## 一、非大语言模型字符串相似度(Non-LLM String Similarity) 非大语言模型字符串相似度指标使用传统的字符串距离度量(如 Levenshtein、Hamming 和 Jaro)来衡量参考文本和响应之间的相似度。该指标可用于在不依赖大语言模型(LLMs)的情况下评估响应与参考文本的相似性。该指标返回介于 0 到 1 之间的分数,其中 1 表示响应与参考文本完全匹配。这是一个非大语言模型指标。 ### 使用 Levenshtein 距离的示例 #### 指标定义与公式 通过计算两个字符串之间的编辑距离(Levenshtein距离),衡量字符级相似性,无需依赖LLM。 数学公式: 1. $\text{Similarity} = 1 - \frac{\text{编辑距离}(s_1, s_2)}{\max(\text{len}(s_1), \text{len}(s_2))}$ ○ 编辑距离:将字符串 $s_1$ 转换为 $s_2$ 所需的最少操作次数(插入、删除、替换字符)。 ○ 归一化:通过除以两字符串的最大长度,将结果缩放到 [0,1] 区间。 #### 代码示例解析 ```python # 基于 Levenshtein距离(编辑距离) from ragas.dataset_schema import SingleTurnSample from ragas.metrics._string import NonLLMStringSimilarity sample = SingleTurnSample( response="The Eiffel Tower is located in India.", # 生成回答 reference="The Eiffel Tower is located in Paris." # 参考答案 ) scorer = NonLLMStringSimilarity() await scorer.single_turn_ascore(sample) # 输出 0.8918918918918919 ``` #### 计算过程 1. 字符串对比: ○ 响应:"The Eiffel Tower is located in India."(39字符) ○ 参考:"The Eiffel Tower is located in Paris."(38字符) 2. 编辑距离计算: ○ 需要将 "India" 替换为 "Paris",具体操作: ■ 替换 I → P ■ 替换 n → a ■ 替换 d → r ■ 保留 i → i ■ 替换 a → s ○ 总编辑距离:4次替换操作。 3. 相似度计算: $$ \text{Similarity} = 1 - \frac{4}{\max(39, 38)} = 1 - \frac{4}{39} \approx 0.8974 $$ (实际输出为 0.89189) ### 使用 Hamming 距离的示例 #### 指标定义与公式 1. 定义: 通过计算两个等长字符串在相同位置上的字符差异比例,衡量字符级相似性。 ○ 适用场景:仅适用于长度相同的字符串(如固定格式文本、密码校验)。 2. 数学公式: 3. $\text{Similarity} = 1 - \frac{\text{汉明距离}(s_1, s_2)}{n}$ ○ 汉明距离:两个等长字符串在相同位置上不同字符的数量。 ○ $n$:字符串长度。 #### 代码示例 ```python from ragas.metrics._string import NonLLMStringSimilarity, DistanceMeasure from ragas.dataset_schema import SingleTurnSample # 初始化汉明距离计算器 scorer = NonLLMStringSimilarity(distance_measure=DistanceMeasure.HAMMING) # 创建测试样本(需确保字符串等长) sample = SingleTurnSample( response="karolin", # 生成字符串(7字符) reference="kathrin" # 参考字符串(7字符) ) # 计算相似度 similarity_score = await scorer.single_turn_ascore(sample) print(f"相似度得分: {similarity_score}") # 输出: 0

时间: 2025-03-18 11:03:18 浏览: 73
<think>嗯,用户想了解传统的字符串相似度计算方法,特别是Levenshtein和Hamming距离,以及它们的Python实现。我需要先回顾一下这些算法的基本原理,然后查找相关的Python库或实现方式。 首先,Levenshtein距离,也就是编辑距离,用于计算两个字符串之间通过插入、删除或替换操作所需的最少次数。这在拼写检查和文本相似度中很常用。然后,汉明距离,它只适用于等长字符串,计算对应位置不同字符的数量。常用于编码检错或纠错。 接下来,Python的实现。记得有提到过python-Levenshtein库可以直接计算Levenshtein距离,但用户可能想知道如何手动实现,或者使用其他库比如fuzzywuzzy或者textdistance。不过用户明确提到传统方法,可能需要详细说明算法步骤,再给出代码示例。 比如,对于Levenshtein距离,动态规划的方法,创建一个二维数组,每个元素代表子问题的最小编辑次数。初始化第一行和第一列为0到n,然后逐个填充,根据当前字符是否相等来决定操作。最后返回右下角的值。 而汉明距离比较简单,遍历每个字符比较,统计不同的数量,但前提是字符串长度相同。否则需要处理长度不同的情况,可能抛出错误或者返回某种默认值。 还要注意用户提到的引用,比如引用[3]解释了编辑距离的概念,引用[2]和[5]提到了python-Levenshtein库和自定义函数。可能需要引用这些资料中的信息,确保回答的准确性。 此外,用户可能想知道实际应用场景,比如拼写纠错、文本去重等,如引用[4]所述。需要将这些应用场景结合到回答中,帮助用户理解如何应用这些方法。 然后,代码示例部分,可能需要展示手动实现的动态规划Levenshtein函数,以及使用python-Levenshtein库的方法。同样,汉明距离的手动实现和库函数调用。 可能的问题是如何处理不同长度的字符串在汉明距离中的情况,是否需要预处理或者截断。另外,效率问题,动态规划的时间复杂度是O(n*m),对于长字符串可能不够高效,但传统方法确实如此。 最后,生成相关问题,引导用户进一步学习其他距离度量,比如Jaro-Winkler或余弦相似度,或者优化方法,比如使用动态规划的空间优化。</think>### 传统字符串相似度计算方法及Python实现 #### 1. **Levenshtein距离(编辑距离)** **原理** Levenshtein距离表示将字符串$A$转换为字符串$B$所需的最少单字符编辑操作(插入、删除、替换)次数。例如,将`kitten`转换为`sitting`需要3次操作: - 替换`k→s` - 替换`e→i` - 插入`g` 计算公式为动态规划实现: $$ dp[i][j] = \begin{cases} \max(i,j) & \text{if } \min(i,j)=0 \\ \min \begin{cases} dp[i-1][j] + 1 \\ dp[i][j-1] + 1 \\ dp[i-1][j-1] + (0 \text{ if } A[i]=B[j] \text{ else } 1) \end{cases} & \text{otherwise} \end{cases} $$ **Python实现** 手动实现动态规划: ```python def levenshtein_distance(s1, s2): m, n = len(s1), len(s2) dp = [[0] * (n+1) for _ in range(m+1)] for i in range(m+1): dp[i][0] = i for j in range(n+1): dp[0][j] = j for i in range(1, m+1): for j in range(1, n+1): cost = 0 if s1[i-1] == s2[j-1] else 1 dp[i][j] = min(dp[i-1][j] + 1, # 删除 dp[i][j-1] + 1, # 插入 dp[i-1][j-1] + cost) # 替换 return dp[m][n] ``` 使用第三方库`python-Levenshtein`(效率更高)[^2]: ```python import Levenshtein distance = Levenshtein.distance("kitten", "sitting") # 输出3 ``` #### 2. **汉明距离(Hamming Distance)** **原理** 汉明距离要求两个字符串长度相等,通过比较对应位置的字符差异数量计算相似度。例如,`karolin`与`kathrin`的汉明距离为3(第3、5、6位字符不同)[^3]。 **Python实现** 手动实现: ```python def hamming_distance(s1, s2): if len(s1) != len(s2): raise ValueError("字符串长度必须相同") return sum(c1 != c2 for c1, c2 in zip(s1, s2)) ``` 使用`scipy`库: ```python from scipy.spatial.distance import hamming distance = hamming(list("karolin"), list("kathrin")) * len("karolin") # 输出3.0 ``` #### 3. **相似度百分比计算** 通过距离值归一化得到相似度百分比。例如,Levenshtein相似度计算公式为: $$ \text{相似度} = 1 - \frac{\text{Levenshtein距离}}{\max(\text{len}(A), \text{len}(B))} $$ Python实现[^5]: ```python def levenshtein_similarity(s1, s2): max_len = max(len(s1), len(s2)) if max_len == 0: return 1.0 distance = levenshtein_distance(s1, s2) return (1 - distance / max_len) * 100 ``` #### 应用场景 - **拼写纠错**:如`hte`纠正为`the`(Levenshtein距离=1)[^4] - **DNA序列比对**:汉明距离用于基因变异分析 - **数据清洗**:检测重复文本(如商品名称去重)
阅读全文

相关推荐

大家在看

recommend-type

ELEC5208 Group project submissions.zip_furniturer4m_smart grid_悉

悉尼大学ELEC5208智能电网project的很多组的报告和code都在里面,供学习和参考
recommend-type

基于python单通道脑电信号的自动睡眠分期研究

【作品名称】:基于python单通道脑电信号的自动睡眠分期研究 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:网络结构(具体可查看network.py文件): 网络整体结构类似于TinySleepNet,对RNN部分进行了修改,增加了双向RNN、GRU、Attention等网络结构,可根据参数进行调整选择。 定义了seq_len参数,可以更灵活地调整batch_size与seq_len。 数据集加载(具体可查看dataset.py文件) 直接继承自torch的Dataset,并定义了seq_len和shuffle_seed,方便调整输入,并复现实验。 训练(具体可查看train.py文件): 定义并使用了focal loss损失函数 在实验中有使用wandb,感觉用起来还挺方便的,非常便于实验记录追溯 测试(具体可查看test.py文件): 可以输出accuracy、mf1、recall_confusion_matrics、precision_confusion_matrics、f1
recommend-type

bid格式文件电子标书阅读器.zip

软件介绍: bid格式招投标文件阅读器,可以打开浏览、管理电子招标文件,如果打不开标书文件,请按下面步骤检查:1、请查看招标文件(.bid文件)是否下载完全,请用IE下载工具下载;2、查看IE浏览器版本,如果版本低于IE8,低于IE8版本的请升级为IE8浏览器。
recommend-type

机器翻译WMT14数据集

机器翻译WMT14数据集,ACL2014公布的share task,很多模型都在这上benchmark
recommend-type

高通QXDM使用手册.pdf

高通QXDM使用手册,介绍高通QXDM工具软件的使用,中文版的哦。

最新推荐

recommend-type

工程项目管理学习体会.doc

工程项目管理学习体会.doc
recommend-type

cc65 Windows完整版发布:6502 C开发工具

cc65是一个针对6502处理器的完整C编程开发环境,特别适用于Windows操作系统。6502处理器是一种经典的8位微处理器,于1970年代被广泛应用于诸如Apple II、Atari 2600、NES(任天堂娱乐系统)等早期计算机和游戏机中。cc65工具集能够允许开发者使用C语言编写程序,这对于那些希望为这些老旧系统开发软件的程序员来说是一大福音,因为相较于汇编语言,C语言更加高级、易读,并且具备更好的可移植性。 cc65开发工具包主要包含以下几个重要组件: 1. C编译器:这是cc65的核心部分,它能够将C语言源代码编译成6502处理器的机器码。这使得开发者可以用高级语言编写程序,而不必处理低级的汇编指令。 2. 链接器:链接器负责将编译器生成的目标代码和库文件组合成一个单独的可执行程序。在6502的开发环境中,链接器还需要处理各种内存段的定位和映射问题。 3. 汇编器:虽然主要通过C语言进行开发,但某些底层操作仍然可能需要使用汇编语言来实现。cc65包含了一个汇编器,允许程序员编写汇编代码段。 4. 库和运行时:cc65提供了一套标准库,这些库函数为C语言提供了支持,并且对于操作系统级别的功能进行了封装,使得开发者能够更方便地进行编程。运行时支持包括启动代码、中断处理、内存管理等。 5. 开发工具和文档:除了基本的编译、链接和汇编工具外,cc65还提供了一系列辅助工具,如反汇编器、二进制文件编辑器、交叉引用器等。同时,cc65还包含丰富的文档资源,为开发者提供了详尽的使用指南、编程参考和示例代码。 cc65可以广泛用于学习和开发6502架构相关的软件,尤其适合那些对6502处理器、复古计算机或者早期游戏系统有兴趣的开发者。这些开发者可能想要创建或修改旧式游戏、系统软件、仿真器,或者进行技术研究和学习。 尽管cc65是一个功能强大的工具,但它也要求开发者对目标平台的硬件架构和操作系统有足够的了解。这是因为6502并非现代处理器,它对内存访问、I/O操作和中断管理等有着特殊的限制和要求。因此,使用cc65需要开发者具备一定的背景知识,包括但不限于6502指令集、内存映射、硬件寄存器操作等方面的内容。 此外,cc65针对Windows平台进行了优化和封装,使得它可以在Windows操作系统上无缝运行,这对于习惯于Windows环境的用户是一个好消息。不过,如果用户使用的是其他操作系统,可能需要通过相应的兼容层或虚拟机来运行Windows环境,以便使用cc65工具。 总的来说,cc65提供了一种相对简单的方式来开发运行在6502处理器上的软件。它极大地降低了开发难度,使得更多的人能够接触和参与到基于6502平台的软件开发中来,为这个历史悠久的平台注入了新的活力。
recommend-type

【CLIP模型实战】:从数据预处理到代码实现的图文相似度计算完全指南

# 1. CLIP模型概述 在人工智能领域中,CLIP(Contrastive Language-Image Pre-training)模型作为一款开创性的多模态学习技术,已经成为业界瞩目的焦点。CLIP模型是由OpenAI在2021年推出的,其创新之处在于通过大规模的图文对齐数据进行预训练,能够理解和匹配图像与自然语言描述之间的关联性。CLIP突破了传统方法在特定任务上需要大规模标注数据的限制
recommend-type

车载以太网doip协议格式

<think>首先,用户的问题是:“我想查找关于车载以太网DOIP协议的数据格式或规范”。用户引用了站内内容,其中提到DoIP是基于以太网的通讯协议,用于传输UDS协议的数据,规范于ISO13400标准。关键点:-DoIP协议:DiagnosticcommunicationoverInternetProtocol-规范:ISO13400标准-数据格式:我需要提供关于DoIP数据格式的详细信息根据系统级指令:-所有行内数学表达式使用$...$格式-独立公式使用$$...$$格式并单独成段-LaTeX语法正确-使用中文回答-生成相关问题-回答中引用的段落末尾自然地添加引用标识-回答结构清晰,帮助用
recommend-type

JavaScript中文帮助手册:初学者实用指南

### JavaScript中文帮助手册知识点概述 #### 1. JavaScript简介 JavaScript是一种轻量级的编程语言,广泛用于网页开发。它能够增强用户与网页的交互性,使得网页内容变得动态和富有生气。JavaScript能够操纵网页中的HTML元素,响应用户事件,以及与后端服务器进行通信等。 #### 2. JavaScript基本语法 JavaScript的语法受到了Java和C语言的影响,包括变量声明、数据类型、运算符、控制语句等基础组成部分。以下为JavaScript中常见的基础知识点: - 变量:使用关键字`var`、`let`或`const`来声明变量,其中`let`和`const`是ES6新增的关键字,提供了块级作用域和不可变变量的概念。 - 数据类型:包括基本数据类型(字符串、数值、布尔、null和undefined)和复合数据类型(对象、数组和函数)。 - 运算符:包括算术运算符、关系运算符、逻辑运算符、位运算符等。 - 控制语句:条件判断语句(if...else、switch)、循环语句(for、while、do...while)等。 - 函数:是JavaScript中的基础,可以被看作是一段代码的集合,用于封装重复使用的代码逻辑。 #### 3. DOM操作 文档对象模型(DOM)是HTML和XML文档的编程接口。JavaScript可以通过DOM操作来读取、修改、添加或删除网页中的元素和内容。以下为DOM操作的基础知识点: - 获取元素:使用`getElementById()`、`getElementsByTagName()`等方法获取页面中的元素。 - 创建和添加元素:使用`document.createElement()`创建新元素,使用`appendChild()`或`insertBefore()`方法将元素添加到文档中。 - 修改和删除元素:通过访问元素的属性和方法,例如`innerHTML`、`textContent`、`removeChild()`等来修改或删除元素。 - 事件处理:为元素添加事件监听器,响应用户的点击、鼠标移动、键盘输入等行为。 #### 4. BOM操作 浏览器对象模型(BOM)提供了独立于内容而与浏览器窗口进行交互的对象和方法。以下是BOM操作的基础知识点: - window对象:代表了浏览器窗口本身,提供了许多属性和方法,如窗口大小调整、滚动、弹窗等。 - location对象:提供了当前URL信息的接口,可以用来获取URL、重定向页面等。 - history对象:提供了浏览器会话历史的接口,可以进行导航历史操作。 - screen对象:提供了屏幕信息的接口,包括屏幕的宽度、高度等。 #### 5. JavaScript事件 JavaScript事件是用户或浏览器自身执行的某些行为,如点击、页面加载、键盘按键、鼠标移动等。通过事件,JavaScript可以对这些行为进行响应。以下为事件处理的基础知识点: - 事件类型:包括鼠标事件、键盘事件、表单事件、窗口事件等。 - 事件监听:通过`addEventListener()`方法为元素添加事件监听器,规定当事件发生时所要执行的函数。 - 事件冒泡:事件从最深的节点开始,然后逐级向上传播到根节点。 - 事件捕获:事件从根节点开始,然后逐级向下传播到最深的节点。 #### 6. JavaScript高级特性 随着ECMAScript标准的演进,JavaScript引入了许多高级特性,这些特性包括但不限于: - 对象字面量增强:属性简写、方法简写、计算属性名等。 - 解构赋值:可以从数组或对象中提取数据,赋值给变量。 - 模板字符串:允许嵌入表达式。 - 异步编程:Promise、async/await等用于处理异步操作。 - 模块化:使用`import`和`export`关键字导入和导出模块。 - 类和模块:引入了`class`关键字,允许使用面向对象编程风格定义类,以及模块的声明。 #### 7. 开发工具和调试技巧 为了提高JavaScript开发效率和调试问题,以下是一些常用的工具和调试技巧: - 浏览器的开发者工具:包括控制台(Console)、元素查看器(Elements)、网络监控(Network)、源码编辑器(Sources)等。 - 断点调试:在源码编辑器中设置断点,逐步执行代码,查看变量值和程序流程。 - console.log:在控制台输出日志,帮助理解程序执行流程和变量状态。 - 使用JavaScript验证工具:如JSHint、ESLint等,可以在开发过程中进行代码质量检查。 以上就是《JavaScript中文帮助手册》中可能包含的主要知识点。作为初学者,通过这些内容可以系统地学习和掌握JavaScript基础和进阶知识,实现从初学到实践的跨越。在实际应用中,还需结合具体实例和项目练习,不断加深理解和熟练操作。
recommend-type

深入理解MySQL存储引擎:InnoDB与MyISAM的终极对决

# 1. MySQL存储引擎概述 MySQL数据库的灵活性和高性能在很大程度上得益于其存储引擎架构。**存储引擎**是MySQL中用于存储、索引、查询数据的底层软件模块。不同的存储引擎拥有不同的功能和特性,允许数据库管理员针对特定的应用需求选择最佳的存储引擎。例如,**InnoDB**提供事务支持和行级锁定,适用于需要ACID(原子
recommend-type

window中系统中断,cpu占用100%

<think>首先,用户的问题是关于解决Windows系统中“系统中断”导致CPU占用100%的问题。我需要基于提供的引用和系统指令来构建一个结构清晰的回答。系统指令:-所有行内数学表达式必须使用$...$格式。-独立公式使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-在回答中引用的段落末尾添加引用标识,例如[^1]。-回答结构清晰,帮助用户逐步解决问题。-参考站内引用:引用[1]是关于CPU使用率100%的应急措施,引用[2]是关于Java程序CPU占用过高的解决步骤,引用[3]是关于CPU软中断导致高利用率的分析与解决方案。用户的问题:Window
recommend-type

C++Builder6.0缺失帮助文件的解决方案

标题“BCB6.0帮助文件”和描述“很多用户的C++Builder6.0的版本没有帮助文件,help文件对学习和研究BCB6.0是很重要的。”表明了我们讨论的主题是关于C++Builder(通常简称BCB)6.0版本的官方帮助文件。C++Builder是一款由Borland公司(后被Embarcadero Technologies公司收购)开发的集成开发环境(IDE),专门用于C++语言的开发。该软件的第六版,即BCB6.0,于2002年发布,是该系列的一个重要版本。在这个版本中,提供了一个帮助文件,对于学习和研究BCB6.0至关重要。因为帮助文件中包含了大量关于IDE使用的指导、编程API的参考、示例代码等,是使用该IDE不可或缺的资料。 我们可以通过【压缩包子文件的文件名称列表】中的“BCB6.0_Help”推测,这可能是一个压缩文件,包含了帮助文件的副本,可能是一个ZIP或者其他格式的压缩文件。该文件的名称“BCB6.0_Help”暗示了文件中包含的是与C++Builder6.0相关的帮助文档。在实际获取和解压该文件后,用户能够访问到详尽的文档,以便更深入地了解和利用BCB6.0的功能。 BCB6.0帮助文件的知识点主要包括以下几个方面: 1. 环境搭建和配置指南:帮助文档会解释如何安装和配置BCB6.0环境,包括如何设置编译器、调试器和其他工具选项,确保用户能够顺利开始项目。 2. IDE使用教程:文档中应包含有关如何操作IDE界面的说明,例如窗口布局、菜单结构、快捷键使用等,帮助用户熟悉开发环境。 3. 语言参考:C++Builder6.0支持C++语言,因此帮助文件会包含C++语言核心特性的说明、标准库参考、模板和STL等。 4. VCL框架说明:BCB6.0是基于Visual Component Library(VCL)框架的,帮助文件会介绍如何使用VCL构建GUI应用程序,包括组件的使用方法、事件处理、窗体设计等。 5. 数据库编程:文档会提供关于如何利用C++Builder进行数据库开发的指导,涵盖了数据库连接、SQL语言、数据集操作等关键知识点。 6. 高级功能介绍:帮助文件还会介绍一些高级功能,如使用组件面板、定制组件、深入到编译器优化、代码分析工具的使用等。 7. 示例项目和代码:为了更好地演示如何使用IDE和语言特性,帮助文件通常包含了一个或多个示例项目以及一些实用的代码片段。 8. 第三方插件和工具:BCB6.0还可能支持第三方插件,帮助文件可能会对一些广泛使用的插件进行介绍和解释如何安装和使用它们。 9. 故障排除和调试:文档会提供一些常见问题的解决方案、调试技巧以及性能调优建议。 10. 版本更新记录:虽然版本更新记录通常不会在帮助文件内详细描述,但可能会提到重大的新增特性、改进和已知问题。 11. 联系方式和资源:帮助文件中可能会包含Embarcadero公司的技术支持联系方式,以及推荐的外部资源,比如论坛、在线文档链接和社区。 在学习和研究BCB6.0时,帮助文件是一个十分宝贵的资源,它能提供快速准确的信息和指导。对于任何一个使用BCB6.0进行开发的程序员来说,熟悉这些知识点是必不可少的。
recommend-type

【湖北专升本MySQL强化训练】:5大SQL语句编写技巧,迅速提升实战能力

# 1. SQL语言基础 ## 1.1 SQL语言简介 SQL,即结构化查询语言(Structured Query Language),是一种用于管理关系数据库管理系统(RDBMS)的标准编程语言。它广泛应用于数据的查询、插入、更新和删除操作,是数据库管理员和开发人员必须掌握的核心技能。 ## 1.2 SQL语言的组成 SQL语言主要由数据定义语言(DDL),数据操纵语言
recommend-type

HFSS如何设置网格化细化

<think>我们正在讨论HFSS中的网格细化设置。根据引用[2]和[3],HFSS使用自适应网格剖分技术,通过迭代细化网格直到满足收敛标准。用户想了解具体的设置方法。关键点:1.自适应网格剖分过程:HFSS通过比较连续迭代之间的S参数(或其他参数)的变化来判断收敛。2.收敛标准设置:用户可以设置收敛的阈值(如ΔS)。3.初始网格设置:在求解设置中,可以设置初始网格的选项(如Lambda细化)。步骤:1.在HFSS中,右键点击工程树中的“Analysis”节点,选择“AddSolutionSetup”来添加一个新的求解设置(或者编辑已有的求解设置)。2.在求解设置对话框中,切换到“Genera