2, memory: 20149, loss_prob: 0.3275, loss_cls: 0.5341, loss_lovasz: 0.5319, loss: 1.3935, grad_norm: 3.4085 2025-03-26 20:17:10,404 - mmdet - INFO - Saving checkpoint at 28130 iterations 100%|??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????| 6019/6019 [00:52<00:00, 114.81it/s] Finished. Traceback (most recent call last): File "tools/occ_train.py", line 266, in <module> main() File "tools/occ_train.py", line 255, in main custom_train_model( File "/root/Desktop/ViewFormer-Occ-main/projects/mmdet3d_plugin/bevformer/apis/train.py", line 27, in custom_train_model custom_train_detector( File "/root/Desktop/ViewFormer-Occ-main/projects/mmdet3d_plugin/bevformer/apis/mmdet_train.py", line 212, in custom_train_detector runner.run(data_loaders, cfg.workflow) File "/root/miniconda3/envs/myconda/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 144, in run iter_runner(iter_loaders[i], **kwargs) File "/root/miniconda3/envs/myconda/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 70, in train self.call_hook('after_train_iter') File "/root/miniconda3/envs/myconda/lib/python3.8/site-packages/mmcv/runner/base_runner.py", line 317, in call_hook getattr(hook, fn_name)(self) File "/root/miniconda3/envs/myconda/lib/python3.8/site-packages/mmcv/runner/hooks/evaluation.py", line 266, in after_train_iter self._do_evaluate(runner) File "/root/miniconda3/envs/myconda/lib/python3.8/site-packages/mmdet/core/evaluation/eval_hooks.py", line 63, in _do_evaluate key_score = self.evaluate(runner, results) File "/root/miniconda3/envs/myconda/lib/python3.8/site-packages/mmcv/runner/hooks/evaluation.py", line 367, in evaluate eval_res = self.dataloader.dataset.evaluate( File "/root/Desktop/ViewFormer-Occ-main/mmdetection3d/mmdet3d/datasets/nuscenes_dataset.py", line 503, in evaluate result_files, tmp_dir = self.format_results(results, jsonfile_prefix) TypeError: cannot unpack non-iterable NoneType object

时间: 2025-05-15 07:01:21 浏览: 37
从您提供的日志来看,这是一个深度学习训练过程中遇到的问题。以下是问题的分析及解决思路: ### 问题描述 在运行 `tools/occ_train.py` 脚本时,程序报错提示: ``` TypeError: cannot unpack non-iterable NoneType object ``` 此错误发生在文件 `/mmdet3d/datasets/nuscenes_dataset.py` 的第503行: ```python result_files, tmp_dir = self.format_results(results, jsonfile_prefix) ``` 这表明函数 `self.format_results` 返回了 `None` 或其他无法解包的对象。 --- ### 可能的原因 1. **数据未正确生成** 函数 `format_results` 应返回两个值 (`result_files`, `tmp_dir`),但如果结果为空或格式化失败,则可能导致其返回 `None`。 2. **模型预测异常** 模型的推理部分可能存在问题,导致传递给 `evaluate` 方法的结果无效(如空列表或其他非预期结构)。 3. **配置文件设置不当** 配置文件中可能存在某些参数未正确指定,例如路径、格式等,使得 `jsonfile_prefix` 参数无效或未生效。 4. **代码逻辑问题** 如果自定义修改过 `nuscenes_dataset.py` 文件中的相关逻辑,可能会引入新的 Bug 导致该问题。 --- ### 解决方案 #### 步骤一:检查输入数据是否有效 确保传入 `evaluate` 和 `format_results` 的 `results` 数据是非空且正确的。可以在调试模式下打印出 `results` 内容进行验证。 ```python print("Results:", results) # 添加到 nuscenes_dataset.py 第 503 行附近 ``` 如果发现 `results` 为空或内容不符合预期,请回溯至前序步骤(通常是模型推理阶段),找出原因并修正。 --- #### 步骤二:确认 `format_results` 实现逻辑 打开 `nuscenes_dataset.py` 中的 `format_results` 方法,查看其内部实现是否存在潜在问题。重点关注以下方面: - 是否有返回值缺失的情况; - 是否对特定条件下的异常情况进行了捕获和处理。 可以尝试临时添加断点或日志信息以便定位问题。 --- #### 步骤三:检查配置文件 核对当前使用的配置文件,特别是涉及评估的部分,比如 `data_config` 或者 `evaluation` 相关字段。确保所有必要参数均已正确设定,并指向合法路径。 示例配置片段: ```yaml evaluation: interval: 1 metric: 'bbox' save_best: True rule: greater ``` 如果不明确具体选项含义,参考官方文档或默认模板调整即可。 --- #### 步骤四:更新依赖库版本 有时由于第三方库版本差异也会引发兼容性问题。建议同步升级 MMDetection 系列工具链及相关组件至最新稳定版。 命令如下: ```bash pip install --upgrade mmcv-full==latest.mmlab mmdet==latest.mmlab mmdet3d==latest.mmlab ``` 完成后重新构建环境并测试脚本运行状态。 --- ###
阅读全文

相关推荐

请使用Python 代码来查找文件名为 staticprob.txt中指定字符串'staticprob = '并打印字符串后面8个字符串,以及打印字符串前面最接近字符串的时间,打印信息如下: time = 00:04:29, prob = 0.967633 time = 00:11:14, prob = 0.937645 其中文件名为 staticprob.txt 的文本文件,其中包含以下内容: [00:04:29]A7_TRACE: [ ALG_DBG ] [radar_alg_stru.c:293] ALG_TAG begin(43952[00:04:29]) [00:04:29]A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:9701] sclu[0][x y z p]=[0.62 3.08 0.90 13.82] A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:9701] sclu[1][x y z p]=[3.27 2.57 0.76 12.99] A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:4984] alltrc[0] [report][x y z] = [1][0.79 2.70 1.14 0 41] [0 0 0.000000] A7_TRACE: [ ALG_DBG ] [radar_alg_static.c:2477] max noise=39921.98, indx indy= 1 6 A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:5415] alltrcblk[0] [rep][x y z pre sc on] = [0][0.17 2.91 0.91 0 1 0] A7_TRACE: [ ALG_DBG ] [radar_alg_static.c:1423] Static condition check state1, 0, 0, 0, 5 A7_TRACE: [ ALG_DBG ] [radar_alg_night.c:839] TRC: 0 IS STICA7_TRACE: [ ALG_DBG ] [radar_alg_night.c:261] Frame 21792 bdPos 1.00 A7_TRACE: [ ALG_DBG ] [radar_alg_night.c:577] [night]trc 1 mVzIdx 12 mVz 0.11 maxIdx 0 minIdx 17 maxZ 1.31 minZ 1.25 A7_TRACE: [ ALG_DBG ] [radar_alg_night.c:651] [night]trc 1 bdside 3 bdpos 1 bspos 0 thrVzSitup 0.05 thrZDiffSitup 0.20 A7_TRACE: [ ALG_DBG ] [radar_alg_alm.c:409] Alm Cond: start[cntN][cntA][virW] = [1 0 0 0 0 50] A7_TRACE: [ ALG_DBG ] [radar_alg_alm.c:1041] obj Alm, 0, 0, 0 A7_TRACE: [ ALG_DBG ] [radar_alg_stru.c:409] trc handle[err]=[0][0] [seq,bb,cnt]=[43952 43845 43845] A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:11658] obj[0][zM vzM pre st sp gtup act] = [1.15 0.00 0 0 0 1 5] A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:11699] obj[0] fncId[alg rpt app][x y z] = [0 0 1][0.79 2.70 1.14] score=4 A7_TRACE: [ ALG_DBG ] [radar_alg_stru.c:364] ALG_TAG end(43952) A7_TRACE: [AI_ALG_LOG]: PhaAIPrediction finished. A7_TRACE: [AI_ALG_LOG]: staticprob = 0.967633 [00:11:14]A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:9701] sclu[0][x y z p]=[0.66 2.97 0.88 12.46] A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:5415] alltrcblk[0] [rep][x y z pre sc on] = [0][0.66 3.01 1.08 0 1 0] A7_TRACE: [ ALG_DBG ] [radar_alg_static.c:1423] Static condition check state1, 0, 0, 8, 5 A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:11658] obj[0][zM vzM pre st sp gtup act] = [1.06 0.00 0 0 0 1 5] A7_TRACE: [ ALG_DBG [00:11:14]] [radar_alg_stru.c:293] ALG_TAG begin(48003) [00:11:14]A7_TRACE: [AI_ALG_LOG]: PhaAIPrediction finished. A7_TRACE: [AI_ALG_LOG]: staticprob = 0.937645

请使用Python 代码来查找文件名为 staticprob.txt中指定字符串'staticprob = '并打印字符串后面8个字符串,以及打印字符串前面最接近字符串的时间,打印信息如下: time = 00:04:29, prob = 0.967633 time = 00:11:14, prob = 0.937645 其中文件名为 staticprob.txt 的文本文件,其中包含以下内容: [00:04:29]A7_TRACE: [ ALG_DBG ] [radar_alg_stru.c:293] ALG_TAG begin(43952[00:04:29]) [00:04:29]A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:9701] sclu[0][x y z p]=[0.62 3.08 0.90 13.82] A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:9701] sclu[1][x y z p]=[3.27 2.57 0.76 12.99] A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:4984] alltrc[0] [report][x y z] = [1][0.79 2.70 1.14 0 41] [0 0 0.000000] A7_TRACE: [ ALG_DBG ] [radar_alg_static.c:2477] max noise=39921.98, indx indy= 1 6 A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:5415] alltrcblk[0] [rep][x y z pre sc on] = [0][0.17 2.91 0.91 0 1 0] A7_TRACE: [ ALG_DBG ] [radar_alg_static.c:1423] Static condition check state1, 0, 0, 0, 5 A7_TRACE: [ ALG_DBG ] [radar_alg_night.c:839] TRC: 0 IS STICA7_TRACE: [ ALG_DBG ] [radar_alg_night.c:261] Frame 21792 bdPos 1.00 A7_TRACE: [ ALG_DBG ] [radar_alg_night.c:577] [night]trc 1 mVzIdx 12 mVz 0.11 maxIdx 0 minIdx 17 maxZ 1.31 minZ 1.25 A7_TRACE: [ ALG_DBG ] [radar_alg_night.c:651] [night]trc 1 bdside 3 bdpos 1 bspos 0 thrVzSitup 0.05 thrZDiffSitup 0.20 A7_TRACE: [ ALG_DBG ] [radar_alg_alm.c:409] Alm Cond: start[cntN][cntA][virW] = [1 0 0 0 0 50] A7_TRACE: [ ALG_DBG ] [radar_alg_alm.c:1041] obj Alm, 0, 0, 0 A7_TRACE: [ ALG_DBG ] [radar_alg_stru.c:409] trc handle[err]=[0][0] [seq,bb,cnt]=[43952 43845 43845] A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:11658] obj[0][zM vzM pre st sp gtup act] = [1.15 0.00 0 0 0 1 5] A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:11699] obj[0] fncId[alg rpt app][x y z] = [0 0 1][0.79 2.70 1.14] score=4 A7_TRACE: [ ALG_DBG ] [radar_alg_stru.c:364] ALG_TAG end(43952) A7_TRACE: [AI_ALG_LOG]: PhaAIPrediction finished. A7_TRACE: [AI_ALG_LOG]: staticprob = 0.967633 [00:11:14]A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:9701] sclu[0][x y z p]=[0.66 2.97 0.88 12.46] A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:5415] alltrcblk[0] [rep][x y z pre sc on] = [0][0.66 3.01 1.08 0 1 0] A7_TRACE: [ ALG_DBG ] [radar_alg_static.c:1423] Static condition check state1, 0, 0, 8, 5 A7_TRACE: [ ALG_DBG ] [radar_alg_path.c:11658] obj[0][zM vzM pre st sp gtup act] = [1.06 0.00 0 0 0 1 5] A7_TRACE: [ ALG_DBG [00:11:14]] [radar_alg_stru.c:293] ALG_TAG begin(48003) [00:11:14]A7_TRACE: [AI_ALG_LOG]: PhaAIPrediction finished. A7_TRACE: [AI_ALG_LOG]: staticprob = 0.937645

import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import numpy as np class ActorCritic(nn.Module): def __init__(self, state_dim, action_dim): super(ActorCritic, self).__init__() self.fc1 = nn.Linear(state_dim, 128) self.fc2 = nn.Linear(128, 128) self.actor = nn.Linear(128, action_dim) self.critic = nn.Linear(128, 1) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) action_probs = F.softmax(self.actor(x), dim=-1) state_value = self.critic(x) return action_probs, state_value class A2CScheduler: def __init__(self, state_dim, action_dim, lr=0.001, gamma=0.99): self.model = ActorCritic(state_dim, action_dim) self.optimizer = optim.Adam(self.model.parameters(), lr=lr) self.gamma = gamma def select_action(self, state): state = torch.FloatTensor(state).unsqueeze(0) action_probs, _ = self.model(state) action = torch.multinomial(action_probs, 1).item() return action, action_probs[:, action] def update(self, trajectory): rewards, log_probs, state_values = [], [], [] for (state, action, reward, log_prob, state_value) in trajectory: rewards.append(reward) log_probs.append(log_prob) state_values.append(state_value) returns = [] R = 0 for r in reversed(rewards): R = r + self.gamma * R returns.insert(0, R) returns = torch.tensor(returns) log_probs = torch.stack(log_probs) state_values = torch.stack(state_values).squeeze() advantage = returns - state_values actor_loss = -log_probs * advantage.detach() critic_loss = F.mse_loss(state_values, returns) loss = actor_loss.mean() + critic_loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # 结合 mp-quic-go 使用 # 1. 获取状态信息 (如带宽、RTT、丢包等) # 2. 选择路径 (基于 select_action 方法) # 3. 收集数据并训练模型 (基于 update 方法)请详细解释每一行代码的含义和意义

大家在看

recommend-type

linux项目开发资源-firefox-esr-78.6流览器arm64安装包

银河麒麟V10桌面版-firefox-esr_78.6流览器arm64安装包,含依赖包,安装方式如下: tar -zxf xxx.tar.gz #解压离线deb安装包 cd xxx dpkg -i *.deb #将当前目录下所有的deb包都安装到系统中。 #请注意,如果其中任何一个deb包安装失败,则整个过程都会失败,请再重试安装,这样可实部分依被安装,反复多次可安装成功。
recommend-type

VMware-VMRC (VMRC) 11.0.0-15201582 for Windows

使用这款远程控制台程序,连接到VMware EXSI 服务器,即可登录虚拟机桌面。 文件大小: 58.82 MB 文件类型: exe 发行日期: 2019-12-05 内部版本号: 15201582
recommend-type

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip
recommend-type

ffmpeg官方4.2源码编译出来的动态库

ffmpeg官方4.2源码编译出来的动态库, 可以用于Android jni的音视频编解码开发。
recommend-type

Delphi编写的SQL查询分析器.rar

因为需要在客户那里维护一些数据, 但是人家的电脑不见得都安装了SQL Server客户端, 每次带光盘去给人家装程序也不好意思. 于是就写这个SQL查询分析器。代码不够艺术, 结构也松散, 如果代码看不懂, 只好见谅了. 程序中用到的图标, 动画都是从微软的SQLServer搞过来的, 唯一值得一提的是, 我用了ADO Binding for VC Extension(MSDN上有详细资料), 速度比用Variant快(在ADOBinding.pas和RowData.pas)。

最新推荐

recommend-type

netty-all-4.1.23.Final.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

OKT507_修改默认界面显示_Linux_应用笔记_V1.0_20220627.pdf

OKT507_修改默认界面显示_Linux_应用笔记_V1.0_20220627
recommend-type

Linux_G2D_开发指南.pdf

Linux_G2D_开发指南
recommend-type

天气系统插件,所见即所得

天气系统插件,所见即所得
recommend-type

这是一个用Python开发的桌面版的跆拳道馆管理系统.zip

这是一个用Python开发的桌面版的跆拳道馆管理系统
recommend-type

实现Struts2+IBatis+Spring集成的快速教程

### 知识点概览 #### 标题解析 - **Struts2**: Apache Struts2 是一个用于创建企业级Java Web应用的开源框架。它基于MVC(Model-View-Controller)设计模式,允许开发者将应用的业务逻辑、数据模型和用户界面视图进行分离。 - **iBatis**: iBatis 是一个基于 Java 的持久层框架,它提供了对象关系映射(ORM)的功能,简化了 Java 应用程序与数据库之间的交互。 - **Spring**: Spring 是一个开源的轻量级Java应用框架,提供了全面的编程和配置模型,用于现代基于Java的企业的开发。它提供了控制反转(IoC)和面向切面编程(AOP)的特性,用于简化企业应用开发。 #### 描述解析 描述中提到的“struts2+ibatis+spring集成的简单例子”,指的是将这三个流行的Java框架整合起来,形成一个统一的开发环境。开发者可以利用Struts2处理Web层的MVC设计模式,使用iBatis来简化数据库的CRUD(创建、读取、更新、删除)操作,同时通过Spring框架提供的依赖注入和事务管理等功能,将整个系统整合在一起。 #### 标签解析 - **Struts2**: 作为标签,意味着文档中会重点讲解关于Struts2框架的内容。 - **iBatis**: 作为标签,说明文档同样会包含关于iBatis框架的内容。 #### 文件名称列表解析 - **SSI**: 这个缩写可能代表“Server Side Include”,一种在Web服务器上运行的服务器端脚本语言。但鉴于描述中提到导入包太大,且没有具体文件列表,无法确切地解析SSI在此的具体含义。如果此处SSI代表实际的文件或者压缩包名称,则可能是一个缩写或别名,需要具体的上下文来确定。 ### 知识点详细说明 #### Struts2框架 Struts2的核心是一个Filter过滤器,称为`StrutsPrepareAndExecuteFilter`,它负责拦截用户请求并根据配置将请求分发到相应的Action类。Struts2框架的主要组件有: - **Action**: 在Struts2中,Action类是MVC模式中的C(控制器),负责接收用户的输入,执行业务逻辑,并将结果返回给用户界面。 - **Interceptor(拦截器)**: Struts2中的拦截器可以在Action执行前后添加额外的功能,比如表单验证、日志记录等。 - **ValueStack(值栈)**: Struts2使用值栈来存储Action和页面间传递的数据。 - **Result**: 结果是Action执行完成后返回的响应,可以是JSP页面、HTML片段、JSON数据等。 #### iBatis框架 iBatis允许开发者将SQL语句和Java类的映射关系存储在XML配置文件中,从而避免了复杂的SQL代码直接嵌入到Java代码中,使得代码的可读性和可维护性提高。iBatis的主要组件有: - **SQLMap配置文件**: 定义了数据库表与Java类之间的映射关系,以及具体的SQL语句。 - **SqlSessionFactory**: 负责创建和管理SqlSession对象。 - **SqlSession**: 在执行数据库操作时,SqlSession是一个与数据库交互的会话。它提供了操作数据库的方法,例如执行SQL语句、处理事务等。 #### Spring框架 Spring的核心理念是IoC(控制反转)和AOP(面向切面编程),它通过依赖注入(DI)来管理对象的生命周期和对象间的依赖关系。Spring框架的主要组件有: - **IoC容器**: 也称为依赖注入(DI),管理对象的创建和它们之间的依赖关系。 - **AOP**: 允许将横切关注点(如日志、安全等)与业务逻辑分离。 - **事务管理**: 提供了一致的事务管理接口,可以在多个事务管理器之间切换,支持声明式事务和编程式事务。 - **Spring MVC**: 是Spring提供的基于MVC设计模式的Web框架,与Struts2类似,但更灵活,且与Spring的其他组件集成得更紧密。 #### 集成Struts2, iBatis和Spring 集成这三种框架的目的是利用它们各自的优势,在同一个项目中形成互补,提高开发效率和系统的可维护性。这种集成通常涉及以下步骤: 1. **配置整合**:在`web.xml`中配置Struts2的`StrutsPrepareAndExecuteFilter`,以及Spring的`DispatcherServlet`。 2. **依赖注入配置**:在Spring的配置文件中声明Struts2和iBatis的组件,以及需要的其他bean,并通过依赖注入将它们整合。 3. **Action和SQL映射**:在Struts2中创建Action类,并在iBatis的SQLMap配置文件中定义对应的SQL语句,将Struts2的Action与iBatis的映射关联起来。 4. **事务管理**:利用Spring的事务管理功能来管理数据库操作的事务。 5. **安全和服务层**:通过Spring的AOP和IoC功能来实现业务逻辑的解耦合和事务的管理。 ### 结语 通过上述的整合,开发者可以有效地利用Struts2处理Web层的展示和用户交互,使用iBatis简化数据库操作,同时借助Spring强大的依赖注入和事务管理功能,创建一个结构良好、可维护性强的应用。这种集成方式在许多企业级Java Web应用中非常常见,是Java开发人员必须掌握的知识点。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%

<think>好的,用户让我介绍一下Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%的具体情况。我需要先回忆之前提供的回答中提到的相关案例,然后深入展开。 首先,用户可能已经知道稀疏图卷积的基本概念,但需要更详细的应用案例。他们可能对Waymo如何具体应用该技术感兴趣,比如技术细节、实现方式、提升的具体指标等。需要确保回答结构清晰,分点说明,同时保持技术准确性。 要考虑到用户可能的背景,可能是研究或工程领域的,需要技术细节,但避免过于复杂的数学公式,除非必要。之前回答中提到了应用案例,现在需要扩展这个部分。需要解释为什么稀疏图卷积在这里有效,比如处理LiDAR点云的稀疏性
recommend-type

Dwr实现无刷新分页功能的代码与数据库实例

### DWR简介 DWR(Direct Web Remoting)是一个用于允许Web页面中的JavaScript直接调用服务器端Java方法的开源库。它简化了Ajax应用的开发,并使得异步通信成为可能。DWR在幕后处理了所有的细节,包括将JavaScript函数调用转换为HTTP请求,以及将HTTP响应转换回JavaScript函数调用的参数。 ### 无刷新分页 无刷新分页是网页设计中的一种技术,它允许用户在不重新加载整个页面的情况下,通过Ajax与服务器进行交互,从而获取新的数据并显示。这通常用来优化用户体验,因为它加快了响应时间并减少了服务器负载。 ### 使用DWR实现无刷新分页的关键知识点 1. **Ajax通信机制:**Ajax(Asynchronous JavaScript and XML)是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。通过XMLHttpRequest对象,可以与服务器交换数据,并使用JavaScript来更新页面的局部内容。DWR利用Ajax技术来实现页面的无刷新分页。 2. **JSON数据格式:**DWR在进行Ajax调用时,通常会使用JSON(JavaScript Object Notation)作为数据交换格式。JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。 3. **Java后端实现:**Java代码需要编写相应的后端逻辑来处理分页请求。这通常包括查询数据库、计算分页结果以及返回分页数据。DWR允许Java方法被暴露给前端JavaScript,从而实现前后端的交互。 4. **数据库操作:**在Java后端逻辑中,处理分页的关键之一是数据库查询。这通常涉及到编写SQL查询语句,并利用数据库管理系统(如MySQL、Oracle等)提供的分页功能。例如,使用LIMIT和OFFSET语句可以实现数据库查询的分页。 5. **前端页面设计:**前端页面需要设计成能够响应用户分页操作的界面。例如,提供“下一页”、“上一页”按钮,或是分页条。这些元素在用户点击时会触发JavaScript函数,从而通过DWR调用Java后端方法,获取新的分页数据,并动态更新页面内容。 ### 数据库操作的关键知识点 1. **SQL查询语句:**在数据库操作中,需要编写能够支持分页的SQL查询语句。这通常涉及到对特定字段进行排序,并通过LIMIT和OFFSET来控制返回数据的范围。 2. **分页算法:**分页算法需要考虑当前页码、每页显示的记录数以及数据库中记录的总数。SQL语句中的OFFSET计算方式通常为(当前页码 - 1)* 每页记录数。 3. **数据库优化:**在分页查询时,尤其是当数据量较大时,需要考虑到查询效率问题。可以通过建立索引、优化SQL语句或使用存储过程等方式来提高数据库操作的性能。 ### DWR无刷新分页实现的代码要点 1. **DWR配置:**在实现DWR无刷新分页时,首先需要配置DWR,以暴露Java方法给前端JavaScript调用。 2. **JavaScript调用:**编写JavaScript代码,使用DWR提供的API发起Ajax调用。这些调用将触发后端Java方法,并接收返回的分页数据。 3. **数据展示:**在获取到新的分页数据后,需要将这些数据显示在前端页面的相应位置。这通常需要操作DOM元素,将新数据插入到页面中。 ### 结论 通过结合上述知识点,可以使用DWR技术实现一个无刷新分页的动态Web应用。DWR简化了Ajax通信过程,让开发者可以专注于业务逻辑的实现。通过熟练掌握Java后端处理、数据库查询和前端页面设计的相关技术,便能高效地完成无刷新分页的开发任务。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为