmSystem.signalInfo{i} = sprintf('正弦波 (%dHz, %s调制)', freq, sigConfig.modulation); case '方波' freq = sigConfig.frequency; app.tdmSystem.originalSignals(i, :) = square(2*pi*freq*t); app.tdmSystem.signalInfo{i} = sprintf('方波 (%dHz, %s调制)', freq, sigConfig.modulation); case '随机噪声' app.tdmSystem.originalSignals(i, :) = randn(1, length(t)); app.tdmSystem.signalInfo{i} = sprintf('随机噪声 (%s调制)', sigConfig.modulation); case '锯齿波' freq = sigConfig.frequency; app.tdmSystem.originalSignals(i, :) = sawtooth(2*pi*freq*t); app.tdmSystem.signalInfo{i} = sprintf('锯齿波 (%dHz, %s调制)', freq, sigConfig.modulation); case '脉冲信号' freq = sigConfig.frequency; duty = 0.3; % 占空比 pulseTrain = pulstran(t, 0:1/freq:app.params.duration, ... 'rectpuls', duty/freq); app.tdmSystem.originalSignals(i, 1:length(pulseTrain)) = pulseTrain; app.tdmSystem.signalInfo{i} = sprintf('脉冲信号 (%dHz, %s调制)', freq, sigConfig.modulation); end end end % 设置编码参数 app.tdmSystem.encodingParams = struct(... 'type',app.params.encodingType, ... 'quantBits',app.params.quantBits, ... 'stepSize', app.params.stepSize); % 设置调制参数 app.tdmSystem.modulationParams = struct(...) 'type', (app.params.modulationType, ...); 'signalModulations', ({app.params.signalModulations}); % 设置帧配置 app.tdmSystem.frameConfig = struct(...) 'header', app.params.frameHeader, ... end function updateParametersDisplay(app) % 更新参数显示 paramText = sprintf('系统参数:\n'); paramText = [paramText sprintf('采样频率: %d Hz\n', app.params.fs)]; paramText = [paramText sprintf('信号持续时间: %.2f 秒\n', app.params.duration)]; paramText = [paramText sprintf('信号源数量: %d\n', app.params.numSignals)]; paramText = [paramText sprintf('信噪比: %d dB\n', app.params.snrDb)]; paramText = [paramText sprintf('时隙分配策略: %s\n', app.params.strategy)]; paramText = [paramText sprintf('总时隙数量: %d\n', app.params.totalSlots)]; paramText = [paramText sprintf('仿真迭代次数: %d\n', app.params.iterations)]; % 编码参数 paramText = [paramText sprintf('\n编码配置:\n')]; paramText = [paramText sprintf(' 编码类型: %s\n', app.params.encodingType)]; paramText = [paramText sprintf(' 量化位数: %d bits\n', app.params.quantBits)]; paramText = [paramText sprintf(' 步长: %.4f\n', app.params.stepSize)]; % 调制参数 paramText = [paramText sprintf('\n调制配置:\n')]; paramText = [paramText sprintf(' 系统调制类型: %s\n', app.params.modulationType)]; % 帧配置 paramText = [paramText sprintf('\n帧配置:\n')]; paramText = [Text sprintf(' 帧头: %s\n', app.params.frameHeader)]; paramText = [paramText sprintf(' CRC校验: %s\n', ifelse(app.params.useCRC, '启用', '禁用'))]; % 信号信息 paramText = [paramText sprintf('\n信号配置:\n')]; for i = 1:app.params.numSignals sig = app.signals{i}; paramText = [paramText sprintf('信号 %d: %s (频率: %d Hz, 调制: %s)\n', i, sig.type, sig.frequency, sig.modulation)]; end app.ParametersTextArea.Value = paramText; end function plotSignals(app) % 绘制原始信号 t = linspace(0, app.params.duration, app.params.fs * app.params.duration); cla(app.OriginalAxes); hold(app.OriginalAxes, 'on'); colors = lines(app.params.numSignals); for i = 1:app.params.numSignals plot(app.OriginalAxes, t, app.tdmSystem.originalSignals(i, 1:length(t)), ... 'Color', colors(i, :), 'DisplayName', app.tdmSystem.signalInfo{i}); end hold(app.OriginalAxes, 'off'); legend(app.OriginalAxes, 'Location', 'best'); title(app.OriginalAxes, '原始信号'); xlabel(app.OriginalAxes, '时间 (s)'); ylabel(app.OriginalAxes, '幅度'); grid(app.OriginalAxes, 'on'); % 绘制TDM信号(支持复数信号) cla(app.TDMAxes); if ~isempty(app.tdmSystem.tdmSignal) plot(app.TDMAxes, t(1:length(app.tdmSystem.tdmSignal)), real(app.tdmSystem.tdmSignal)); hold(app.TDMAxes, 'on'); plot(app.TDMAxes, t(1:length(app.tdmSystem.tdmSignal)), imag(app.tdmSystem.tdmSignal)); hold(app.TDMAxes, 'off'); legend(app.TDMAxes, {'实部', '虚部'}, 'Location', 'best'); end title(app.TDMAxes, ['TDM复用信号 (' app.params.strategy '策略)']); xlabel(app.TDMAxes, '时间 (s)'); ylabel(app.TDMAxes, '幅度'); grid(app.TDMAxes, 'on'); % 绘制解复用信号 cla(app.DemuxAxes); hold(app.DemuxAxes, 'on'); for i = 1:app.params.numSignals if size(app.tdmSystem.demuxSignals, 2) >= length(t) plot(app.DemuxAxes, t, real(app.tdmSystem.demuxSignals(i, 1:length(t))), ... 'Color', colors(i, :), 'DisplayName', ['信号 ' num2str(i)]); end end hold(app.DemuxAxes, 'off'); legend(app.Demuxes, 'Location', 'best'); title(app.DemuxAxes, '解复用信号'); xlabel(app.DemuxAxes, '时间 (s)'); ylabel(app.DemuxAxes, '幅度'); grid(app.DemuxAxes, 'on'); % 绘制同步后信号 cla(app.SyncedAxes); hold(app.SyncedAxes, 'on'); for i = 1:app.params.numSignals if size(app.tdmSystem.syncedSignals, 2) >= length(t) plot(app.SyncedAxes, t, app.tdmSystem.syncedSignals(i, 1:length(t)), ... 'Color', colors(i, :), 'DisplayName', app.tdmSystem.signalInfo{i}); end end hold(app.SyncedAxes, 'off'); legend(app.SyncedAxes, 'Location', 'best'); title(app.SyncedAxes, '同步后信号'); xlabel(app.SyncedAxes, '时间 (s)'); ylabel(app.SyncedAxes, '幅度'); grid(app.SyncedAxes, 'on'); % 绘制误码率和信噪比 cla(app.BERAxes); if ~isempty(app.tdmSystem.performance) yyaxis(app.BERAxes, 'left'); bar(app.BERAxes, 1:app.params.numSignals, app.tdmSystem.ber, 0.6, 'FaceColor', [0.2 0.6 0.8]); ylabel(app.BERAxes, '均方误差 (MSE)'); yyaxis(app.BERAxes, 'right'); plot(app.BERAxes, 1:app.params.numSignals, app.tdmSystem.performance.snr, 'o-', 'LineWidth', 2, 'MarkerSize', 8); ylabel(app.BERAxes, 'SNR (dB)'); title(app.BERAxes, '信号质量分析'); xlabel(app.BERAxes, '信号编号'); grid(app.BERAxes, 'on'); xticks(app.BERAxes, 1:app.params.numSignals); legend(app.BERAxes, {'MSE', 'SNR'}, 'Location', 'best'); end end end % Callbacks that handle component events methods (Access = private) % Code that executes after component creation function startupFcn(app) % 初始化参数 app.signals = {}; app.params = struct(); app.StatusLabel.Text = '准备就绪'; app.ProgressBar.Color = 'green'; % 设置默认参数 app.SamplingRateEditField.Value = 1000; app.DurationEditField.Value = 1; app.SNREditField.Value = 20; app.IterationsEditField.Value = 5; app.TotalSlotsEditField.Value = 50; app.NumSignalsEditField.Value = 0; app.PriorityRadioButton.Value = true; % 编码参数默认值 app.EncodingTypeDropDown.Value = 'PCM'; app.QuantBitsEditField.Value = 8; app.StepSizeEditField.Value = 0.05; % 调制参数默认值 app.ModulationTypeDropDown.Value = 'BPSK'; % 帧配置默认值 app.FrameHeaderEditField.Value = 'A5A5'; app.CRCCheckBox.Value = true; % 更新参数显示 updateParams(app); updateParametersDisplay(app); end % Button pushed function: AddSignalButton function AddSignalButtonPushed(app, ~) % 添加新信号 signalType = app.SignalTypeDropDown.Value; frequency = app.FrequencyEditField.Value; modulationType = app.ModulationTypeDropDown.Value; % 获取调制类型 if frequency <= 0 uialert(app.UIFigure, '频率必须大于0', '无效参数'); return; end newSignal = struct(... 'type', signalType, ... 'frequency', frequency, ... 'modulation', modulationType); % 添加调制类型 app.signals{end+1} = newSignal; app.NumSignalsEditField.Value = numel(app.signals); % 更新信号列表 signalList = cell(1, numel(app.signals)); for i = 1:numel(app.signals) sig = app.signals{i}; signalList{i} = sprintf('信号 %d: %s (%d Hz, %s调制)', i, sig.type, sig.frequency, sig.modulation); end app.SignalsListBox.Items = signalList; % 更新参数 updateParams(app); updateParametersDisplay(app); app.StatusLabel.Text = sprintf('已添加信号: %s (%d Hz, %s调制)', signalType, frequency, modulationType); end % Button pushed function: RemoveSignalButton function RemoveSignalButtonPushed(app, ~) % 移除选中的信号 selectedIdx = app.SignalsListBox.Value; if isempty(selectedIdx) || selectedIdx > numel(app.signals) uialert(app.UIFigure, '请选择要删除的信号', '无选择'); return; end % 移除信号 removedSig = app.signals{selectedIdx}; app.signals(selectedIdx) = []; % 更新信号列表 app.NumSignalsEditField.Value = numel(app.signals); signalList = cell(1, numel(app.signals)); for i = 1:numel(app.signals) sig = app.signals{i}; signalList{i} = sprintf('信号 %极: %s (%d Hz, %s调制)', i, sig.type, sig.frequency, sig.modulation); end app.SignalsListBox.Items = signalList; % 如果没有信号,清除选择 if isempty(app.signals) app.SignalsListBox.Value = []; else app.SignalsListBox.Value = min(selectedIdx, numel(app.signals)); end % 更新参数 updateParams(app); updateParametersDisplay(app); app.StatusLabel.Text = sprintf('已移除信号: %s (%d Hz, %s调制)', removedSig.type, removedSig.frequency, removedSig.modulation); end % Value changed function: NumSignalsEditField function NumSignalsEditFieldValueChanged(app, ~) % 信号数量变化时更新 updateParams(app); updateParametersDisplay(app); end % Value changed function: SamplingRateEditField function SamplingRateEditFieldValueChanged(app, ~) updateParams(app); updateParametersDisplay(app); end % Value changed function: DurationEditField function DurationEditFieldValueChanged(app, ~) updateParams(app); updateParametersDisplay(app); end % Value changed function: SNREditField function SNREditFieldValueChanged(app, ~) updateParams(app); updateParametersDisplay(app); end % Value changed function: IterationsEditField function IterationsEditFieldValueChanged(app, ~) updateParams(app); updateParametersDisplay(app); end % Value changed function: TotalSlotsEditField function TotalSlotsEditFieldValueChanged(app, ~) updateParams(app); updateParametersDisplay(app); end % Selection changed function: StrategyButtonGroup function StrategyButtonGroupSelectionChanged(app, ~) updateParams(app); updateParametersDisplay(app); end % 编码参数变化回调 function EncodingTypeDropDownValueChanged(app, ~) updateParams(app); updateParametersDisplay(app); end function QuantBitsEditFieldValueChanged(app, ~) updateParams(app); updateParametersDisplay(app); end function StepSizeEditFieldValueChanged(app, ~) updateParams(app); updateParametersDisplay(app); end % 调制参数变化回调 function ModulationTypeDropDownValueChanged(app, ~) updateParams(app); updateParametersDisplay(app); end function FrameHeaderEditFieldValueChanged(app, ~) updateParams(app); updateParametersDisplay(app); end function CRCCheckBoxValueChanged(app, ~) updateParams(app); updateParametersDisplay(app); end % Button pushed function: RunSimulationButton function RunSimulationButtonPushed(app, ~) % 运行基础仿真 app.StatusLabel.Text = '运行基础仿真...'; app.ProgressBar.Color = 'yellow'; drawnow; try % 更新参数 updateParams(app); % 检查信号配置 if app.params.numSignals == 0 uialert(app.UIFigure, '请至少添加一个信号', '无信号'); app.ProgressBar.Color = 'red'; return; end % 创建TDM系统 app.tdmSystem = TDMSystem(app.params); % 生成信号 generateSignals(app); % 运行仿真 app.tdmSystem = app.tdmSystem.runSimulation(); % 显示结果 plotSignals(app); updateParametersDisplay(app); app.StatusLabel.Text = '基础仿真完成!'; app.ProgressBar.Color = 'green'; catch ME app.StatusLabel.Text = ['错误: ' ME.message]; app.ProgressBar.Color = 'red'; uialert(app.UIFigure, ME.message, '仿真错误'); end end % Button pushed function: RunFeedbackButton function RunFeedbackButtonPushed(app, ~) % 运行反馈控制仿真 app.StatusLabel.Text = '运行反馈控制仿真...'; app.ProgressBar.Color = 'yellow'; drawnow; try % 更新参数 updateParams(app); % 检查信号配置 if app.params.numSignals == 0 uialert(app.UIFigure, '请至少添加一个信号', '无信号'); app.ProgressBar.Color = 'red'; return; end % 创建反馈控制器 app.controller = TDMFeedbackController(app.params); % 生成信号 generateSignals(app); % 运行反馈仿真 app.controller = app.controller.runFeedbackSimulation(); % 显示结果(简化版) app.tdmSystem = app.controller; % 用于显示基本结果 plotSignals(app); updateParametersDisplay(app); app.StatusLabel.Text = '反馈控制仿真完成!'; app.ProgressBar.Color = 'green'; catch ME app.StatusLabel.Text = ['错误: ' ME.message]; app.ProgressBar.Color = 'red'; uialert(app.UIFigure, ME.message, '仿真错误'); end end % Button pushed function: RunAnalysisButton function RunAnalysisButtonPushed(app, ~) % 运行性能分析 app.StatusLabel.Text = '运行性能分析...'; app.ProgressBar.Color = 'yellow'; drawnow; try % 更新参数 updateParams(app); % 检查信号配置 if app.params.numSignals == 0 uialert(app.UIFigure, '请至少添加一个信号', '无极'); app.ProgressBar.Color = 'red'; return; end % 创建性能分析器 app.analyzer = TDMPerformanceAnalyzer(app.params); % 生成信号 generateSignals(app); % 运行性能分析 app.analyzer = app.analyzer.runPerformanceAnalysis(); % 显示结果(简化版) app.tdmSystem = app.analyzer; % 用于显示基本结果 plotSignals(app); updateParametersDisplay(app); app.StatusLabel.Text = '性能分析完成!'; app.ProgressBar.Color = 'green'; catch ME app.StatusLabel.Text = ['错误: ' ME.message]; app.ProgressBar.Color = 'red'; uialert(app.UIFigure, ME.message, '仿真错误'); end end end % App initialization and construction methods (Access = private) % Create UIFigure and components function createComponents(app) % Create UIFigure app.UIFigure = uifigure; app.UIFigure.Position = [100 100 1200 900]; app.UIFigure.Name = 'TDM通信系统仿真'; app.UIFigure.Scrollable = 'on'; % Create SignalConfigPanel app.SignalConfigPanel = uipanel(app.UIFigure); app.SignalConfigPanel.Title = '信号配置'; app.SignalConfigPanel.Position = [20 700 360 210]; % Create NumSignalsLabel app.NumSignalsLabel = uilabel(app.SignalConfigPanel); app.NumSignalsLabel.Position = [20 160 80 22]; app.NumSignalsLabel.Text = '信号数量:'; % Create NumSignalsEditField app.NumSignalsEditField = uieditfield(app.SignalConfigPanel, 'numeric'); app.NumSignalsEditField.Position = [110 160 60 22]; app.NumSignalsEditField.Value = 0; app.NumSignalsEditField.ValueChangedFcn = createCallbackFcn(app, @NumSignalsEditFieldValueChanged, true); % Create SignalTypeLabel app.SignalTypeLabel = uilabel(app.SignalConfigPanel); app.SignalTypeLabel.Position = [20 130 80 22]; app.SignalTypeLabel.Text = '信号类型:'; % Create SignalTypeDropDown app.SignalTypeown = uidropdown(app.SignalConfigPanel); app.SignalTypeDropDown.Position = [110 130 100 22]; app.SignalTypeDropDown.Items = {'正弦波', '方波', '随机噪声', '锯齿波', '脉冲信号'}; % Create FrequencyLabel app.FrequencyLabel = uilabel(app.SignalConfigPanel); app.FrequencyLabel.Position = [20 100 80]; app.FrequencyLabel.Text = '频率 (Hz):'; % Create FrequencyEditField app.FrequencyEditField = uieditfield(app.SignalConfigPanel, 'numeric'); app.FrequencyEditField.Position = [110 100 60 22]; app.FrequencyEditField.Value = 50; % Create AddSignalButton app.AddSignalButton = uibutton(app.SignalConfigPanel, 'push'); app.AddSignalButton.ButtonPushedFcn = createCallbackFcn(app, @AddSignalButtonPushed, true); app.AddSignalButton.Position = [220 130 100 22]; app.AddSignalButton.Text = '添加信号'; % Create RemoveSignalButton app.RemoveSignalButton = uibutton(app.SignalConfigPanel, 'push'); app.RemoveSignalButton.ButtonPushedFcn = createCallbackFcn(app, @RemoveSignalButtonPushed, true); app.RemoveSignalButton.Position = [220 100 100 22]; app.RemoveSignalButton.Text = '移除信号'; % Create SignalsListLabel app.SignalsListLabel = uilabel(app.SignalConfigPanel); app.SignalsListLabel.Position = [20 70 80 22]; app.SignalsListLabel.Text = '信号列表:'; % Create SignalsListBox app.SignalsListBox = uilistbox(app.SignalConfigPanel); app.SignalsListBox.Position = [20 20 300 50]; app.SignalsListBox.Items = {}; % 编码配置控件 app.EncodingPanel = uipanel(app.UIFigure); app.EncodingPanel.Title = '编码配置'; app.EncodingPanel.Position = [20 560 360 130]; app.EncodingTypeLabel = uilabel(app.EncodingPanel); app.EncodingTypeLabel.Position = [20 80 80 22]; app.EncodingTypeLabel.Text = '编码类型:'; app.EncodingTypeDropDown = uidropdown(app.EncodingPanel); app.EncodingTypeDropDown.Position = [110 80 100 22]; app.EncodingTypeDropDown.Items = {'PCM', 'DPCM', 'DM'}; app.EncodingTypeDropDown.Value = 'PCM'; app.EncodingTypeDropDown.ValueChangedFcn = createCallbackFcn(app, @EncodingTypeDropDownValueChanged, true); app.QuantBitsLabel = uilabel(app.EncodingPanel); app.QuantBitsLabel.Position = [20 50 80 22]; app.QuantBitsLabel.Text = '量化位数:'; app.QuantBitsEditField = uieditfield(app.EncodingPanel, 'numeric'); app.QuantBitsEditField.Position = [110 50 60 22]; app.QuantBitsEditField.Value = 8; app.QuantBitsEditField.ValueChangedFcn = createCallbackFcn(app, @QuantBitsEditFieldValueChanged, true); app.StepSizeLabel = uilabel(app.EncodingPanel); app.StepSizeLabel.Position = [20 20 80 22]; app.StepSizeLabel.Text = '步长:'; app.StepSizeEditField = uieditfield(app.EncodingPanel, 'numeric'); app.StepSizeEditField.Position = [110 20 60 22]; app.StepSizeEditField.Value = 0.05; app.StepSizeEditField.ValueChangedFcn = createCallbackFcn(app, @StepSizeEditFieldValueChanged, true); % 调制配置控件 app.ModulationPanel = uipanel(app.UIFigure); app.ModulationPanel.Title = '调制配置'; app.ModulationPanel.Position = [20 460 360 50]; app.ModulationTypeLabel = uilabel(app.ModulationPanel); app.ModulationTypeLabel.Position = [20 15 80 22]; app.ModulationTypeLabel.Text = '调制方式:'; app.ModulationTypeDropDown = uidropdown(app.ModulationPanel); app.ModulationTypeDropDown.Position = [110 15 100 22]; app.ModulationTypeDropDown.Items = {'None', 'BPSK', 'QPSK', '16QAM'}; app.ModulationTypeDropDown.Value = 'BPSK'; app.ModulationTypeDropDown.ValueChangedFcn = createCallbackFcn(app, @ModulationTypeDropDownValueChanged, true); % 帧配置控件 app.FrameConfigPanel = uipanel(app.UIFigure); app.FrameConfigPanel.Title = '帧配置'; app.FrameConfigPanel.Position = [20 400 360 50]; app.FrameHeaderLabel = uilabel(app.FrameConfigPanel); app.FrameHeaderLabel.Position = [20 15 80 22]; app.FrameHeaderLabel.Text = '帧头:'; app.FrameHeaderEditField = uieditfield(app.FrameConfigPanel, 'text'); app.FrameHeaderEditField.Position = [110 15 100 22]; app.FrameHeaderEditField.Value = 'A5A5'; app.FrameHeaderEditField.ValueChangedFcn = createCallbackFcn(app, @FrameHeaderEditFieldValueChanged, true); app.CRCCheckBox = uicheckbox(app.FrameConfigPanel); app.CRCCheckBox.Text = '启用CRC校验'; app.CRCCheckBox.Position = [220 15 120 22]; app.CRCCheckBox.Value = true; app.CRCCheckBox.ValueChangedFcn = createCallbackFcn(app, @CRCCheckBoxValueChanged, true); % Create StrategyPanel app.StrategyPanel = uipanel(app.UIFigure); app.StrategyPanel.Title = '时隙分配策略'; app.StrategyPanel.Position = [400 700 250 210]; % Create StrategyButtonGroup app.StrategyButtonGroup = uibuttongroup(app.StrategyPanel); app.StrategyButtonGroup.SelectionChangedFcn = createCallbackFcn(app, @StrategyButtonGroupSelectionChanged, true); app.StrategyButtonGroup.Position = [20 100 200 80]; app.StrategyButtonGroup.Title = '选择策略'; % Create FixedRadioButton app.FixedRadioButton = uiradiobutton(app.StrategyButtonGroup); app.FixedRadioButton.Text = '固定分配'; app.FixedRadioButton.Position = [11 35 75 22]; % Create PriorityRadioButton app.PriorityRadioButton = uiradiobutton(app.StrategyButtonGroup); app.PriorityRadioButton.Text = '优先级分配'; app.PriorityRadioButton.Position = [11 10 100 22]; app.PriorityRadioButton.Value = true; % Create TotalSlotsLabel app.TotalSlotsLabel = uilabel(app.StrategyPanel); app.TotalSlotsLabel.Position = [20 60 80 22]; app.TotalSlotsLabel.Text = '总时隙数:'; % Create TotalSlotsEditField app.TotalSlotsEditField = uieditfield(app.StrategyPanel, 'numeric'); app.TotalSlotsEditField.ValueChangedFcn = createCallbackFcn(app, @TotalSlotsEditFieldValueChanged, true); app.TotalSlotsEditField.Position = [110 60 60 22]; app.TotalSlotsEditField.Value = 50; % Create SimulationPanel app.SimulationPanel = uipanel(app.UIFigure); app.SimulationPanel.Title = '仿真控制'; app.SimulationPanel.Position = [670 700 250 210]; % Create RunSimulationButton app.RunSimulationButton = uibutton(app.SimulationPanel, 'push'); app.RunSimulationButton.ButtonPushedFcn = createCallbackFcn(app, @RunSimulationButtonPushed, true); app.RunSimulationButton.Position = [30 150 190 30]; app.RunSimulationButton.Text = '运行系统仿真'; % Create RunFeedbackButton app.RunFeedbackButton = uibutton(app.SimulationPanel, 'push'); app.RunFeedbackButton.ButtonPushedFcn = createCallbackFcn(app, @RunFeedbackButtonPushed, true); app.RunFeedbackButton.Position = [30 100 190 30]; app.RunFeedbackButton.Text = '运行反馈控制'; % Create RunAnalysisButton app.RunAnalysisButton = uibutton(app.SimulationPanel, 'push'); app.RunAnalysisButton.ButtonPushedFcn = createCallbackFcn(app, @RunAnalysisButtonPushed, true); app.RunAnalysisButton.Position = [30 50 190 30]; app.RunAnalysisButton.Text = '运行性能分析'; % Create ResultsTabGroup app.ResultsTabGroup = uitabgroup(app.UIFigure); app.ResultsTabGroup.Position = [20 20 1150 420]; % Create SignalsTab app.SignalsTab = uitab(app.ResultsTabGroup); app.SignalsTab.Title = '信号可视化'; % Create OriginalAxes app.OriginalAxes = uiaxes(app.SignalsTab); title(app.OriginalAxes, '原始信号') xlabel(app.OriginalAxes, '时间 (s)') ylabel(app.OriginalAxes, '幅度') app.OriginalAxes.Position = [50 240 500 150]; % Create TDMAxes app.TDMAxes = uiaxes(app.SignalsTab); title(app.TDMAxes, 'TDM复用信号') xlabel(app.TDMAxes, '时间 (s)') ylabel(app.TDMAxes, '幅度') app.TDMAxes.Position = [50 40 500 150]; % Create DemuxAxes app.DemuxAxes = uiaxes(app.SignalsTab); title(app.DemuxAxes, '解复用信号') xlabel(app.DemuxAxes, '时间 (s)') ylabel(app.DemuxAxes, '幅度') app.DemuxAxes.Position = [600 240 500 150]; % Create SyncedAxes app.SyncedAxes = uiaxes(app.SignalsTab); title(app.SyncedAxes, '同步后信号') xlabel(app.SyncedAxes, '时间 (s)') ylabel(app.SyncedAxes, '幅度') app.SyncedAxes.Position = [600 40 500 150]; % Create PerformanceTab app.PerformanceTab = uitab(app.ResultsTabGroup); app.PerformanceTab.Title = '性能分析'; % Create BERAxes app.BERAxes = uiaxes(app.PerformanceTab); title(app.BERAxes, '信号质量分析') xlabel(app.BERAxes, '信号编号') app.BERAxes.Position = [50 80 1000 250]; yyaxis(app.BERAxes, 'left'); ylabel(app.BERAxes, 'MSE'); yyaxis(app.BERAxes, 'right'); ylabel(app.BERAxes, 'SNR (dB)'); % Create ParametersTab app.ParametersTab = uitab(app.ResultsTabGroup); app.ParametersTab.Title = '系统参数'; % Create ParametersTextArea app.ParametersTextArea = uitextarea(app.ParametersTab); app.ParametersTextArea.Position = [20 50 1100 340]; app.ParametersTextArea.Value = {'系统参数将在此显示'}; % Create StatusLabel app.StatusLabel = uilabel(app.UIFigure); app.StatusLabel.HorizontalAlignment = 'right'; app.StatusLabel.Position = [100 900 800 22]; app.StatusLabel.Text = '准备就绪'; % Create ProgressBar app.ProgressBar = uilamp(app.UIFigure); app.ProgressBar.Position = [930 900 20 20]; app.ProgressBar.Color = [0.47 0.67 0.19]; % Create SNRLabel app.SNRLabel = uilabel(app.UIFigure); app.SNRLabel.Position = [950 560 80 22]; app.SNRLabel.Text = '信噪比 (dB):'; % Create SNREditField app.SNREditField = uieditfield(app.UIFigure, 'numeric'); app.SNREditField.ValueChangedFcn = createCallbackFcn(app, @SNREditFieldValueChanged, true); app.SNREditField.Position = [1040 560 60 22]; app.SNREditField.Value = 20; % Create IterationsLabel app.IterationsLabel = uilabel(app.UIFigure); app.IterationsLabel.Position = [950 530 80 22]; app.IterationsLabel.Text = '迭代次数:'; % Create IterationsEditField app.IterationsEditField = uieditfield(app.UIFigure, 'numeric'); app.IterationsEditField.ValueChangedFcn = createCallbackFcn(app, @IterationsEditFieldValueChanged, true); app.IterationsEditField.Position = [1040 530 60 22]; app.IterationsEditField.Value = 5; % Create DurationLabel app.DurationLabel = uilabel(app.UIFigure); app.DurationLabel.Position = [950 500 80 22]; app.DurationLabel.Text = '持续时间 (s):'; % Create DurationEditField app.DurationEditField = uieditfield(app.UIFigure, 'numeric'); app.DurationEditField.ValueChangedFcn = createCallbackFcn(app, @DurationEditFieldValueChanged, true); app.DurationEditField.Position = [1040 500 60 22]; app.DurationEditField.Value = 1; % Create SamplingRateLabel app.SamplingRateLabel = uilabel(app.UI); app.SamplingRateLabel.Position = [950 470 80 22]; app.SamplingRateLabel.Text = '采样率 (Hz):'; % Create SamplingRateEditField app.SamplingRateEditField = uieditfield(app.UIFigure, 'numeric'); app.SamplingRateEditField.ValueChangedFcn = createCallbackFcn(app, @SamplingRateEditFieldValueChanged, true); app.SamplingRateEditField.Position = [1040 470 60 22]; app.SamplingRateEditField.Value = 1000; end end methods (Access = public) % Construct app function app = TDMApp8888 % Create and configure components createComponents(app) % Register the app with App Designer registerApp(app, app.UIFigure) % Execute the startup function runStartupFcn(app, @startupFcn) if nargout == 0 clear app end end % Code that executes before app deletion function delete(app) % Delete UIFigure when app is deleted delete(app.UIFigure) end end end % 辅助函数 function out = ifelse(condition, true_val, false_val) if condition out = true_val; else out = false_val; end end

优化代码,仅解决性能分析图表没有显示的问题,代码:classdef TDMPerformanceAnalyzer < TDMSystem % TDMPERFORMANCEANALYZER TDM系统性能分析工具 % 继承自TDMSystem基类,提供全面的性能分析功能 properties snrRange % SNR测试范围 (dB) performanceCurves % 性能曲线数据结构 detailedMetrics % 详细性能指标 convergenceAnalysis % 收敛性分析结果 modulationAnalysis % 调制方式对比分析 end properties (Access = private) originalParams % 原始参数备份 end methods function obj = TDMPerformanceAnalyzer(params) % 构造函数 % 输入: params - 系统参数结构体 % 调用父类构造函数 obj = obj@TDMSystem(params); % 备份原始参数 obj.originalParams = params; % 设置默认SNR范围 obj.snrRange = 0:2:20; % 0dB到20dB,步长2dB end function obj = runPerformanceAnalysis(obj, customSNR) % 主性能分析方法 % 输入: customSNR - (可选)自定义SNR范围 % 处理可选参数 if nargin > 1 && ~isempty(customSNR) validateattributes(customSNR, {'numeric'}, {'vector', 'nonempty'}, ... 'runPerformanceAnalysis', 'customSNR'); obj.snrRange = customSNR; end try % 初始化性能数据结构 numSignals = obj.params.numSignals; numSNR = length(obj.snrRange); % 预分配内存 obj.performanceCurves = struct(... 'ber', zeros(numSNR, numSignals), ... 'snr', zeros(numSNR, numSignals), ... 'mse', zeros(numSNR, numSignals), ... 'throughput', zeros(numSNR, numSignals)); % 保存原始SNR设置 originalSNR = obj.params.snrDb; % 进度条显示 hWaitbar = waitbar(0, '正在执行性能分析...', ... 'Name', 'TDM性能分析', ... 'CreateCancelBtn', 'setappdata(gcbf,''canceling'',1)'); setappdata(hWaitbar, 'canceling', 0); % 遍历不同SNR值 for snrIdx = 1:numSNR % 检查取消操作 if getappdata(hWaitbar, 'canceling') break; end % 更新SNR参数 obj.params.snrDb = obj.snrRange(snrIdx); % 调用超类方法 - 使用正确的语法 obj = runSimulation(obj); % 存储性能指标 obj.performanceCurves.ber(snrIdx, :) = obj.performance.ber; obj.performanceCurves.snr(snrIdx, :) = obj.performance.snr; obj.performanceCurves.mse(snrIdx, :) = obj.performance.mse; % 计算吞吐量 (1 - BER) obj.performanceCurves.throughput(snrIdx, :) = 1 - obj.performance.ber; % 更新进度条 waitbar(snrIdx/numSNR, hWaitbar, ... sprintf('正在分析 SNR=%.1f dB (%.0f%%)', ... obj.snrRange(snrIdx), snrIdx/numSNR*100)); end % 关闭进度条 delete(hWaitbar); % 恢复原始SNR obj.params.snrDb = originalSNR; % 执行详细分析 obj = obj.performDetailedAnalysis(); obj = obj.performConvergenceAnalysis(); obj = obj.analyzeModulationImpact(); catch ME % 错误处理 if exist('hWaitbar', 'var') && ishandle(hWaitbar) delete(hWaitbar); end rethrow(ME); end end function obj = set.snrRange(obj, range) % SNR范围设置验证 validateattributes(range, {'numeric'}, {'vector', 'increasing', 'nonnegative'}, ... 'TDMPerformanceAnalyzer', 'snrRange'); obj.snrRange = range; end function obj = performDetailedAnalysis(obj) % 详细性能指标计算 numSignals = obj.params.numSignals; numSNR = length(obj.snrRange); % 初始化结构体 obj.detailedMetrics = struct(... 'avgBER', zeros(1, numSignals), ... 'avgSNR', zeros(1, numSignals), ... 'minBER', zeros(1, numSignals), ... 'maxThroughput', zeros(1, numSignals), ... 'snrSensitivity', zeros(1, numSignals), ... 'berAt10dB', zeros(1, numSignals), ... 'berAt20dB', zeros(1, numSignals)); for i = 1:numSignals % 提取当前信号的性能数据 berData = obj.performanceCurves.ber(:, i); snrData = obj.performanceCurves.snr(:, i); throughputData = obj.performanceCurves.throughput(:, i); % 平均BER和SNR obj.detailedMetrics.avgBER(i) = mean(berData); obj.detailedMetrics.avgSNR(i) = mean(snrData); % 最低BER obj.detailedMetrics.minBER(i) = min(berData); % 最大吞吐量 obj.detailedMetrics.maxThroughput(i) = max(throughputData); % SNR敏感性 (BER改善率) berDiff = diff(berData); snrDiff = diff(obj.snrRange'); obj.detailedMetrics.snrSensitivity(i) = mean(berDiff ./ snrDiff); % 特定SNR点的BER值 idx10dB = find(obj.snrRange >= 10, 1, 'first'); idx20dB = find(obj.snrRange >= 20, 1, 'first'); if ~isempty(idx10dB) obj.detailedMetrics.berAt10dB(i) = berData(idx10dB); end if ~isempty(idx20dB) && idx20dB <= numSNR obj.detailedMetrics.berAt20dB(i) = berData(idx20dB); end end end function obj = performConvergenceAnalysis(obj, threshold) % 收敛性分析 % 输入: threshold - (可选)收敛判断阈值 if nargin < 2 || isempty(threshold) threshold = 1e-4; % 默认收敛判断阈值 end numSignals = obj.params.numSignals; obj.convergenceAnalysis = struct(... 'convergencePoint', zeros(1, numSignals), ... 'stableBER', zeros(1, numSignals), ... 'convergenceSNR', zeros(1, numSignals)); for i = 1:numSignals berValues = obj.performanceCurves.ber(:, i); % 找到BER变化小于阈值的点 berDiff = abs(diff(berValues)); convergenceIdx = find(berDiff < threshold, 1, 'first'); if isempty(convergenceIdx) obj.convergenceAnalysis.convergencePoint(i) = length(obj.snrRange); obj.convergenceAnalysis.stableBER(i) = berValues(end); obj.convergenceAnalysis.convergenceSNR(i) = obj.snrRange(end); else obj.convergenceAnalysis.convergencePoint(i) = convergenceIdx; obj.convergenceAnalysis.stableBER(i) = berValues(convergenceIdx); obj.convergenceAnalysis.convergenceSNR(i) = obj.snrRange(convergenceIdx); end end end function obj = analyzeModulationImpact(obj) % 调制方式影响分析 if isfield(obj.params, 'signalModulations') && ~isempty(obj.params.signalModulations) modTypes = unique(obj.params.signalModulations); else % 如果没有指定调制方式,默认为所有信号相同 modTypes = {'Unknown'}; obj.params.signalModulations = repmat(modTypes, 1, obj.params.numSignals); end numModTypes = length(modTypes); obj.modulationAnalysis = struct(... 'modulationTypes', {modTypes}, ... 'avgBER', zeros(1, numModTypes), ... 'avgSNR', zeros(1, numModTypes), ... 'sensitivity', zeros(1, numModTypes), ... 'minBER', zeros(1, numModTypes), ... 'maxThroughput', zeros(1, numModTypes)); for m = 1:numModTypes modType = modTypes{m}; signalIndices = find(strcmp(obj.params.signalModulations, modType)); if isempty(signalIndices) continue; end % 提取该调制方式的所有性能数据 berValues = obj.performanceCurves.ber(:, signalIndices); snrValues = obj.performanceCurves.snr(:, signalIndices); throughputValues = obj.performanceCurves.throughput(:, signalIndices); % 计算平均性能 obj.modulationAnalysis.avgBER(m) = mean(berValues(:)); obj.modulationAnalysis.avgSNR(m) = mean(snrValues(:)); % 计算灵敏度 (BER随SNR的变化率) meanBer = mean(berValues, 2); berDiff = diff(meanBer); snrDiff = diff(obj.snrRange'); obj.modulationAnalysis.sensitivity(m) = mean(berDiff ./ snrDiff); % 最佳性能 obj.modulationAnalysis.minBER(m) = min(berValues(:)); obj.modulationAnalysis.maxThroughput(m) = max(throughputValues(:)); end end function figHandle = plotPerformanceResults(obj, figHandle) % 创建性能分析图表 % 输入: figHandle - (可选)现有图形句柄 % 输出: figHandle - 图形句柄 if nargin < 2 || isempty(figHandle) || ~isvalid(figHandle) figHandle = figure('Name', 'TDM系统性能综合分析', ... 'Position', [100, 100, 1400, 900], ... 'Color', 'w'); else figure(figHandle); clf; end % 创建选项卡组 tabGroup = uitabgroup('Parent', figHandle); % 选项卡1: 核心性能指标 tab1 = uitab(tabGroup, 'Title', '核心指标'); ax1 = subplot(2, 3, 1, 'Parent', tab1); hold(ax1, 'on'); colors = lines(obj.params.numSignals); for i = 1:obj.params.numSignals plot(ax1, obj.snrRange, log10(obj.performanceCurves.ber(:, i)), ... 'Color', colors(i, :), 'LineWidth', 2, ... 'DisplayName', sprintf('信号 %d', i)); end hold(ax1, 'off'); title(ax1, '误码率(BER) vs 信噪比(SNR)'); xlabel(ax1, 'SNR (dB)'); ylabel(ax1, 'log_{10}(BER)'); grid(ax1, 'on'); legend(ax1, 'show'); % 2. 吞吐量 vs SNR曲线 ax2 = subplot(2, 3, 2, 'Parent', tab1); hold(ax2, 'on'); for i = 1:obj.params.numSignals plot(ax2, obj.snrRange, obj.performanceCurves.throughput(:, i), ... 'Color', colors(i, :), 'LineWidth', 2, ... 'DisplayName', sprintf('信号 %d', i)); end hold(ax2, 'off'); title(ax2, '吞吐量 vs 信噪比(SNR)'); xlabel(ax2, 'SNR (dB)'); ylabel(ax2, '吞吐量 (1 - BER)'); grid(ax2, 'on'); % 3. 调制方式性能对比 ax3 = subplot(2, 3, 3, 'Parent', tab1); modTypes = obj.modulationAnalysis.modulationTypes; numModTypes = length(modTypes); barValues = [obj.modulationAnalysis.avgBER; ... obj.modulationAnalysis.avgSNR]; hBar = bar(ax3, barValues'); set(ax3, 'XTickLabel', modTypes); title(ax3, '调制方式性能对比'); ylabel(ax3, '性能指标'); legend(ax3, {'平均BER', '平均SNR'}, 'Location', 'best'); grid(ax3, 'on'); % 添加数值标签 for i = 1:numModTypes text(ax3, i, barValues(1, i), sprintf('%.2e', barValues(1, i)), ... 'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'center'); text(ax3, i, barValues(2, i), sprintf('%.1f dB', barValues(2, i)), ... 'VerticalAlignment', 'top', 'HorizontalAlignment', 'center'); end % 4. 收敛点分析 ax4 = subplot(2, 3, 4, 'Parent', tab1); convergencePoints = obj.convergenceAnalysis.convergencePoint; stableBER = obj.convergenceAnalysis.stableBER; yyaxis(ax4, 'left'); bar(ax4, convergencePoints, 'FaceColor', [0.2 0.6 0.8]); ylabel(ax4, '收敛点 (SNR索引)'); yyaxis(ax4, 'right'); plot(ax4, log10(stableBER), 'o-', 'LineWidth', 2, 'MarkerSize', 8); ylabel(ax4, 'log_{10}(稳定BER)'); title(ax4, '信号收敛分析'); xlabel(ax4, '信号编号'); grid(ax4, 'on'); legend(ax4, {'收敛点', '稳定BER'}); % 5. SNR敏感性分析 ax5 = subplot(2, 3, 5, 'Parent', tab1); sensitivity = obj.detailedMetrics.snrSensitivity; bar(ax5, sensitivity, 'FaceColor', [0.8 0.2 0.2]); title(ax5, 'SNR敏感性分析'); xlabel(ax5, '信号编号'); ylabel(ax5, 'BER变化率 / dB'); grid(ax5, 'on'); % 添加数值标签 for i = 1:length(sensitivity) text(ax5, i, sensitivity(i), sprintf('%.2e', sensitivity(i)), ... 'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'center'); end % 6. 综合性能评分 ax6 = subplot(2, 3, 6, 'Parent', tab1); % 性能评分公式: 权重分配 performanceScore = 0.4 * (1 - obj.detailedMetrics.avgBER) + ... 0.3 * (obj.detailedMetrics.avgSNR / 30) + ... 0.2 * obj.detailedMetrics.maxThroughput + ... 0.1 * (1 - abs(obj.detailedMetrics.snrSensitivity)); bar(ax6, performanceScore, 'FaceColor', [0.5 0.2 0.8]); title(ax6, '信号综合性能评分'); xlabel(ax6, '信号编号'); ylabel(ax6, '性能评分 (0-1)'); ylim(ax6, [0 1]); grid(ax6, 'on'); % 添加数值标签 for i = 1:length(performanceScore) text(ax6, i, performanceScore(i), sprintf('%.3f', performanceScore(i)), ... 'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'center'); end % 添加整体标题 annotation(figHandle, 'textbox', [0.3 0.95 0.4 0.05], 'String', ... sprintf('TDM系统综合分析 (策略: %s, 总时隙: %d)', ... obj.params.strategy, obj.params.totalSlots), ... 'EdgeColor', 'none', 'HorizontalAlignment', 'center', ... 'FontSize', 14, 'FontWeight', 'bold'); % 选项卡2: 详细数据视图 tab2 = uitab(tabGroup, 'Title', '详细数据'); axTable = uitable('Parent', tab2, ... 'Data', obj.getPerformanceTableData(), ... 'ColumnName', {'信号', '调制方式', '平均BER', '平均SNR(dB)', '最低BER', '最大吞吐量', 'SNR敏感性', '10dB BER', '20dB BER'}, ... 'Units', 'normalized', ... 'Position', [0.05, 0.05, 0.9, 0.9], ... 'FontSize', 10); % 选项卡3: 收敛性分析 tab3 = uitab(tabGroup, 'Title', '收敛性'); ax7 = subplot(1, 2, 1, 'Parent', tab3); hold(ax7, 'on'); for i = 1:obj.params.numSignals berData = obj.performanceCurves.ber(:, i); convergenceSNR = obj.convergenceAnalysis.convergenceSNR(i); convergenceIdx = obj.convergenceAnalysis.convergencePoint(i); plot(ax7, obj.snrRange, log10(berData), ... 'Color', colors(i, :), 'LineWidth', 2, ... 'DisplayName', sprintf('信号 %d', i)); % 标记收敛点 plot(ax7, convergenceSNR, log10(berData(convergenceIdx)), ... 'o', 'MarkerSize', 10, 'MarkerFaceColor', colors(i, :)); end hold(ax7, 'off'); title(ax7, '收敛点可视化'); xlabel(ax7, 'SNR (dB)'); ylabel(ax7, 'log_{10}(BER)'); grid(ax7, 'on'); legend(ax7, 'show'); ax8 = subplot(1, 2, 2, 'Parent', tab3); convergenceSNR = obj.convergenceAnalysis.convergenceSNR; bar(ax8, convergenceSNR, 'FaceColor', [0.3 0.7 0.5]); title(ax8, '收敛点SNR值'); xlabel(ax8, '信号编号'); ylabel(ax8, '收敛SNR (dB)'); grid(ax8, 'on'); end function tableData = getPerformanceTableData(obj) % 生成性能数据表格 numSignals = obj.params.numSignals; tableData = cell(numSignals, 9); for i = 1:numSignals tableData{i, 1} = i; % 信号编号 % 调制方式 if isfield(obj.params, 'signalModulations') && length(obj.params.signalModulations) >= i tableData{i, 2} = obj.params.signalModulations{i}; else tableData{i, 2} = 'N/A'; end % 性能数据 tableData{i, 3} = sprintf('%.2e', obj.detailedMetrics.avgBER(i)); tableData{i, 4} = sprintf('%.2f', obj.detailedMetrics.avgSNR(i)); tableData{i, 5} = sprintf('%.2e', obj.detailedMetrics.minBER(i)); tableData{i, 6} = sprintf('%.4f', obj.detailedMetrics.maxThroughput(i)); tableData{i, 7} = sprintf('%.2e', obj.detailedMetrics.snrSensitivity(i)); tableData{i, 8} = sprintf('%.2e', obj.detailedMetrics.berAt10dB(i)); tableData{i, 9} = sprintf('%.2e', obj.detailedMetrics.berAt20dB(i)); end end function exportToExcel(obj, filename) % 导出性能数据到Excel % 输入: filename - 输出文件名 if nargin < 2 filename = 'TDM_Performance_Analysis.xlsx'; end % 创建数据表 sheet1 = obj.getPerformanceTableData(); headers = {'信号', '调制方式', '平均BER', '平均SNR(dB)', '最低BER', '最大吞吐量', 'SNR敏感性', '10dB BER', '20dB BER'}; % 写入详细性能数据 xlswrite(filename, [headers; sheet1], '详细性能'); % 写入SNR扫描数据 snrHeaders = {'SNR(dB)'}; for i = 1:obj.params.numSignals snrHeaders{end+1} = sprintf('信号%d_BER', i); snrHeaders{end+1} = sprintf('信号%d_吞吐量', i); end snrData = num2cell([obj.snrRange', ... obj.performanceCurves.ber, ... obj.performanceCurves.throughput]); xlswrite(filename, [snrHeaders; snrData], 'SNR扫描'); % 写入调制方式分析 modHeaders = {'调制方式', '平均BER', '平均SNR(dB)', '灵敏度', '最低BER', '最大吞吐量'}; modData = cell(length(obj.modulationAnalysis.modulationTypes), 6); for m = 1:length(obj.modulationAnalysis.modulationTypes) modData{m, 1} = obj.modulationAnalysis.modulationTypes{m}; modData{m, 2} = obj.modulationAnalysis.avgBER(m); modData{m, 3} = obj.modulationAnalysis.avgSNR(m); modData{m, 4} = obj.modulationAnalysis.sensitivity(m); modData{m, 5} = obj.modulationAnalysis.minBER(m); modData{m, 6} = obj.modulationAnalysis.maxThroughput(m); end xlswrite(filename, [modHeaders; modData], '调制分析'); disp(['性能数据已导出到: ' filename]); end end methods (Static) function analyzer = analyzeSystem(params, customSNR) % 静态方法: 完整分析工作流 % 输入: params - 系统参数 % customSNR - (可选)自定义SNR范围 analyzer = TDMPerformanceAnalyzer(params); if nargin > 1 analyzer = analyzer.runPerformanceAnalysis(customSNR); else analyzer = analyzer.runPerformanceAnalysis(); end % 显示结果 fig = analyzer.plotPerformanceResults(); % 导出结果 exportFilename = sprintf('TDM_Analysis_%s_%dSlots.xlsx', ... params.strategy, params.totalSlots); analyzer.exportToExcel(exportFilename); end end end

分析代码,突出重要部分和功能:classdef TDMSystem properties params % 系统参数 signals % 原始信号 tdmSignal % TDM复用信号 receivedSignal % 接收信号 demuxSignals % 解复用信号 syncedSignals % 同步后信号 signalInfo % 信号信息 allocatedSlots % 分配的时隙 slotAssignment % 时隙分配矩阵 ber % 误码率 performance % 性能指标结构体 end methods function obj = TDMSystem(params) % 构造函数(增强参数验证) if ~isstruct(params) error('输入参数必须是结构体'); end requiredFields = {'fs', 'duration', 'numSignals', 'snrDb', 'clockDrift', 'totalSlots', 'strategy'}; for i = 1:length(requiredFields) if ~isfield(params, requiredFields{i}) error('缺少必需的参数字段: %s', requiredFields{i}); end end % 设置默认值 if ~isfield(params, 'signalTypes') params.signalTypes = repmat({'正弦波'}, 1, params.numSignals); end if ~isfield(params, 'signalParams') % 默认信号参数 defaultParams = cell(1, params.numSignals); for i = 1:params.numSignals switch params.signalTypes{i} case '正弦波' defaultParams{i} = [50, 1, 0]; % 频率, 振幅, 相位 case '方波' defaultParams{i} = [20, 1, 50]; % 频率, 振幅, 占空比 case '随机噪声' defaultParams{i} = [0, 1]; % 均值, 标准差 case '三角波' defaultParams{i} = [50, 1]; % 频率, 振幅 case '锯齿波' defaultParams{i} = [50, 1]; % 频率, 振幅 otherwise defaultParams{i} = [50, 1]; % 默认 end end params.signalParams = defaultParams; end if ~isfield(params, 'priorities') params.priorities = ones(1, params.numSignals); end % 归一化优先级权重 params.priorities = params.priorities / sum(params.priorities); % 验证信号参数 if length(params.signalTypes) ~= params.numSignals error('signalTypes 长度必须与 numSignals 匹配'); end if length(params.signalParams) ~= params.numSignals error('signalParams 长度必须与 numSignals 匹配'); end obj.params = params; totalSamples = params.fs * params.duration; obj.signals = zeros(params.numSignals, totalSamples); obj.signalInfo = cell(params.numSignals, 1); % 计算每个时隙的采样点数 obj.params.slotSamples = floor(totalSamples / params.totalSlots); % 初始化性能指标 obj.performance = struct(); end function obj = runSimulation(obj) % 运行TDM系统仿真 - 添加详细日志 fprintf('开始TDM系统仿真...\n'); fprintf('信号数量: %d, 总时隙数: %d, 策略: %s\n', ... obj.params.numSignals, obj.params.totalSlots, obj.params.strategy); try % 步骤式执行 fprintf('生成信号...\n'); obj = obj.generateSignals(); fprintf('分配时隙...\n'); obj = obj.allocateSlots(); fprintf('TDM复用...\n'); obj = obj.multiplex(); fprintf('信道传输...\n'); obj = obj.transmit(); fprintf('解复用...\n'); obj = obj.demultiplex(); fprintf('信号同步...\n'); obj = obj.synchronize(); fprintf('性能评估...\n'); obj = obj.evaluatePerformance(); fprintf('可视化结果...\n'); obj.visualizeResults(); fprintf('仿真成功完成!\n'); catch ME fprintf('仿真过程中发生错误: %s\n', ME.message); rethrow(ME); end end function obj = generateSignals(obj) % 生成用户配置的多种类型的信号源 - 增强参数验证 t = 0:1/obj.params.fs:obj.params.duration-1/obj.params.fs; numSamples = length(t); for i = 1:obj.params.numSignals sigType = obj.params.signalTypes{i}; sigParams = obj.params.signalParams{i}; try switch sigType case '正弦波' % 参数: [频率, 振幅, 相位] if length(sigParams) < 2 error('正弦波需要至少2个参数: 频率, 振幅'); end freq = sigParams(1); amp = sigParams(2); phase = ifelse(length(sigParams) >= 3, sigParams(3), 0); obj.signals(i, :) = amp * sin(2*pi*freq*t + phase); obj.signalInfo{i} = sprintf('正弦波 (%.1fHz, %.1fV)', freq, amp); case '方波' % 参数: [频率, 振幅, 占空比] if length(sigParams) < 2 error('方波需要至少2个参数: 频率, 振幅'); end freq = sigParams(1); amp = sigParams(2); dutyCycle = ifelse(length(sigParams) >= 3, sigParams(3), 50); obj.signals(i, :) = amp * square(2*pi*freq*t, dutyCycle); obj.signalInfo{i} = sprintf('方波 (%.1fHz, %.1fV, %.0f%%)', freq, amp, dutyCycle); case '随机噪声' % 参数: [均值, 标准差] if length(sigParams) < 2 error('随机噪声需要至少2个参数: 均值, 标准差'); end meanVal = sigParams(1); stdVal = sigParams(2); obj.signals(i, :) = meanVal + stdVal * randn(1, numSamples); obj.signalInfo{i} = sprintf('随机噪声 (μ=%.1f, σ=%.1f)', meanVal, stdVal); case '三角波' % 参数: [频率, 振幅] if length(sigParams) < 2 error('三角波需要至少2个参数: 频率, 振幅'); end freq = sigParams(1); amp = sigParams(2); obj.signals(i, :) = amp * sawtooth(2*pi*freq*t, 0.5); obj.signalInfo{i} = sprintf('三角波 (%.1fHz, %.1fV)', freq, amp); case '锯齿波' % 参数: [频率, 振幅] if length(sigParams) < 2 error('锯齿波需要至少2个参数: 频率, 振幅'); end freq = sigParams(1); amp = sigParams(2); obj.signals(i, :) = amp * sawtooth(2*pi*freq*t, 1); obj.signalInfo{i} = sprintf('锯齿波 (%.1fHz, %.1fV)', freq, amp); otherwise error('未知信号类型: %s', sigType); end catch ME error('信号 %d (%s) 生成失败: %s', i, sigType, ME.message); end end end function obj = allocateSlots(obj) % 时隙分配 - 增强算法健壮性 if obj.params.totalSlots < obj.params.numSignals error('总时隙数(%d)小于信号数(%d),无法分配所有信号', ... obj.params.totalSlots, obj.params.numSignals); end obj.allocatedSlots = zeros(1, obj.params.numSignals); obj.slotAssignment = zeros(obj.params.numSignals, obj.params.totalSlots); switch obj.params.strategy case 'fixed' % 固定时隙分配 - 确保每个信号至少获得一个时隙 baseSlots = floor(obj.params.totalSlots / obj.params.numSignals); obj.allocatedSlots = baseSlots * ones(1, obj.params.numSignals); remainder = obj.params.totalSlots - sum(obj.allocatedSlots); % 优先分配高优先级信号 [~, sortedIdx] = sort(obj.params.priorities, 'descend'); for i = 1:remainder if i <= obj.params.numSignals obj.allocatedSlots(sortedIdx(i)) = obj.allocatedSlots(sortedIdx(i)) + 1; end end case 'priority' % 基于优先级的时隙分配 - 添加最小分配保证 priority = obj.params.priorities; % 确保每个信号至少获得1个时隙 minSlots = ones(1, obj.params.numSignals); availableSlots = obj.params.totalSlots - sum(minSlots); if availableSlots < 0 error('总时隙数(%d)不足以分配给所有信号(%d)', ... obj.params.totalSlots, obj.params.numSignals); end weights = priority / sum(priority); extraSlots = floor(availableSlots * weights); obj.allocatedSlots = minSlots + extraSlots; remainder = availableSlots - sum(extraSlots); [~, idx] = sort(priority, 'descend'); for i = 1:remainder obj.allocatedSlots(idx(i)) = obj.allocatedSlots(idx(i)) + 1; end otherwise error('未知的时隙分配策略: %s', obj.params.strategy); end % 验证分配结果 if sum(obj.allocatedSlots) ~= obj.params.totalSlots error('时隙分配错误: 总分配时隙数(%d)不等于总时隙数(%d)', ... sum(obj.allocatedSlots), obj.params.totalSlots); end % 构建时隙分配矩阵 current_slot = 1; for i = 1:obj.params.numSignals slotsToAssign = min(obj.allocatedSlots(i), obj.params.totalSlots - current_slot + 1); for j = 1:slotsToAssign obj.slotAssignment(i, current_slot) = 1; current_slot = current_slot + 1; end end % 打印分配结果 fprintf('时隙分配结果:\n'); for i = 1:obj.params.numSignals fprintf(' 信号 %d (%s): %d 个时隙 (优先级: %.2f)\n', ... i, obj.signalInfo{i}, obj.allocatedSlots(i), obj.params.priorities(i)); end end function obj = multiplex(obj) % 实现TDM复用 - 优化索引计算 totalSamples = obj.params.fs * obj.params.duration; obj.tdmSignal = zeros(1, totalSamples); % 计算每个时隙的采样点数 slotSamples = obj.params.slotSamples; % 基于时隙分配矩阵构建TDM信号 for slot = 1:obj.params.totalSlots % 计算当前时隙的起始和结束索引 startIdx = (slot-1) * slotSamples + 1; endIdx = min(slot * slotSamples, totalSamples); % 找到分配到此槽的信号 signalIdx = find(obj.slotAssignment(:, slot) == 1, 1); if ~isempty(signalIdx) % 确保索引在范围内 if startIdx > totalSamples continue; end % 获取信号片段 signalSegment = obj.signals(signalIdx, startIdx:min(endIdx, size(obj.signals, 2))); % 如果信号长度不足,进行填充 if length(signalSegment) < (endIdx - startIdx + 1) padding = zeros(1, (endIdx - startIdx + 1) - length(signalSegment)); signalSegment = [signalSegment, padding]; end obj.tdmSignal(startIdx:endIdx) = signalSegment; end end end function obj = transmit(obj) % 模拟信道传输,添加噪声 - 改进噪声计算 signal_power = mean(obj.tdmSignal.^2); if signal_power == 0 signal_power = 1e-10; % 避免除零错误 end linear_snr = 10^(obj.params.snrDb/10); noise_power = signal_power / linear_snr; noise = sqrt(noise_power) * randn(size(obj.tdmSignal)); obj.receivedSignal = obj.tdmSignal + noise; fprintf('信道传输完成. SNR: %.1f dB, 噪声功率: %.4f\n', ... obj.params.snrDb, noise_power); end function obj = demultiplex(obj) % 实现TDM解复用 - 优化性能 totalSamples = obj.params.fs * obj.params.duration; obj.demuxSignals = zeros(obj.params.numSignals, totalSamples); % 计算每个时隙的采样点数 slotSamples = obj.params.slotSamples; % 根据时隙分配矩阵解复用信号 for slot = 1:obj.params.totalSlots % 计算当前时隙的索引范围 startIdx = (slot-1) * slotSamples + 1; endIdx = min(slot * slotSamples, totalSamples); if startIdx > totalSamples continue; end % 找到分配到此槽的信号 signalIdx = find(obj.slotAssignment(:, slot) == 1, 1); if ~isempty(signalIdx) % 获取接收到的信号片段 segment = obj.receivedSignal(startIdx:endIdx); % 确保解复用信号矩阵足够大 if endIdx > size(obj.demuxSignals, 2) % 动态扩展矩阵 padding = zeros(obj.params.numSignals, endIdx - size(obj.demuxSignals, 2)); obj.demuxSignals = [obj.demuxSignals, padding]; end obj.demuxSignals(signalIdx, startIdx:endIdx) = segment; end end % 裁剪多余部分 obj.demuxSignals = obj.demuxSignals(:, 1:totalSamples); end function obj = synchronize(obj) % 实现信号同步 - 改进插值方法 t = 0:1/obj.params.fs:obj.params.duration-1/obj.params.fs; numSamples = length(t); obj.syncedSignals = zeros(obj.params.numSignals, numSamples); for i = 1:obj.params.numSignals drift = obj.params.clockDrift(i); if drift ~= 0 % 应用时钟漂移 shifted_t = t + drift; % 使用样条插值进行同步 validIdx = find(~isnan(obj.demuxSignals(i, :)) & ~isinf(obj.demuxSignals(i, :))); if numel(validIdx) > 3 obj.syncedSignals(i, :) = interp1(t(validIdx), obj.demuxSignals(i, validIdx), shifted_t, 'spline', 'extrap'); else % 如果有效点不足,使用最近邻插值 obj.syncedSignals(i, :) = interp1(t(validIdx), obj.demuxSignals(i, validIdx), shifted_t, 'nearest', 'extrap'); end else % 无漂移,直接复制 obj.syncedSignals(i, :) = obj.demuxSignals(i, 1:numSamples); end end end function obj = evaluatePerformance(obj) % 评估系统性能 - 添加更多指标 obj.ber = zeros(obj.params.numSignals, 1); snr_values = zeros(obj.params.numSignals, 1); corr_coeffs = zeros(obj.params.numSignals, 1); for i = 1:obj.params.numSignals % 计算均方误差 orig_signal = obj.signals(i, :); synced_signal = obj.syncedSignals(i, 1:length(orig_signal)); % 确保信号长度一致 minLen = min(length(orig_signal), length(synced_signal)); orig_signal = orig_signal(1:minLen); synced_signal = synced_signal(1:minLen); % 计算MSE mse = mean((orig_signal - synced_signal).^2); obj.ber(i) = mse; % 计算SNR signal_power = mean(orig_signal.^2); noise_power = mean((orig_signal - synced_signal).^2); if noise_power > 0 snr_values(i) = 10 * log10(signal_power / noise_power); else snr_values(i) = Inf; end % 计算相关系数 corr_coeffs(i) = corr(orig_signal(:), synced_signal(:)); fprintf('信号 %d (%s): MSE=%.6f, SNR=%.2f dB, 相关系数=%.4f\n', ... i, obj.signalInfo{i}, mse, snr_values(i), corr_coeffs(i)); end % 存储性能指标 obj.performance.snr = snr_values; obj.performance.corr = corr_coeffs; obj.performance.avg_mse = mean(obj.ber); obj.performance.avg_snr = mean(snr_values(snr_values < Inf)); obj.performance.avg_corr = mean(corr_coeffs); end function visualizeResults(obj) % 增强可视化功能 - 使用子图布局 t = 0:1/obj.params.fs:obj.params.duration-1/obj.params.fs; % 创建主图窗 mainFig = figure('Name', 'TDM系统仿真结果', 'Position', [100, 100, 1400, 900]); % 1. 原始信号 subplot(3, 2, 1); hold on; colors = lines(obj.params.numSignals); for i = 1:obj.params.numSignals plot(t, obj.signals(i, :), 'Color', colors(i, :)); end hold off; title('原始信号'); xlabel('时间 (s)'); ylabel('幅度'); legend(obj.signalInfo, 'Location', 'bestoutside', 'Interpreter', 'none'); grid on; % 2. TDM复用信号 subplot(3, 2, 2); plot(t, obj.tdmSignal); title(['TDM复用信号 (' obj.params.strategy '策略)']); xlabel('时间 (s)'); ylabel('幅度'); grid on; % 3. 接收信号 subplot(3, 2, 3); plot(t, obj.receivedSignal); title(['接收信号 (SNR: ' num2str(obj.params.snrDb) ' dB)']); xlabel('时间 (s)'); ylabel('幅度'); grid on; % 4. 解复用信号 subplot(3, 2, 4); hold on; for i = 1:obj.params.numSignals plot(t, obj.demuxSignals(i, :), 'Color', colors(i, :)); end hold off; title('解复用信号'); xlabel('时间 (s)'); ylabel('幅度'); grid on; % 5. 同步后信号 subplot(3, 2, 5); hold on; for i = 1:obj.params.numSignals plot(t, obj.syncedSignals(i, :), 'Color', colors(i, :)); end hold off; title('同步后信号'); xlabel('时间 (s)'); ylabel('幅度'); grid on; % 6. 性能评估 subplot(3, 2, 6); % 创建三个小图 ax1 = subplot(3, 2, 6); bar(ax1, obj.ber); title(ax1, '均方误差 (MSE)'); xlabel(ax1, '信号编号'); ylabel(ax1, 'MSE'); grid(ax1, 'on'); xticks(ax1, 1:obj.params.numSignals); ax2 = axes('Position', [0.55 0.15 0.15 0.15]); bar(ax2, obj.performance.snr); title(ax2, 'SNR (dB)'); grid(ax2, 'on'); ax3 = axes('Position', [0.75 0.15 0.15 0.15]); bar(ax3, obj.performance.corr); title(ax3, '相关系数'); grid(ax3, 'on'); ylim(ax3, [0, 1]); % 添加整体标题 sgtitle(sprintf('TDM系统仿真结果 - %d个信号, %d个时隙, %s策略', ... obj.params.numSignals, obj.params.totalSlots, obj.params.strategy)); % 保存图像 try timestamp = datestr(now, 'yyyymmdd_HHMMSS'); filename = sprintf('tdm_results_%s.png', timestamp); saveas(mainFig, filename); fprintf('结果已保存为 %s\n', filename); catch fprintf('无法保存结果图像\n'); end end function exportResults(obj, filename) % 导出结果到MAT文件 if nargin < 2 timestamp = datestr(now, 'yyyymmdd_HHMMSS'); filename = sprintf('tdm_results_%s.mat', timestamp); end results = struct(); results.params = obj.params; results.signals = obj.signals; results.tdmSignal = obj.tdmSignal; results.receivedSignal = obj.receivedSignal; results.demuxSignals = obj.demuxSignals; results.syncedSignals = obj.syncedSignals; results.ber = obj.ber; results.performance = obj.performance; save(filename, 'results'); fprintf('结果已导出到 %s\n', filename); end end methods (Static) function params = createDefaultParams() % 创建默认参数结构体 params = struct(); params.fs = 1000; % 采样频率(Hz) params.duration = 1; % 信号持续时间(秒) params.numSignals = 3; % 信号源数量 params.snrDb = 20; % 信噪比(dB) params.clockDrift = [0, 0.002, -0.003]; % 时钟偏差(秒) params.totalSlots = 50; % 总时隙数量 params.strategy = 'priority'; % 分配策略 params.priorities = [0.5, 0.3, 0.2]; % 信号优先级 (归一化) params.signalTypes = {'正弦波', '方波', '随机噪声'}; params.signalParams = {[50, 1, 0], [20, 1, 50], [0, 1]}; end function params = createCustomParams(signalTypes, signalParams, priorities) % 创建自定义参数 params = TDMSystem.createDefaultParams(); params.numSignals = length(signalTypes); params.signalTypes = signalTypes; params.signalParams = signalParams; if nargin > 2 params.priorities = priorities; else params.priorities = ones(1, params.numSignals) / params.numSignals; end % 设置默认时钟漂移 params.clockDrift = zeros(1, params.numSignals); if params.numSignals > 0 params.clockDrift(1) = 0.001; end if params.numSignals > 1 params.clockDrift(2) = 0.002; end if params.numSignals > 2 params.clockDrift(3:end) = -0.001; end end end end % 辅助函数 function out = ifelse(condition, true_val, false_val) if condition out = true_val; else out = false_val; end end

最新推荐

recommend-type

【地球科学与遥感】基于Google Earth Engine的哨兵2号数据分析:研究区域NDVI、LST及城市热岛效应评估系统设计

内容概要:本文档提供了一套完整的Python脚本,利用Google Earth Engine (GEE) API对哨兵2号卫星影像进行处理与分析。首先,导入必要的库(如ee、geemap、geopandas),并通过Google Drive加载GeoJSON文件定义研究区域。接着,对哨兵2号Harmonized数据进行预处理,包括云掩膜、日期筛选和区域过滤。然后,基于红波段和近红外波段计算归一化植被指数(NDVI),并进一步推算地表温度(LST)。最后,通过计算研究区域内的LST均值和标准差,构建标准化城市热岛指数(UHI)和城市热场变异指数(UTFVI),并将其可视化于交互式地图中。 适合人群:具备一定遥感和地理信息系统(GIS)基础知识的研究人员和技术人员,特别是从事环境监测、城市规划或气候变化相关领域的工作者。 使用场景及目标:① 对特定区域内的植被覆盖和地表温度进行动态监测;② 分析城市热岛效应及其空间分布特征;③ 辅助城市规划和环境管理决策,提高应对气候变化的能力。 阅读建议:此资源侧重于实际应用中的遥感数据分析流程,建议读者熟悉Python编程语言和GEE平台的基本操作,同时结合具体的科学问题来理解和实践代码中的各个步骤。在学习过程中应关注数据处理逻辑与方法论的应用,确保能够独立完成类似的数据分析任务。
recommend-type

Typora下载问题解决:资源安装包实测可用

### 知识点:Typora下载与安装问题解决 #### 1. Typora 简介 Typora 是一款流行的轻量级Markdown编辑器,它将实时预览功能和源代码编辑结合在一起,为用户提供了一个简洁高效的写作环境。由于其独特的设计和出色的用户体验,Typora 迅速在开发者和内容创作者之间获得了普及。 #### 2. Markdown 简介 Markdown 是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档,然后转换成有效的XHTML(或者HTML)文档。Markdown 被广泛用于编写 README 文件、撰写文章、创建富文本内容等。其特点在于简化了传统的排版语法,让写作更加专注于内容本身。 #### 3. Typora 的特点和优势 - **所见即所得编辑器**:Typora 结合了传统Markdown编辑器和富文本编辑器的优点,使得用户在编写文档时可以直接看到最终效果。 - **跨平台兼容性**:Typora 支持Windows、macOS以及Linux等多个操作系统。 - **简洁的界面**:它拥有简洁的用户界面,没有复杂的菜单,这有助于减少分心,专注于内容创作。 - **即时预览**:Typora 提供即时预览功能,用户可以立即看到其标记语法对应的视觉效果。 - **集成度高**:支持插入图片、代码块、表格、数学公式等多种格式。 - **扩展性**:支持多种主题和插件,可以进一步增强其功能。 #### 4. 关于标题:“关于Typora下载找不到资源” 当用户在寻找Typora的下载资源时,可能会遇到找不到官方下载链接或被错误资源误导的问题。这可能是由于网络环境限制、搜索关键词不当或者不正确的网站导航等原因导致的。为了解决这个问题,重要的是要知道如何辨别官方下载渠道,以及如何查找和验证可靠的资源。 #### 5. 官方资源的识别和下载 - **访问官方网站**:访问 Typora 的官方网站(https://typora.io/)获取最新版本的下载信息。官方网站是获取软件的最安全和最可靠的方式。 - **下载安装包**:官方网站通常会提供最新版本的安装包下载链接,例如,在此案例中,压缩包子文件名列表中的 typora-setup-x64-0.9.49.exe 对应了 Typora 的一个版本号为 0.9.49 的安装程序,适用于64位Windows系统。 - **检查版本更新**:在安装之前,用户应当确认是否是当前最新版本。如果不是,可从官方网站下载最新版本。 #### 6. 安装包文件名称解析 文件名 typora-setup-x64-0.9.49.exe 中的各部分含义: - **typora**:指的是要安装的软件名。 - **setup**:通常表示这是一个安装程序。 - **x64**:表示这个安装程序支持64位系统架构。 - **0.9.49**:表示这个版本号,用户可以通过这个版本号了解其更新历史和功能改进情况。 #### 7. 实测完成 “实测完成”这一描述表明此文件已经过测试,并确认可以正常下载和安装。实测的流程包括下载安装包、运行安装程序、完成安装以及验证软件功能是否正常。 #### 8. 安装流程详解 1. **下载**:从官方网站下载对应操作系统版本的 Typora 安装包。 2. **运行安装程序**:双击下载的安装程序文件(例如 typora-setup-x64-0.9.49.exe)。 3. **安装向导**:安装向导启动后,遵循提示完成安装。可能包含选择安装路径、接受许可协议、选择开始菜单文件夹等步骤。 4. **完成安装**:完成安装向导后,可能需要重启电脑以完成安装。 5. **验证安装**:启动 Typora 程序,检查软件是否能够正常打开,并确保可以正常使用Markdown编辑功能。 #### 9. 常见问题及解决方案 - **找不到下载资源**:确保访问官方网站或使用正规的软件分发平台获取资源。 - **安装程序无法运行**:检查文件是否有损坏,重新下载安装包。确认系统环境满足安装需求,如操作系统版本兼容性、运行库等。 - **软件无法打开**:尝试以管理员权限运行 Typora,或检查是否有系统安全软件阻止其运行。 - **功能异常或错误**:检查是否有可用的软件更新,或者查看 Typora 官方论坛获取帮助。 #### 10. Typora 的未来展望 由于 Typora 不断更新迭代,功能和用户界面可能会有所改变,包括对新特性的支持和旧特性的优化。同时,开发者社区也在不断地为 Typora 开发新的主题和插件,以提供更加丰富的写作体验和扩展功能。用户应定期访问官方网站或关注官方消息,以便获取最新动态和软件更新。 通过以上介绍和问题解答,用户应该可以更好地理解 Typora 的下载与安装过程,并在遇到相关问题时快速找到解决方法,从而顺利使用这款强大的Markdown编辑器。
recommend-type

网络嗅探器实战进阶:掌握高效数据捕获与准确分析的6大策略

# 1. 网络嗅探器基础原理与工具介绍 网络嗅探器,或称为网络分析器、包分析器,是一种用于捕获网络中的数据包并分析其内容的工具。它们通过直接连接到网络上,读取传输中的数据包信息,为网络安全、故障排除和网络性
recommend-type

system verilog task中用宏定义传参

<think>好的,用户现在想了解如何在SystemVerilog中使用宏定义向task传递参数。之前我已经回答了C/C++中宏定义传参的方法,现在需要迁移到SystemVerilog,同时结合用户提供的引用内容。 首先,我需要回忆SystemVerilog中宏的基本语法,确认是否与C/C++类似。SystemVerilog确实支持`define宏,带参数的形式应该也是类似的。用户提供的引用中提到`__FILE__`和`__LINE__`,这些可能和调试有关,所以可能需要考虑在宏中加入这些信息来帮助调试。 接下来,用户的问题是关于如何通过宏向task传参。这里的task应该是指System
recommend-type

Java开发的Help GUI 1.1源码:可视化组件库详解

在分析给定文件信息后,可以提取出如下知识点: 首先,标题中提到了“基于java的开发源码-帮助视图组件库 Help GUI 1.1源代码.zip”,这说明文件包含了一个Java开发的开源项目,该库被命名为Help GUI,版本为1.1。在此基础上,我们可以讨论以下几个方面: 1. Java开发: - Java是一种广泛使用的面向对象的编程语言,它具有跨平台的特性,即“一次编写,到处运行”的能力。Java通过Java虚拟机(JVM)来实现跨平台运行。 - Java的开发环境一般需要配置Java开发工具包(JDK)和集成开发环境(IDE),如Eclipse、IntelliJ IDEA或PyCharm。 - Java支持多线程编程,拥有丰富的类库和框架,如Spring、Hibernate等,用以简化开发流程。 - Java在企业级应用、移动开发(Android)、桌面应用和服务器端应用中都有广泛的应用。 2. 开源项目: - 开源项目是指源代码公开的软件项目,通常遵循特定的开源许可协议,如GPL、LGPL、Apache License等。 - 开源项目的优势在于可自由使用、修改和分发代码,能够促进技术的交流和创新。 - 通过参与开源项目,开发者可以提高自身的技术水平,贡献代码以回馈社区。 3. 组件库Help GUI 1.1: - Help GUI可能是一个为开发者提供的图形用户界面(GUI)组件库,用于简化Java桌面应用的帮助视图创建。 - 组件库一般会包含一系列预制的用户界面组件,例如按钮、文本框、列表框、对话框等,以帮助快速构建用户界面。 - 版本1.1表明这是组件库的一个更新版本,通常新版本会增加新的特性、修复bug、优化性能。 4. PyCharm配置Python环境: - 这部分描述似乎与主标题无关,但其可能涉及PyCharm这一IDE的使用。 - PyCharm是专为Python语言开发的IDE,但也可以配置Java开发环境。 - 在配置Python环境时,需要安装Python解释器,并设置相关的路径、环境变量等。 - PyCharm提供了代码高亮、代码自动完成、版本控制等功能,能够提升开发效率。 由于【压缩包子文件的文件名称列表】中只有一个“codefans.net”,这可能是一个网站地址,但没有提供足够的信息来推断与上述Java项目或组件库直接相关的内容。 综上所述,文件描述了一个基于Java的开源组件库Help GUI 1.1,该组件库用于帮助开发者创建帮助视图,且暗示了PyCharm这一IDE的使用。通过探讨Java开发、开源项目、组件库和IDE配置等知识点,可以更好地理解文件所指的项目背景和应用场景。
recommend-type

网络嗅探器全攻略:从入门到精通的15大技巧与实践案例

# 1. 网络嗅探器基础与重要性 在数字化的世界中,网络嗅探器是IT专业人员的重要工具,它允许我们监视和分析经过网络的数据包。本章将带您了解网络嗅探器的基本概念及其在网络安全和性能监控中的关键作用。 ## 网络嗅探器概述 网络嗅探器,通常被称为“抓包工具”或“协议分析器”,是一种可以监听、记录和分析网络流量的程序或设备。它们在排除网络问题、进行安全审计和协议分析时发挥着重要作用。 ##
recommend-type

RTL8720DN-VA1-CG后面的VA1-CG是什么意思

<think>嗯,用户这次的问题转向了具体的芯片型号解析,询问RTL8720DN-VA1-CG后缀的含义。这属于硬件标识领域的专业问题,需要结合芯片命名规则和行业惯例来分析。 从用户提问方式看,ta应该具备一定技术背景,可能是电子工程师或物联网开发者,正在做物料选型或故障排查。用户特意强调"参考站内引用"但实际没有引用源,说明需要权威解释而非普通科普。之前讨论Wi-Fi频段差异时用户表现出对技术参数的敏感,这次提问同样注重细节标识。 关于这个型号后缀,需要拆解三部分分析: VA1通常代表芯片修订版本(revision),比如初版叫VA0,改进版叫VA1。CG后缀可能有多种含义:最常见的是封
recommend-type

CCPD2019车牌数据集:10000张带YOLO标签图片

车牌检测是计算机视觉领域的一个重要应用,尤其在智能交通系统、监控视频分析以及车辆管理等方面具有广泛的应用。CCPD2019车牌数据集是专为车牌检测任务设计的数据集,包含了大量的实际场景中拍摄的车辆图片及其对应的标注信息,这些标注信息以YOLO(You Only Look Once)格式提供。 YOLO是一种流行的目标检测算法,因其速度和准确性相结合而受到广泛欢迎。在YOLO算法中,整个图像被一次性通过网络进行处理,同时预测出多个边界框和这些框所属的类别。YOLO将目标检测任务视为一个回归问题,直接从图像像素到边界框坐标和类别概率的映射,与其他基于区域的方法相比,YOLO在速度上有很大的优势,可以实现实时检测。 YOLO格式标签是一种特殊的标注格式,它提供了用于训练和验证模型的数据。这些标签通常包含每个目标的类别以及它的位置信息,通常在一张图片的标注文件中,对于每一个检测到的车辆,都会有一个对应的标注行,标注行中包含了该车辆车牌的位置、大小和类别信息。通常这些信息包括:标注物体在原图中的中心点坐标(x,y)、宽度、高度以及类别ID。 使用CCPD2019车牌数据集,研究人员和工程师可以进行深度学习模型的训练,特别是基于YOLO算法的车牌检测模型。数据集中的图片是精心挑选的,包含了各种光照条件、不同角度和遮挡情况下的车牌图像,这对于提高模型在现实世界中检测的准确性和鲁棒性至关重要。 在深度学习中,训练模型需要大量的标注数据。一个高质量的数据集对于模型能否成功学习到目标检测中的关键特征是至关重要的。CCPD2019车牌数据集提供的10000张图片以及它们的YOLO格式标签,能够为模型提供充足的训练材料。这些标签通常都是由人工仔细标注,确保了标注的质量和准确性。 深度学习在车牌识别系统中的应用是多方面的,不仅包括检测车牌的位置,还包括车牌字符的分割和识别。在实际应用中,经过训练的YOLO模型首先对输入图像中的车牌区域进行定位,然后可以通过其他专门设计的深度学习模型对车牌上的文字进行识别。 CCPD2019车牌数据集对于研究和开发车牌识别技术具有重要价值,它有助于推动计算机视觉领域特别是车牌检测和识别技术的发展。通过深度学习,特别是使用YOLO这样的先进算法,可以实现车牌的快速准确识别,这对于智能交通管理、车辆安全监控和交通流量分析等应用具有十分重要的意义。
recommend-type

【精准温度测量与HP303B校准】:掌握这些高级技巧,提升测量准确性

# 摘要 本文系统地探讨了精准温度测量的科学原理,并对HP303B温度传感器的特性、技术参数、校准准备和校准步骤进行了详细介绍。文章进一步讨论了提
recommend-type

那如果我加上turbulenceProperties,是不是这么写FoamFile { version 2.0; format ascii; class dictionary; object turbulenceProperties; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // simulationType laminar;

<think>好的,用户现在的问题是询问如果在cavity算例中添加turbulenceProperties文件,是否可以按照他提供的格式编写,特别是simulationType设置为laminar的情况。我需要确认这种写法是否正确,并解释相关细节。 首先,用户提供的FoamFile部分是标准的OpenFOAM字典文件头,版本、格式、类和对象名都是正确的。然后,simulationType设置为laminar,这在层流模拟中是正确的配置。需要说明这样写是可行的,并且可能补充一些注意事项,比如是否必要,或者是否有其他参数需要考虑。 接下来,用户可能想知道这样做的影响,比如是否会影响求解器的行