eigen::isometry3d matrix4d转换

时间: 2024-10-27 09:04:21 浏览: 158
Eigen是一个强大的C++矩阵库,它提供了一个方便的方式来表示和操作各种线性变换,包括旋转和平移(Isometry)。`Eigen::Isometry3f` 和 `Eigen::Matrix4f` 都是用来描述三维空间中的刚体变换。 要将一个 `Eigen::Matrix4f` 转换为 `Eigen::Isometry3f`,通常意味着从4x4矩阵中提取出平移部分和旋转部分。这是因为4x4矩阵中前3x3的部分代表旋转,最后一列则是平移向量。以下是基本步骤: ```cpp #include <Eigen/Eigen> Eigen::Matrix4f matrix4d; // 你的4x4矩阵 // 提取旋转矩阵(3x3) Eigen::Matrix3f rotation_matrix = matrix4d.block<3, 3>(0, 0); // 提取平移向量(1x3) Eigen::Vector3f translation_vector = matrix4d.bottomRow(); // 创建Isometry3f对象,并组合旋转和平移 Eigen::Isometry3f isometry(rotation_matrix, translation_vector); ``` 这样你就得到了一个 `Eigen::Isometry3f` 对象,它包含了原始矩阵中的旋转和平移信息。
相关问题

如何给Eigen::Isometry3d数据类型赋值

Eigen是一个用于线性代数的C++库,其中`Eigen::Isometry3f`和`Eigen::Isometry3d`分别代表单精度浮点数和双精度浮点数版本的三维刚体变换。给`Isometry3d`赋值主要是设置其矩阵表示,这个矩阵包含了旋转和平移的信息。 以下是赋值的基本步骤: 1. 首先创建一个`Isometry3d`实例: ```cpp Eigen::Isometry3d isometry; ``` 2. 如果你知道旋转部分(Rotation)和平移部分(Translation),可以分别赋值: - 旋转可以通过`RotationMatrix`构造,例如: ```cpp Eigen::Matrix3d rotation = Eigen::AngleAxisf(M_PI / 4, Eigen::Vector3f(0, 1, 0)); // 使用弧度制 isometry.linear() = rotation; // 设置旋转部分 ``` - 平移可以通过`translation()`函数设置: ```cpp Eigen::Vector3d translation(1.0, 2.0, 3.0); // x, y, z坐标 isometry.translation() = translation; // 设置平移部分 ``` 3. 如果直接提供一个`Eigen::Matrix4d`作为整体变换,可以直接复制到`isometry.matrix()`: ```cpp Eigen::Matrix4d transform(Eigen::Quaternionf::Identity(), translation); isometry.setIdentity(); // 先清空,然后从矩阵赋值 isometry.matrix() = transform; ``` 记住,`setIdentity()`用于初始化到单位矩阵和零平移。

Eigen::Transform<double, 3, Eigen::Isometry> Temp;这段代码什么意思

<think>好的,我现在要解决用户的问题,他问的是Eigen库中Transform类模板的定义和用途,特别是Eigen::Transform<double, 3, Eigen::Isometry>的具体解释和用法。首先,我需要回忆自己对Eigen库的了解,尤其是几何模块的部分。 首先,用户提到的Eigen::Transform类模板,应该属于Eigen的几何模块,用于表示空间变换,比如旋转、平移、缩放等。Transform类通常用于组合这些变换,形成一个齐次变换矩阵。用户给出的例子是Eigen::Transform<double, 3, Eigen::Isometry>,我需要解析这个模板参数的含义。 模板参数有三个:第一个是标量类型,这里是double;第二个是维度,3表示3维空间;第三个是变换类型,Eigen::Isometry,说明这是一个等距变换,即保持距离不变的变换,包括旋转和平移,但不包括缩放。 接下来,我需要解释这个类的定义。每个模板参数的作用需要明确:标量类型决定了矩阵元素的类型,维度是3,所以变换矩阵应该是4x4的齐次矩阵(因为3维空间中的变换通常用4x4矩阵表示)。变换类型Eigen::Isometry指定了变换的性质,这里确保变换是等距的,即正交旋转加平移。 然后,用途方面,Transform类主要用于构建和操作几何变换。例如,在机器人学中,用于描述坐标系之间的变换,或者在计算机图形学中处理物体的位置和方向。用户提供的代码示例中使用了Isometry3d,这其实是Transform<double, 3, Isometry>的typedef,用来创建等距变换矩阵,结合旋转和平移。 接下来,我需要考虑用户可能的实际应用场景。比如,如何创建变换矩阵,如何组合多个变换(比如先旋转再平移),以及如何应用变换到点或向量上。这里可能需要提到乘法顺序,因为Eigen默认使用列向量,所以变换顺序是右乘,即先进行的变换在右边。 另外,用户之前的引用中提到对齐问题(EIGEN_MAKE_ALIGNED_OPERATOR_NEW),这可能在使用Eigen对象作为类成员时需要注意内存对齐,避免运行时错误。虽然用户当前问题不直接涉及,但可能相关,可以简要提及。 用户可能还关心如何提取变换的旋转和平移部分,或者如何将变换矩阵分解为旋转和平移。在示例代码中,使用了linear()和translation()方法来分别设置旋转矩阵和平移向量,这说明Transform类提供了这些访问方法。 需要确保回答结构清晰,分点解释定义、用途、用法示例,以及常见操作。同时,结合用户提供的代码示例,说明如何构造一个等距变换矩阵,并解释各个步骤的作用。此外,可能还需要提到与其他变换类型的区别,比如仿射变换、投影变换等,但用户当前的问题是等距变换,所以重点放在Isometry上。 最后,检查是否有遗漏点,比如性能考虑,或者Eigen库中Transform的底层实现,但用户主要关注定义和用法,所以保持回答在应用层面即可。同时,生成的相关问题要围绕用户可能进一步的问题,比如组合变换、应用变换到点、性能优化等。</think>### Eigen库中`Transform`类模板详解 --- #### 一、核心定义解析 `Eigen::Transform<double, 3, Eigen::Isometry>` 是Eigen几何模块中用于表示**三维等距变换**的模板类,其定义可拆解为: - **标量类型**:`double`(矩阵元素的数据类型); - **维度**:`3`(三维空间); - **变换类型**:`Eigen::Isometry`(等距变换,仅包含旋转和平移,不包含缩放或投影)。 **底层数据结构**: 通过4×4齐次坐标矩阵实现,格式为: $$ \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} $$ - $R$:3×3旋转矩阵; - $t$:3×1平移向量; - 最后一行固定为$(0,0,0,1)$[^1][^2]。 --- #### 二、核心用途 1. **坐标系变换** 描述三维空间中坐标系之间的刚体变换(如机器人运动学中的位姿变换); 2. **数据组合** 将旋转、平移操作合并为单一矩阵,便于批量计算; 3. **避免数值误差** 通过显式约束(如`Isometry`强制正交性),减少浮点运算误差。 **与普通矩阵的区别**: ```cpp Eigen::Matrix4d mat; // 普通4x4矩阵(可能包含任意变换) Eigen::Isometry3d iso; // 受约束的等距变换矩阵(强制正交性) ``` --- #### 三、典型用法示例 ##### 1. 创建等距变换矩阵 ```cpp #include <Eigen/Geometry> Eigen::Isometry3d create_transform() { // 定义旋转(绕Z轴旋转45度) Eigen::Matrix3d R = Eigen::AngleAxisd(M_PI/4, Eigen::Vector3d::UnitZ()).toRotationMatrix(); // 定义平移 Eigen::Vector3d t(1.0, 2.0, 3.0); // 构建等距变换 Eigen::Isometry3d T = Eigen::Isometry3d::Identity(); T.linear() = R; // 设置旋转部分[^1] T.translation() = t; // 设置平移部分[^1] return T; } ``` ##### 2. 变换点坐标 ```cpp Eigen::Vector3d point(0, 0, 0); Eigen::Vector3d transformed_point = T * point; // 结果为(1,2,3) ``` ##### 3. 组合变换 ```cpp Eigen::Isometry3d T1 = create_transform(); Eigen::Isometry3d T2 = create_transform(); Eigen::Isometry3d T_total = T2 * T1; // 按顺序组合变换(T1先执行,T2后执行) ``` --- #### 四、关键成员函数 | 方法 | 作用 | 示例 | |-----------------------|----------------------------------------|---------------------------| | `.linear()` | 获取/设置旋转部分(3×3矩阵) | `T.linear() = R;` | | `.translation()` | 获取/设置平移部分(3×1向量) | `t = T.translation();` | | `.matrix()` | 返回完整的4×4矩阵 | `std::cout << T.matrix()` | | `.rotate()`/`.pretranslate()` | 追加旋转/平移操作 | `T.rotate(additional_R)` | | `.inverse()` | 计算逆变换(物理意义:坐标系反向变换) | `T_inv = T.inverse();` | --- #### 五、与其他变换类型的对比 Eigen支持多种预定义变换类型(通过模板参数指定): | 变换类型 | 特性 | 典型矩阵结构 | |-------------------------|------------------------------------------|---------------------------| | `Eigen::Isometry` | 刚体变换(旋转+平移) | 正交矩阵+平移 | | `Eigen::Affine` | 仿射变换(可含非均匀缩放) | 任意线性变换+平移 | | `Eigen::Projective` | 投影变换(含透视效果) | 完整4×4投影矩阵 | **选择原则**: - 优先使用约束更强的类型(如`Isometry`)以提高计算效率和数值稳定性[^1]。 --- #### 六、实际应用场景 1. **机器人运动学** ```cpp // 机械臂末端坐标系到基坐标系的变换 Eigen::Isometry3d end_effector_pose = base_to_joint1 * joint1_to_joint2 * joint2_to_end; ``` 2. **点云配准** ```cpp pcl::PointCloud<pcl::PointXYZ> transformed_cloud; pcl::transformPointCloud(cloud, transformed_cloud, T.matrix()); ``` 3. **相机标定** ```cpp // 世界坐标系到相机坐标系的变换 Eigen::Isometry3d camera_pose = estimateCameraPose(calibration_data); ``` --- #### 七、注意事项 1. **内存对齐问题** 若将`Eigen::Transform`作为类成员,需添加`EIGEN_MAKE_ALIGNED_OPERATOR_NEW`宏(防止SSE指令对齐错误)[^2]; 2. **性能优化** - 避免频繁创建临时变换对象; - 尽量使用组合变换(`T = T2 * T1`)而非逐元素操作; 3. **数值稳定性** - 定期调用`.makeAffine()`验证矩阵有效性(针对`Affine`类型); - 对长期迭代计算的变换矩阵进行正交化修复: ```cpp T.linear() = T.rotation().normalized(); // 强制正交化 ``` --- ### 相关问题 1. 如何将`Eigen::Isometry3d`转换为四元数和平移向量? 2. 在Eigen中如何实现坐标系间的插值变换? 3. `Eigen::Isometry3d`与`Eigen::Affine3d`在性能上有何差异? 4. 如何通过Eigen实现三维点云的刚体变换?
阅读全文

相关推荐

#include <ros/ros.h> #include <image_transport/image_transport.h> #include <cv_bridge/cv_bridge.h> #include <sensor_msgs/image_encodings.h> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #include <stdio.h> #include <stdlib.h> #include "opencv2/opencv.hpp" #include <moveit/move_group_interface/move_group_interface.h> #include <tf/transform_listener.h> #include <moveit/planning_scene_interface/planning_scene_interface.h> #include <moveit/robot_trajectory/robot_trajectory.h> #include "myself_pkg/uart.h" #include <sys/stat.h> #include <cmath> #include <xarm_driver.h> #include <thread> // 引入线程库 #include <atomic> static const std::string OPENCV_WINDOW = "Image window"; #define M_PI 3.14159265358979323846 tf::Vector3 obj_camera_frame1, obj_robot_frame; int flag_start=1; ros::Subscriber rgb_sub; // 相机内参 double fx = 953.4568; // x轴方向的焦距 double fy = 949.837; // y轴方向的焦距 double cx = 658.66659; // x轴方向的光学中心 double cy = 366.82704; // y轴方向的光学中心 // 物体高度 double objectHeight = 0.34432666; // 假设物体的高度为1米 double k1 = 0.133507; // double k2 =-0.213178; // double p1 = 0.006242; // double p2 = 0.005494; // /* double fx = 1084.54479; // x轴方向的焦距 double fy = 950.11576; // y轴方向的焦距 double cx = 642.85519; // x轴方向的光学中心 double cy = 354.52482; // y轴方向的光学中心 // 物体高度 double objectHeight = 0.34432666; // 假设物体的高度为1米 double k1 = 0.141430; // double k2 =-0.384089; // double p1 = 0.003167; // double p2 = 0.002440; // */ cv::Mat K = (cv::Mat_<double>(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 1); // 构造畸变参数向量 cv::Mat distCoeffs = (cv::Mat_<double>(5, 1) << k1, k2, p1, p2, 0); // 待校正的像素坐标 cv::Point2d pixelPoint(640, 360); // 假设像素坐标为(320, 240) cv::Mat cameraPointMat = (cv::Mat_<double>(3, 1) << 0, 0,0); /** // 定义一个结构体表示四元数,用于三维空间中的旋转表示 struct Quaternion { double w; // 四元数的实部 double x; // 四元数的虚部 x double y; // 四元数的虚部 y double z; // 四元数的虚部 z }; Quaternion eulerToQuaternion(double roll, double pitch, double yaw) { // 计算半角 double cy = cos(yaw * 0.5); double sy = sin(yaw * 0.5); double cp = cos(pitch * 0.5); double sp = sin(pitch * 0.5); double cr = cos(roll * 0.5); double sr = sin(roll * 0.5); Quaternion q; // 根据欧拉角到四元数的转换公式计算四元数的实部 q.w = cr * cp * cy + sr * sp * sy; // 根据欧拉角到四元数的转换公式计算四元数的虚部 x q.x = sr * cp * cy - cr * sp * sy; // 根据欧拉角到四元数的转换公式计算四元数的虚部 y q.y = cr * sp * cy + sr * cp * sy; // 根据欧拉角到四元数的转换公式计算四元数的虚部 z q.z = cr * cp * sy - sr * sp * cy; return q; } */ int move_lineb_test(xarm_msgs::Move srv, ros::ServiceClient client, float x_mm0, float y_mm0, float z_mm0, double roll0, double pitch0, double yaw0, float x_mm1, float y_mm1, float z_mm1, double roll1, double pitch1, double yaw1, float x_mm2, float y_mm2, float z_mm2, double roll2, double pitch2, double yaw2, float x_mm3, float y_mm3, float z_mm3, double roll3, double pitch3, double yaw3, float x_mm4, float y_mm4, float z_mm4, double roll4, double pitch4, double yaw4); void control_suction_during_move(float x_mm4, float y_mm4, float z_mm4); // 异步吸盘控制 auto suction_control = [](int speed){ std::thread([speed](){ for(int i=0; i<1; i++){ writeSpeed(speed); std::this_thread::sleep_for(std::chrono::milliseconds(800)); } }).detach(); // 分离线程 }; class XArmAPItest { ros::NodeHandle nh_; image_transport::ImageTransport it_; image_transport::Subscriber image_sub_; tf::TransformListener listener_; tf::StampedTransform camera_to_robot_; public: XArmAPItest() : it_(nh_) { moveit::planning_interface::MoveGroupInterface arm("xarm7"); sleep(0.5); moveit::planning_interface::PlanningSceneInterface planning_scene_interface; sleep(0.5); //异步任务处理器,防阻塞 ros::AsyncSpinner spinner(1); spinner.start(); // 创建一个新的障碍物消息 moveit_msgs::CollisionObject collision_object; collision_object.header.frame_id = "world"; // 设置障碍物的参考坐标系,通常为世界坐标系 // 设置障碍物的 ID collision_object.id = "table"; // 定义障碍物的形状和尺寸 shape_msgs::SolidPrimitive primitive; primitive.type = primitive.BOX; primitive.dimensions.resize(3); primitive.dimensions[0] = 2.0; // 长 primitive.dimensions[1] = 2.0; // 宽 primitive.dimensions[2] = 0.1; // 高 // 定义障碍物的姿态 geometry_msgs::Pose obstacle_pose; obstacle_pose.orientation.w = 1.0; // 默认姿态为单位四元数 obstacle_pose.position.x = 0.0; // x 位置 obstacle_pose.position.y = 0.0; // y 位置 obstacle_pose.position.z = -0.06; // z 位置 // 将障碍物的形状和姿态添加到障碍物消息中 collision_object.primitives.push_back(primitive); collision_object.primitive_poses.push_back(obstacle_pose); // 设置操作类型为添加障碍物 collision_object.operation = collision_object.ADD; // 发送障碍物消息到规划场景 moveit_msgs::PlanningScene planning_scene; planning_scene.world.collision_objects.push_back(collision_object); planning_scene.is_diff = true; planning_scene_interface.applyPlanningScene(planning_scene); // 应用障碍物到规划场景 ROS_INFO("Obstacle added"); /** //回初位置 arm.setNamedTarget("home");//设置目标 arm.move();//执行 sleep(0.5); double targetPose[7] = {-0.166690,0.00000, -0.076904,1.173601, 0.015010,1.21220,-0.260379}; std::vector<double> joint_group_positions(7); joint_group_positions[0] = targetPose[0]; joint_group_positions[1] = targetPose[1]; joint_group_positions[2] = targetPose[2]; joint_group_positions[3] = targetPose[3]; joint_group_positions[4] = targetPose[4]; joint_group_positions[5] = targetPose[5]; joint_group_positions[6] = targetPose[6]; arm.setJointValueTarget(joint_group_positions); arm.move(); sleep(0.5); */ try { listener_.waitForTransform("link_base", "camera_link", ros::Time(0), ros::Duration(50.0)); } catch (tf::TransformException &ex) { ROS_ERROR("[adventure_tf]: (wait) %s", ex.what()); ros::Duration(1.0).sleep(); } try { listener_.lookupTransform("link_base", "camera_link", ros::Time(0), camera_to_robot_); tf::Vector3 translation = camera_to_robot_.getOrigin(); objectHeight=translation.getZ(); std::cout << objectHeight << std::endl; } catch (tf::TransformException &ex) { ROS_ERROR("[adventure_tf]: (lookup) %s", ex.what()); } // 订阅相机图像 image_sub_ = it_.subscribe("/camera/color/image_raw", 1, &XArmAPItest::Cam_RGB_Callback, this); sleep(1); } /** // 封装四元数转欧拉角的函数 std::tuple<double, double, double> quaternionToEuler(const geometry_msgs::Quaternion& q) { double x = q.x; double y = q.y; double z = q.z; double w = q.w; // 计算绕 x 轴旋转的弧度(roll) double sinr_cosp = 2 * (w * x + y * z); double cosr_cosp = 1 - 2 * (x * x + y * y); double roll = std::atan2(sinr_cosp, cosr_cosp); // 计算绕 y 轴旋转的弧度(pitch) double sinp = 2 * (w * y - z * x); double pitch; if (std::abs(sinp) >= 1) pitch = std::copysign(M_PI / 2, sinp); // 使用 90 度避免数值问题 else pitch = std::asin(sinp); // 计算绕 z 轴旋转的弧度(yaw) double siny_cosp = 2 * (w * z + x * y); double cosy_cosp = 1 - 2 * (y * y + z * z); double yaw = std::atan2(siny_cosp, cosy_cosp); return std::make_tuple(roll, pitch, yaw); } */ void Grasping(double a, double b, double z, double Angle) { std::cout << "Grasping" << std::endl; // 输出提示信息 moveit::planning_interface::MoveGroupInterface arm("xarm7"); ros::AsyncSpinner spinner(1); spinner.start(); std::string end_effector_link = arm.getEndEffectorLink(); std::string reference_frame = "link_base"; arm.setPoseReferenceFrame(reference_frame); // 声明一个变量用于存储机械臂当前的位姿信息 geometry_msgs::PoseStamped homePose; // 获取机械臂末端执行器当前的位姿并赋值给 homePose 变量 homePose = arm.getCurrentPose(); sleep(1); writeSpeed(1); writeSpeed(1); writeSpeed(1); sleep(0.8); /*******************第1次抓取*********************/ /*** if(flag_start==1) { //移动到抓取方块上方 flag_start=2; //将初始位姿加入路点列表 //waypoints.push_back(target_pose); geometry_msgs::Pose target_pose; target_pose.position.x = x; target_pose.position.y = y; target_pose.position.z = 0; double roll = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch = 0; // 绕 y 轴旋转的弧度 double yaw = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm = static_cast<float>(target_pose.position.x * 1000); float y_mm = static_cast<float>(target_pose.position.y * 1000); float z_mm = static_cast<float>(target_pose.position.z * 1000); } */ double x = a + 0.0001-0.0041; double y = b + 0.0009+0.0082+0.001; /*******************抓取*********************/ if(flag_start>=1&&flag_start<35) { //抓取物块 geometry_msgs::Pose target_pose0; target_pose0 = arm.getCurrentPose(end_effector_link).pose; target_pose0.position.z = 0+0.14+0.013; target_pose0.position.x = x; target_pose0.position.y = y; double roll0 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch0 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw0 = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm0 = static_cast<float>(target_pose0.position.x * 1000); float y_mm0 = static_cast<float>(target_pose0.position.y * 1000); float z_mm0 = static_cast<float>(target_pose0.position.z * 1000); ROS_INFO("zuobiao0: %f, %f, %f", x_mm0, y_mm0, z_mm0); // 定位抓取物块 geometry_msgs::Pose target_pose1; target_pose1 = arm.getCurrentPose(end_effector_link).pose; target_pose1.position.x = x; target_pose1.position.y = y; target_pose1.position.z = 0.09+0.0003+0.01246-0.01; double roll1 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch1 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw1 = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm1 = static_cast<float>(target_pose1.position.x * 1000); float y_mm1 = static_cast<float>(target_pose1.position.y * 1000); float z_mm1 = static_cast<float>(target_pose1.position.z * 1000); ROS_INFO("zuobiao1: %f, %f, %f", x_mm1, y_mm1, z_mm1); //抓取物块 geometry_msgs::Pose target_pose2; target_pose2 = arm.getCurrentPose(end_effector_link).pose; target_pose2.position.z = 0+0.14+0.013; target_pose2.position.x = x; target_pose2.position.y = y; double roll2 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch2 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw2 = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm2 = static_cast<float>(target_pose2.position.x * 1000); float y_mm2 = static_cast<float>(target_pose2.position.y * 1000); float z_mm2 = static_cast<float>(target_pose2.position.z * 1000); ROS_INFO("zuobiao2: %f, %f, %f", x_mm2, y_mm2, z_mm2); geometry_msgs::Pose target_pose3; target_pose3 = arm.getCurrentPose(end_effector_link).pose; //放置物块 target_pose3.position.z= 0.14+0.013; double roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw3 = Angle*M_PI/180; // 绕 z 轴旋转的弧度 /**********************************************zi色*************************************/ if(flag_start==1){ target_pose3.position.x = 0.38578-0.023+0.002; target_pose3.position.y = 0.217467-0.052;} if(flag_start==2){ target_pose3.position.x = 0.38578+0.06-0.023; target_pose3.position.y = 0.217467+0.02-0.052;} if(flag_start==3){ target_pose3.position.x = 0.38578+0.08-0.023; target_pose3.position.y = 0.217467-0.052;} /**********************************************橙色*************************************/ if(flag_start==4){ target_pose3.position.x = 0.38578+0.01-0.023; target_pose3.position.y = 0.217467+0.052-0.055;} if(flag_start==5){ target_pose3.position.x = 0.38578+0.05-0.023; target_pose3.position.y = 0.217467+0.052-0.055;} if(flag_start==6){ target_pose3.position.x = 0.38578+0.09-0.023; target_pose3.position.y = 0.217467+0.052-0.055;} /*********************************************hong色 *****************************************/ if(flag_start==7){ target_pose3.position.x = 0.38578-0.023; target_pose3.position.y = 0.217467+0.11-0.055+0.002;} if(flag_start==8){ target_pose3.position.x = 0.38578+0.02-0.023-0.002; target_pose3.position.y = 0.217467+0.11-0.055+0.002;} if(flag_start==9){ target_pose3.position.x = 0.38578+0.04-0.023-0.002; target_pose3.position.y = 0.217467+0.11-0.055;} /********************************************************huang色*****************************/ if(flag_start==10){ target_pose3.position.x = 0.38578-0.023+0.002; target_pose3.position.y = 0.217467+0.18+-0.05-0.001;} if(flag_start==11){ target_pose3.position.x = 0.38578+0.06-0.023-0.002; target_pose3.position.y = 0.217467+0.16-0.05;} if(flag_start==12){ target_pose3.position.x = 0.38578+0.08-0.023; target_pose3.position.y = 0.217467+0.18-0.05;} if(flag_start==13){ target_pose3.position.x = 0.38578+0.14-0.023-0.001; target_pose3.position.y = 0.217467+0.16-0.05;} /*****************************************************hei色*********************************** */ if(flag_start==14){ target_pose3.position.x = 0.38578+0.06-0.023; target_pose3.position.y = 0.217467+0.10-0.05;} if(flag_start==15){ target_pose3.position.x = 0.38578+0.08-0.023; target_pose3.position.y = 0.217467+0.14-0.05-0.001;} /*****************************************************zi色*************************** */ if(flag_start==16){ target_pose3.position.x = 0.38578+0.12-0.023-0.001; target_pose3.position.y = 0.217467+0.08-0.0575;} /***************************************************lan色******************************* */ if(flag_start==17){ target_pose3.position.x = 0.38578+0.11-0.023+0.001; target_pose3.position.y = 0.217467+0.12-0.05-0.001; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 + M_PI/2; // 绕 z 轴旋转的弧度 } if(flag_start==18){ target_pose3.position.x = 0.38578+0.11+0.03-0.02; target_pose3.position.y = 0.217467+0.09-0.05;} if(flag_start==19){ target_pose3.position.x = 0.38578+0.11+0.03+0.04-0.02-0.002; target_pose3.position.y = 0.217467+0.09-0.05+0.001;} if(flag_start==20){ target_pose3.position.x = 0.38578+0.11+0.03+0.04+0.02-0.02-0.02-0.07; target_pose3.position.y = 0.217467+0.09+0.02-0.05+0.002;} /***************************************************ceng色*************************** */ if(flag_start==21){ target_pose3.position.x = 0.38578+0.15-0.02-0.002; target_pose3.position.y = 0.217467+0.13-0.045-0.002;} /*****************************************************lv色**************************************** */ if(flag_start==22){ target_pose3.position.x = 0.38578+0.12-0.02-0.004; target_pose3.position.y = 0.217467+0.03-0.05;} if(flag_start==23){ target_pose3.position.x = 0.38578+0.16-0.02-0.004-0.0005; target_pose3.position.y = 0.217467+0.03-0.05;} if(flag_start==24){ target_pose3.position.x = 0.38578+0.20-0.02-0.004-0.0005; target_pose3.position.y = 0.217467+0.03-0.05;} if(flag_start==25){ target_pose3.position.x = 0.38578+0.17-0.02-0.004-0.0001; target_pose3.position.y = 0.217467+0.11+0.06-0.05-0.005; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } /***********************************************************huang色************************************** */ if(flag_start==26){ target_pose3.position.x = 0.38578+0.20-0.022; target_pose3.position.y = 0.217467+0.11+0.08-0.05-0.004-0.004;} /***********************************************************hong色************************************** */ if(flag_start==27){ target_pose3.position.x = 0.38578+0.17-0.021; target_pose3.position.y = 0.217467-0.05; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } if(flag_start==28){ target_pose3.position.x = 0.38578+0.17-0.021; target_pose3.position.y = 0.217467+0.06-0.05; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } /***************************************************************hei色************************************* */ if(flag_start==29){ target_pose3.position.x = 0.38578+0.22-0.025+0.002; target_pose3.position.y = 0.217467+0.10+0.04-0.05;} if(flag_start==30){ target_pose3.position.x = 0.38578+0.24-0.025; target_pose3.position.y = 0.217467+0.18-0.05;} /*************************************************ceng色*************************** */ if(flag_start==31){ target_pose3.position.x = 0.38578+0.23-0.02-0.002-0.0002; target_pose3.position.y = 0.217467+0.07-0.045-0.002-0.002;} /*************************************************lan色*************************** */ if(flag_start==32){ target_pose3.position.x = 0.38578+0.23-0.024; target_pose3.position.y = 0.217467+0.02-0.051-0.0001; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 + M_PI/2; // 绕 z 轴旋转的弧度 } /*************************************************zi色*************************** */ if(flag_start==33){ target_pose3.position.x = 0.38578+0.26-0.024; target_pose3.position.y = 0.217467-0.051+0.001;} /*************************************************lv色*************************** */ if(flag_start==34){ target_pose3.position.x = 0.38578+0.25-0.024; target_pose3.position.y = 0.217467+0.10-0.051+0.001; target_pose3.position.z= 0.14+0.013+0.002; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } // 将目标姿态的位置坐标从米转换为毫米 float x_mm3 = static_cast<float>(target_pose3.position.x * 1000); float y_mm3 = static_cast<float>(target_pose3.position.y * 1000); float z_mm3 = static_cast<float>(target_pose3.position.z * 1000); ROS_INFO("zuobiao3: %f, %f, %f", x_mm3, y_mm3, z_mm3); geometry_msgs::Pose target_pose4; target_pose4.position.z= 0.109+0.01236-0.0078+0.005; double roll4 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch4 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw4 = yaw3; // 绕 z 轴旋转的弧度 float x_mm4 = static_cast<float>(target_pose3.position.x * 1000); float y_mm4 = static_cast<float>(target_pose3.position.y * 1000); float z_mm4 = static_cast<float>(target_pose4.position.z * 1000); ROS_INFO("zuobiao4: %f, %f, %f", x_mm4, y_mm4, z_mm4); // 调用 move_lineb_test 函数并传递坐标 ros::NodeHandle nh; ros::ServiceClient move_lineb_client_ = nh.serviceClient<xarm_msgs::Move>("/xarm/move_lineb"); xarm_msgs::Move move_srv_; if(move_lineb_test(move_srv_, move_lineb_client_, x_mm0, y_mm0, z_mm0, roll0, pitch0, yaw0, x_mm1, y_mm1, z_mm1, roll1, pitch1, yaw1, x_mm2, y_mm2, z_mm2, roll2, pitch2, yaw2, x_mm3, y_mm3, z_mm3, roll3, pitch3, yaw3, x_mm4, y_mm4, z_mm4, roll4, pitch4, yaw4) == 1) return; control_suction_during_move(x_mm4, y_mm4, z_mm4); flag_start++; } else {ros::shutdown(); } } void Cam_RGB_Callback(const sensor_msgs::ImageConstPtr &msg)// 摄像头回调函数 { using namespace cv; image_sub_.shutdown(); // 定义一个cv_bridge指针 cv_bridge::CvImagePtr cv_ptr; try { // 将ROS图像转换为OpenCV图像 cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); } catch (cv_bridge::Exception &e) { ROS_ERROR("cv_bridge exception:%s", e.what()); } // 获取原始图像 Mat imgOriginal = cv_ptr->image; // 定义亮度增强因子 double brightness_scale = 1.8; // 应用亮度增强 Mat brightened; imgOriginal.convertTo(brightened, -1, brightness_scale); // 图像预处理:高斯模糊 Mat blurred; GaussianBlur(brightened, blurred, Size(5, 5), 0); Mat hsv; cvtColor(blurred, hsv, cv::COLOR_BGR2HSV); // 将原始图像转换为HSV图像 // 分离HSV通道 std::vector<Mat> hsv_channels; split(hsv, hsv_channels); // 增强饱和度(S 通道) double saturation_scale = 1.5; // 饱和度增强因子,可以根据实际情况调整 hsv_channels[1].convertTo(hsv_channels[1], -1, saturation_scale); // 合并通道 merge(hsv_channels, hsv); Mat mask_red, mask_green,mask_blue,mask_orange,mask_brown,mask_yellow,mask_purple; // inRange(blurred, cv::Scalar(0, 0, 130), cv::Scalar(255, 108, 226), mask_red); inRange(blurred, cv::Scalar(0, 0, 144), cv::Scalar(252, 111, 203), mask_red); inRange(blurred, cv::Scalar(0, 112, 174), cv::Scalar(159, 139, 237), mask_orange);//BGR inRange(blurred, cv::Scalar(0, 0, 0), cv::Scalar(123, 112, 108), mask_brown); inRange(blurred, cv::Scalar(0, 127, 97), cv::Scalar(157, 255, 136), mask_green); inRange(blurred, cv::Scalar(156, 119, 0), cv::Scalar(218, 146, 102), mask_blue); inRange(blurred, cv::Scalar(0, 142, 152), cv::Scalar(150, 255, 255), mask_yellow); inRange(hsv, cv::Scalar(99, 33, 120), cv::Scalar(134, 146, 181), mask_purple); Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(5, 5));// 形态学操作的内核大小 //dilate(mask_red, mask_red, kernel); //dilate(mask_green, mask_green, kernel); erode(mask_red, mask_red, kernel);//腐蚀 erode(mask_green, mask_green, kernel); erode(mask_blue, mask_blue, kernel); erode(mask_yellow, mask_yellow, kernel); erode(mask_orange, mask_orange, kernel); erode(mask_purple, mask_purple, kernel); erode(mask_brown, mask_brown, kernel); //erode(mask_purple, mask_purple, kernel); dilate(mask_orange, mask_orange, kernel); dilate(mask_brown, mask_brown, kernel); //imshow("green", mask_green);//显示原始图像 //获取储存不同颜色的灰度图 std::vector<std::vector<cv::Point>> contours_red; std::vector<std::vector<cv::Point>> contours_red_output; cv::findContours(mask_red,contours_red, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_orange; std::vector<std::vector<cv::Point>> contours_orange_output; cv::findContours(mask_orange,contours_orange, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_brown; std::vector<std::vector<cv::Point>> contours_brown_output; cv::findContours(mask_brown,contours_brown, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_green; std::vector<std::vector<cv::Point>> contours_green_output; cv::findContours(mask_green,contours_green, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_blue; std::vector<std::vector<cv::Point>> contours_blue_output; cv::findContours(mask_blue,contours_blue, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_yellow; std::vector<std::vector<cv::Point>> contours_yellow_output; cv::findContours(mask_yellow,contours_yellow, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_purple; std::vector<std::vector<cv::Point>> contours_purple_output; cv::findContours(mask_purple,contours_purple, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); //drawContours(blurred, contours, -1, Scalar(0, 255, 0), 3);//轮廓 /********************************红色********************/ for (size_t i = 0; i < contours_red.size(); i++) { std::vector<cv::Point>& contour_red = contours_red[i]; if (contour_red.size()>200) { // 检查轮廓是否为空 contours_red_output.push_back(contours_red[i]); } else { ROS_INFO("No red contours found."); } } /********************************橙色********************/ for (size_t i = 0; i < contours_orange.size(); i++) { std::vector<cv::Point>& contour_orange = contours_orange[i]; if (contour_orange.size()>200) { // 检查轮廓是否为空 contours_orange_output.push_back(contours_orange[i]); } else { ROS_INFO("No orange contours found."); } } /********************************棕色********************/ for (size_t i = 0; i < contours_brown.size(); i++) { std::vector<cv::Point>& contour_brown = contours_brown[i]; if (contour_brown.size()>200) { // 检查轮廓是否为空 contours_brown_output.push_back(contours_brown[i]); } else { ROS_INFO("No brown contours found."); } } /********************************绿色********************/ for (size_t i = 0; i < contours_green.size(); i++) { std::vector<cv::Point>& contour_green = contours_green[i]; if (contour_green.size()>200) { // 检查轮廓是否为空 contours_green_output.push_back(contours_green[i]); } else { ROS_INFO("No green contours found."); } } /********************************蓝色********************/ for (size_t i = 0; i < contours_blue.size(); i++) { std::vector<cv::Point>& contour_blue = contours_blue[i]; if (contour_blue.size()>200) { // 检查轮廓是否为空 contours_blue_output.push_back(contours_blue[i]); } else { ROS_INFO("No blue contours found."); } } /********************************黄色********************/ for (size_t i = 0; i < contours_yellow.size(); i++) { std::vector<cv::Point>& contour_yellow = contours_yellow[i]; if (contour_yellow.size()>200) { // 检查轮廓是否为空 contours_yellow_output.push_back(contours_yellow[i]); } else { ROS_INFO("No yellow contours found."); } } /********************************紫色********************/ // 存储每个轮廓的面积及其索引 std::vector<std::pair<double, size_t>> area_index_pairs; for (size_t i = 0; i < contours_purple.size(); ++i) { double area = cv::contourArea(contours_purple[i]); area_index_pairs.emplace_back(area, i); } // 按面积从大到小排序 std::sort(area_index_pairs.begin(), area_index_pairs.end(), [](const std::pair<double, size_t>& a, const std::pair<double, size_t>& b) { return a.first > b.first; }); // 处理面积最大的5个轮廓 size_t count = std::min<size_t>(5, area_index_pairs.size()); if (count == 0) { ROS_INFO("No contours found."); } for (size_t i = 0; i < count; ++i) { size_t index = area_index_pairs[i].second; contours_purple_output.push_back(contours_purple[index]); } //传递颜色灰度图像 Camera_TO_Robot_Process_YP(contours_purple_output,0,3); Camera_TO_Robot_Process_RO(contours_orange_output,0,3); Camera_TO_Robot_Process_RO(contours_red_output,0,3); Camera_TO_Robot_Process_YP(contours_yellow_output,0,4); Camera_TO_Robot_Process_brown(contours_brown_output,0,2); Camera_TO_Robot_Process_YP(contours_purple_output,3,4); Camera_TO_Robot_Process_GB(contours_blue_output,0,4); Camera_TO_Robot_Process_RO(contours_orange_output,3,4); Camera_TO_Robot_Process_GB(contours_green_output,0,4); Camera_TO_Robot_Process_YP(contours_yellow_output,4,5); Camera_TO_Robot_Process_RO(contours_red_output,3,5); Camera_TO_Robot_Process_brown(contours_brown_output,2,4); Camera_TO_Robot_Process_RO(contours_orange_output,4,5); Camera_TO_Robot_Process_GB(contours_blue_output,4,5); Camera_TO_Robot_Process_YP(contours_purple_output,4,5); Camera_TO_Robot_Process_GB(contours_green_output,4,5); // imshow("imgOriginal", imgOriginal); std::cout << "success!" << std::endl; ros::shutdown(); } //红色和橙色 void Camera_TO_Robot_Process_RO(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "Red or Orange" << std::endl; cv::Point2f center; for (start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) // 检查轮廓是否为空 { // 获取最小外接圆 // float radius; // cv::minEnclosingCircle(contours[i], center, radius); // 获取最小外接矩形 cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); center = minRect.center; if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&¢er.x>=82) { cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-91.0, center.y*1.275-74.5,1); std::cout << pixelPointMat << std::endl; // pixelPointMat = (cv::Mat_<double>(3, 1) << 640, 360, 1); cameraPointMat = objectHeight * K.inv() * pixelPointMat; // std::cout << "相机坐标系下的三维坐标:" << std::endl; // std::cout << cameraPointMat << std::endl; obj_camera_frame1.setX(cameraPointMat.at<double>(0,0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1,0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2,0)); obj_robot_frame = camera_to_robot_ * obj_camera_frame1; // ros::shutdown(); //std::cout << "11111" << std::endl; /**************** 获取矩形的角度*******************/ double angle = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; //放平角度 if (width < height) { angle += 90; } // 输出角度 // std::cout << "Contour #" << start_number << " angle: " << angle << std::endl; /**************** 获取矩形的角度*******************/ Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle); } } else if(contour.size()>0&&contour.size()<100) { std::cout << "没有红橙像素坐标:" << std::endl; } } } //棕色 void Camera_TO_Robot_Process_brown(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "Brown start" << std::endl; cv::Point2f center; for (start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) // 检查轮廓是否为空 { // 获取最小外接圆 float radius; cv::minEnclosingCircle(contours[start_number], center, radius); /**************** 获取矩形的角度*******************/ // 获取最小外接矩形 cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); double angle2 = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; /**************** 获取矩形的角度*******************/ double epsilon = 0.1 * cv::arcLength(contours[start_number], true); std::cout << "1111" << std::endl; std::vector<int> lenth(8); std::vector<cv::Point2f> approx; cv::Point2f pt; cv::Point2f pt1; cv::Point2f pt0; cv::approxPolyDP(contours[start_number], approx, epsilon, true); pt0 = approx[0]; if (approx.size() == 3) { for (size_t j = 0; j < approx.size(); j++) { pt= approx[j]; pt1= approx[j+1]; lenth[j]=(pt.x-pt1.x)*(pt.x-pt1.x)+(pt.y-pt1.y)*(pt.y-pt1.y); if(j==2) { lenth[j]=(pt.x-pt0.x)*(pt.x-pt0.x)+(pt.y-pt0.y)*(pt.y-pt0.y); } } if ( lenth[0]>lenth[1]&&lenth[0]>lenth[2]) { if(width > height){ switch (start_number) { case 0: angle2 = angle2; break; case 1: angle2 -= 90; break; case 2: angle2 = angle2; break; case 3: angle2 -= 90; break; } } else if(width < height){ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 180; break; case 2: angle2 -= 90; break; case 3: angle2 += 180; break; } } } else if ( lenth[2]>lenth[1]&&lenth[2]>lenth[0]) { if(width > height){ switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 += 90; break; case 2: angle2 += 180; break; case 3: angle2 += 90; break; } } else if(width < height){ switch (start_number) { case 0: angle2 += 90; break; case 1: angle2 = angle2; break; case 2: angle2 += 90; break; case 3: angle2 = angle2; break; } } } } // center = minRect.center; if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&¢er.x>=82) { //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-91.5, center.y*1.275-74.5,1); //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-92, center.y*1.285-76.5,1); cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); std::cout << pixelPointMat << std::endl; // pixelPointMat = (cv::Mat_<double>(3, 1) << 640, 360, 1); cameraPointMat = objectHeight * K.inv() * pixelPointMat; // std::cout << "相机坐标系下的三维坐标:" << std::endl; // std::cout << cameraPointMat << std::endl; obj_camera_frame1.setX(cameraPointMat.at<double>(0,0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1,0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2,0)); obj_robot_frame = camera_to_robot_ * obj_camera_frame1; if(angle2>176) angle2=176; if(angle2<-176) angle2=-176; std::cout << " angle2 :" << angle2 << std::endl; Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle2); } } else if(contour.size()>0&&contour.size()<100) { std::cout << "没有棕色像素坐标:" << std::endl; }} } //紫色和黄色 void Camera_TO_Robot_Process_YP(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "Yellow or Purple start" << std::endl; double angle2=0; for (start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) // 检查轮廓是否为空 { /**************** 获取矩形的角度*******************/ cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); angle2 = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; /**************** 获取矩形的角度*******************/ cv::Point2f center; cv::Point2f center2; double epsilon = 0.04 * cv::arcLength(contours[start_number], true); // 多边形逼近 std::vector<int> lenth(6); std::vector<cv::Point2f> approx; cv::Point2f pt; cv::Point2f pt1; cv::Point2f pt0; cv::approxPolyDP(contours[start_number], approx, epsilon, true); // std::cout <<" lenth[i] "<< approx.size() << std::endl; pt0 = approx[0]; if (approx.size() == 6) { for (size_t i = 0; i < approx.size(); i++) { pt= approx[i]; pt1= approx[i+1]; lenth[i]=(pt.x-pt1.x)*(pt.x-pt1.x)+(pt.y-pt1.y)*(pt.y-pt1.y); if(i==5) lenth[i]=(pt.x-pt0.x)*(pt.x-pt0.x)+(pt.y-pt0.y)*(pt.y-pt0.y); } /********************************purple***************************************/ if ( lenth[5]>lenth[1]&&lenth[5]>lenth[0]&&lenth[5]>lenth[2]&&lenth[5]>lenth[3]&&lenth[5]>lenth[4]) { // center2 = (approx[1]+approx[2])/2; // center = (approx[5]+center2)/2; center = (approx[5]+approx[2])/2; if(width > height){ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 90; break; case 2: angle2 -= 90; break; case 3: angle2 += 90; break; case 4: angle2 = angle2; break; }} else if(width < height){ switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 = angle2; break; case 2: angle2 += 180; break; case 3: angle2 = angle2; break; case 4: angle2 -= 90; break; }} std::cout << "555555" << std::endl; } /********************************purple***************************************/ else if ( lenth[1]>lenth[2]&&lenth[1]>lenth[0]&&lenth[1]>lenth[5]&&lenth[1]>lenth[3]&&lenth[1]>lenth[4]) { //center2 = (approx[3]+approx[4])/2; //center = (approx[1]+center2)/2; center = (approx[1]+approx[4])/2; if(width > height){ if(approx[1].y<approx[0].y&&approx[1].y<approx[2].y&&approx[1].y<approx[3].y&&approx[1].y<approx[4].y&&approx[1].y<approx[5].y){ switch (start_number) { case 0: angle2 += 90; break; case 1: angle2 -= 90; break; case 2: angle2 += 90; break; case 3: angle2 -= 90; break; case 4: angle2 += 180; break; }} else{ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 90; break; case 2: angle2 -= 90; break; case 3: angle2 += 90; break; case 4: angle2 = angle2; break; } } } else if(width < height) { switch (start_number) { case 0: angle2 = angle2; break; case 1: angle2 += 180; break; case 2: angle2 = angle2; break; case 3: angle2 += 180; break; case 4: angle2 += 90; break; }} std::cout << "11111111" << std::endl; } /********************************purple***************************************/ /********************************yellow***************************************/ else if ( lenth[0]>lenth[1]&&lenth[0]>lenth[2]&&lenth[0]>lenth[5]&&lenth[0]>lenth[3]&&lenth[0]>lenth[4]) { //center2 = (approx[4]+approx[5])/2; //center = (center2+approx[1])/2; center = (approx[4]+approx[1])/2; if(width < height){ switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 = angle2; break; case 2: angle2 += 180; break; case 3: angle2 = angle2; break; case 4: angle2 += 90; break; } } else{ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 90; break; case 2: angle2 -= 90; break; case 3: angle2 += 90; break; case 4: angle2 += 180; break; } } std::cout << "000000" << std::endl; } /********************************yellow***************************************/ else if ( lenth[4]>lenth[1]&&lenth[4]>lenth[0]&&lenth[4]>lenth[5]&&lenth[4]>lenth[3]&&lenth[4]>lenth[2])/////yellow { //center2 = (approx[2]+approx[3])/2; // center = (center2+approx[5])/2; center = (approx[2]+approx[5])/2; if(width < height){ if(approx[5].y<approx[0].y&&approx[5].y<approx[1].y&&approx[5].y<approx[2].y&&approx[5].y<approx[3].y&&approx[5].y<approx[4].y){ switch (start_number) { case 0: angle2 = angle2; break; case 1: angle2 += 180; break; case 2: angle2 = angle2; break; case 3: angle2 += 180; break; case 4: angle2 -= 90; break; } } else { switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 = angle2; break; case 2: angle2 += 180; break; case 3: angle2 = angle2; break; case 4: angle2 += 90; break; } } } else if(width > height){ switch (start_number) { case 0: angle2 += 90; break; case 1: angle2 -= 90; break; case 2: angle2 += 90; break; case 3: angle2 -= 90; break; case 4: angle2 = angle2; break; } } std::cout << "444444" << std::endl; } /********************************yellow***************************************/ } if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&¢er.x>=82) { //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-92, center.y*1.285-76.5,1); cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); // std::cout << pixelPointMat << std::endl; // pixelPointMat = (cv::Mat_<double>(3, 1) << 640, 360, 1); cameraPointMat = objectHeight * K.inv() * pixelPointMat; // std::cout << "相机坐标系下的三维坐标:" << std::endl; // std::cout << cameraPointMat << std::endl; obj_camera_frame1.setX(cameraPointMat.at<double>(0,0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1,0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2,0)); obj_robot_frame = camera_to_robot_ * obj_camera_frame1; std::cout<< " X :" << obj_robot_frame.getX() << std::endl; std::cout<< " Y :" << obj_robot_frame.getY() << std::endl; std::cout<< " Z :" << obj_robot_frame.getZ() << std::endl; if(angle2>176) angle2=176; if(angle2<-176) angle2=-176; std::cout << " angle2 :" << angle2 << std::endl; Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle2); } } else if(contour.size()>0&&contour.size()<280) { std::cout << "没有黄紫像素坐标:" << std::endl; }} } //绿色和蓝色 void Camera_TO_Robot_Process_GB(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "green or blue" << std::endl; // 输出提示信息 cv::Point2f center; for(start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) { // 检查轮廓是否为空 // 获取最小外接矩形 cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); center = minRect.center; double angleInRadians = minRect.angle * M_PI / 180.0; if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&¢er.x>=82) { cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); std::cout << pixelPointMat << std::endl; cameraPointMat = objectHeight * K.inv() * pixelPointMat; //平面下的坐标转为相机三维坐标 //相机坐标转为基座标 obj_camera_frame1.setX(cameraPointMat.at<double>(0, 0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1, 0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2, 0)); obj_robot_frame= camera_to_robot_ * obj_camera_frame1; std::cout << "坐标为: " << obj_robot_frame << std::endl; /**************** 获取矩形的角度*******************/ double angle = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; //放平角度 if (width > height) { angle += 90; } Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle); } } else if(contour.size()>0&&contour.size()<100) { std::cout << "没有蓝绿像素坐标:" << std::endl; } } } }; /**********调用服务运行机械臂*********************/ int move_lineb_test(xarm_msgs::Move srv, ros::ServiceClient client, float x_mm0, float y_mm0, float z_mm0, double roll0, double pitch0, double yaw0, float x_mm1, float y_mm1, float z_mm1, double roll1, double pitch1, double yaw1, float x_mm2, float y_mm2, float z_mm2, double roll2, double pitch2, double yaw2, float x_mm3, float y_mm3, float z_mm3, double roll3, double pitch3, double yaw3, float x_mm4, float y_mm4, float z_mm4, double roll4, double pitch4, double yaw4) { // 设置机械臂的运动速度 srv.request.mvvelo = 160; // 设置机械臂的运动加速度 srv.request.mvacc = 1000; // 设置机械臂的运动时间 srv.request.mvtime = 0; // 设置机械臂运动路径的圆角半径 srv.request.mvradii = 20; ROS_INFO("ZUOBIAOR: %f, %f,%f", x_mm1, y_mm1, z_mm1); std::vector<float> pose[5] = { {x_mm0, y_mm0, z_mm0, static_cast<float>(roll0), static_cast<float>(pitch0), static_cast<float>(yaw0)}, {x_mm1, y_mm1, z_mm1, static_cast<float>(roll1), static_cast<float>(pitch1), static_cast<float>(yaw1)}, {x_mm2, y_mm2, z_mm2, static_cast<float>(roll2), static_cast<float>(pitch2), static_cast<float>(yaw2)}, {x_mm3, y_mm3, z_mm3, static_cast<float>(roll3), static_cast<float>(pitch3), static_cast<float>(yaw3)}, {x_mm4, y_mm4, z_mm4, static_cast<float>(roll4), static_cast<float>(pitch4), static_cast<float>(yaw4)} }; for(int i = 0; i < 5; i++) { srv.request.pose = pose[i]; if(client.call(srv)) { ROS_INFO("%s\n", srv.response.message.c_str()); std::cout << "success111" << std::endl; } else { ROS_ERROR("Failed to call service move_lineb"); } } return 0; } bool is_at_pose(const geometry_msgs::Pose& current_pose, const geometry_msgs::Pose& target_pose, double tolerance = 0.005) { return std::abs(current_pose.position.x - target_pose.position.x) < tolerance && std::abs(current_pose.position.y - target_pose.position.y) < tolerance && std::abs(current_pose.position.z - target_pose.position.z) < tolerance; } //阻塞服务,检测是否到达目标位置 void control_suction_during_move(float x_mm4, float y_mm4, float z_mm4) { // 定义目标位 moveit::planning_interface::MoveGroupInterface arm("xarm7"); ros::AsyncSpinner spinner(1); spinner.start(); geometry_msgs::Pose target_pose4; target_pose4.position.x = x_mm4 / 1000.0; target_pose4.position.y = y_mm4 / 1000.0; target_pose4.position.z = (z_mm4-76.7398-13.9+8.5) / 1000.0; bool suction_off_triggered = false; // 循环检查当前位姿 ros::Rate rate(10); // 10 Hz 检查频率 while (ros::ok()) { geometry_msgs::Pose current_pose = arm.getCurrentPose().pose; // ROS_INFO("ZUOBIAO_SHISHI: %f, %f, %f", current_pose.position.x, current_pose.position.y, current_pose.position.z); // 检查是否到达关闭吸盘的位置 if (!suction_off_triggered && is_at_pose(current_pose, target_pose4)) { ROS_INFO("Reached suction off position, trying to turn off suction."); sleep(0.8); writeSpeed(0); writeSpeed(0); writeSpeed(0); sleep(0.5); ROS_INFO("Suction off commands sent."); suction_off_triggered = true; } // 如果两个条件都满足,退出循环 if (suction_off_triggered) { break; } rate.sleep(); } } int main(int argc, char** argv) { // 初始化ROS节点 ros::init(argc, argv, "xarm_api"); ros::NodeHandle nh; XArmAPItest ic; nh.setParam("/xarm/wait_for_finish", true); ros::Publisher sleep_pub_ = nh.advertise<std_msgs::Float32>("/xarm/sleep_sec", 1); ros::ServiceClient motion_ctrl_client_ = nh.serviceClient<xarm_msgs::SetAxis>("/xarm/motion_ctrl"); ros::ServiceClient set_mode_client_ = nh.serviceClient<xarm_msgs::SetInt16>("/xarm/set_mode"); ros::ServiceClient set_state_client_ = nh.serviceClient<xarm_msgs::SetInt16>("/xarm/set_state"); ros::ServiceClient move_lineb_client_ = nh.serviceClient<xarm_msgs::Move>("/xarm/move_lineb"); xarm_msgs::SetAxis set_axis_srv_; xarm_msgs::SetInt16 set_int16_srv_; xarm_msgs::Move move_srv_; float x_mm0, y_mm0, z_mm0; double roll0, pitch0, yaw0; float x_mm1, y_mm1, z_mm1; double roll1, pitch1, yaw1; float x_mm2, y_mm2, z_mm2; double roll2, pitch2, yaw2; float x_mm3, y_mm3, z_mm3; double roll3, pitch3, yaw3; float x_mm4, y_mm4, z_mm4; double roll4, pitch4, yaw4; set_axis_srv_.request.id = 8; set_axis_srv_.request.data = 1; if(motion_ctrl_client_.call(set_axis_srv_)) { ROS_INFO("%s\n", set_axis_srv_.response.message.c_str()); } else { ROS_ERROR("Failed to call service motion_ctrl"); return 1; } set_int16_srv_.request.data = 0; if(set_mode_client_.call(set_int16_srv_)) { ROS_INFO("%s\n", set_int16_srv_.response.message.c_str()); } else { ROS_ERROR("Failed to call service set_mode"); return 1; } set_int16_srv_.request.data = 0; if(set_state_client_.call(set_int16_srv_)) { ROS_INFO("%s\n", set_int16_srv_.response.message.c_str()); } else { ROS_ERROR("Failed to call service set_state"); return 1; } nh.setParam("/xarm/wait_for_finish", false); std_msgs::Float32 sleep_msg; sleep_msg.data = 1.0; sleep_pub_.publish(sleep_msg); if(move_lineb_test(move_srv_, move_lineb_client_, x_mm0, y_mm0, z_mm0, roll0, pitch0, yaw0, x_mm1, y_mm1, z_mm1, roll1, pitch1, yaw1, x_mm2, y_mm2, z_mm2, roll2, pitch2, yaw2, x_mm3, y_mm3, z_mm3, roll3, pitch3, yaw3, x_mm4, y_mm4, z_mm4, roll4, pitch4, yaw4) == 1) return 1; // 调用 control_suction_during_move 函数 control_suction_during_move(x_mm4, y_mm4, z_mm4); sleep(0.8); nh.setParam("/xarm/wait_for_finish", true); while(ros::ok()) { ros::spinOnce(); } return 0; }解释一下

大家在看

recommend-type

FloodRouting:使用python进行洪水常规调度

洪水调洪常规调度计算方法 使用python语言进行洪水常规调度计算。 数据来自汉江某水库的计算值。
recommend-type

Industrial Society and Its Future.pdf

作者:Theodore Kaczyns 卡辛斯基 题名:Industrial Society and Its Future 《论工业社会及其未来》
recommend-type

C语言流程图生成工具

AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 它可以帮助程序员更好地理解程序 制作文档和可视化代码 支持C C++ VC++ Visual C++ NET Delphi Object Pascal 主要功能 根据源程序生成流程图 导出流程图到WORD文档中 展开 合拢流程图 自动生成一个 TreeView显示所有函数 过程 同步显示对应块的源程序和流程图 自定义流程图的配色方案 自定义流程图的大小和间距 根据格式自动排列程序 自由缩小 放大 移动流程图 显示程序行号 支持清除当前流程图 导出流程图到 bmp文件 发展前瞻 ① 支持各种语言 已经完成Pascal C 待完成:Java FoxPro Basic Fortan等; ② 支持反向操作 可以动态修改流程图 并可根据流程图生成相应的语言代码; ③ 结合Delphi专家 嵌入IDE直接运行 已经完成详见主页 操作说明 ① 打开一个或多个文件; ② 双击一个If For While Case Repeat Try begin的起始行 你就可以看到流程图; ③ 双击流程图中相应的框 可以同步显示程序块位置;">AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 [更多]
recommend-type

dhtmlxGantt_v4.0.0

甘特图(dhtmlxgantt)的资源文件,具体代码请访问https://blog.csdn.net/qq_27339781/article/details/79869584
recommend-type

数字图像处理 冈萨雷斯 第三版 课后答案绝对完整

数字图像处理 冈萨雷斯 第三版 课后答案绝对完整

最新推荐

recommend-type

(完整版)基因工程药物干扰素的制备.ppt

(完整版)基因工程药物干扰素的制备.ppt
recommend-type

建施-拓力泰-施工图.dwg

建施-拓力泰-施工图.dwg
recommend-type

(完整word版)基于STC89C52单片机的数字时钟设计.doc

(完整word版)基于STC89C52单片机的数字时钟设计.doc
recommend-type

no-client子项目的资源文件

包含 element-plus-2.4.2.css 文件,element-plus-2.4.2.js 文件和 vue-3.3.7.js 文件
recommend-type

(完整版)房建项目进度网络图.xls

(完整版)房建项目进度网络图.xls
recommend-type

Web2.0新特征图解解析

Web2.0是互联网发展的一个阶段,相对于早期的Web1.0时代,Web2.0具有以下显著特征和知识点: ### Web2.0的定义与特点 1. **用户参与内容生产**: - Web2.0的一个核心特征是用户不再是被动接收信息的消费者,而是成为了内容的生产者。这标志着“读写网络”的开始,用户可以在网络上发布信息、评论、博客、视频等内容。 2. **信息个性化定制**: - Web2.0时代,用户可以根据自己的喜好对信息进行个性化定制,例如通过RSS阅读器订阅感兴趣的新闻源,或者通过社交网络筛选自己感兴趣的话题和内容。 3. **网页技术的革新**: - 随着技术的发展,如Ajax、XML、JSON等技术的出现和应用,使得网页可以更加动态地与用户交互,无需重新加载整个页面即可更新数据,提高了用户体验。 4. **长尾效应**: - 在Web2.0时代,即使是小型或专业化的内容提供者也有机会通过互联网获得关注,这体现了长尾理论,即在网络环境下,非主流的小众产品也有机会与主流产品并存。 5. **社交网络的兴起**: - Web2.0推动了社交网络的发展,如Facebook、Twitter、微博等平台兴起,促进了信息的快速传播和人际交流方式的变革。 6. **开放性和互操作性**: - Web2.0时代倡导开放API(应用程序编程接口),允许不同的网络服务和应用间能够相互通信和共享数据,提高了网络的互操作性。 ### Web2.0的关键技术和应用 1. **博客(Blog)**: - 博客是Web2.0的代表之一,它支持用户以日记形式定期更新内容,并允许其他用户进行评论。 2. **维基(Wiki)**: - 维基是另一种形式的集体协作项目,如维基百科,任何用户都可以编辑网页内容,共同构建一个百科全书。 3. **社交网络服务(Social Networking Services)**: - 社交网络服务如Facebook、Twitter、LinkedIn等,促进了个人和组织之间的社交关系构建和信息分享。 4. **内容聚合器(RSS feeds)**: - RSS技术让用户可以通过阅读器软件快速浏览多个网站更新的内容摘要。 5. **标签(Tags)**: - 用户可以为自己的内容添加标签,便于其他用户搜索和组织信息。 6. **视频分享(Video Sharing)**: - 视频分享网站如YouTube,用户可以上传、分享和评论视频内容。 ### Web2.0与网络营销 1. **内容营销**: - Web2.0为内容营销提供了良好的平台,企业可以通过撰写博客文章、发布视频等内容吸引和维护用户。 2. **社交媒体营销**: - 社交网络的广泛使用,使得企业可以通过社交媒体进行品牌传播、产品推广和客户服务。 3. **口碑营销**: - 用户生成内容、评论和分享在Web2.0时代更易扩散,为口碑营销提供了土壤。 4. **搜索引擎优化(SEO)**: - 随着内容的多样化和个性化,SEO策略也必须适应Web2.0特点,注重社交信号和用户体验。 ### 总结 Web2.0是对互联网发展的一次深刻变革,它不仅仅是一个技术变革,更是人们使用互联网的习惯和方式的变革。Web2.0的时代特征与Web1.0相比,更加注重用户体验、社交互动和信息的个性化定制。这些变化为网络营销提供了新的思路和平台,也对企业的市场策略提出了新的要求。通过理解Web2.0的特点和应用,企业可以更好地适应互联网的发展趋势,实现与用户的深度互动和品牌的有效传播。
recommend-type

【C++编程新手必看】:一步步带你制作出风靡全球的“别踩白块儿”游戏

# 摘要 本文全面介绍C++编程在游戏开发中的应用,涵盖了从基础概念到具体实现的多个方面。首先,文章提供了游戏开发环境的搭建指南,包括编译器配置和开发工具的选择。随后,重点介绍了游戏主循环和基本框架的构建,强调了事件处理和渲染技术。在游戏逻辑和交互设计方面,本文阐述了界面布局、事件响应和游戏状态管理的核心实现。为了提升游戏体验,本文还探讨了添加音效和背景音乐以及开发高级游戏特性的方法。最后,文章介绍了性能优化和跨平台发布的过程,包括游戏的打包和针对不同平台的发布策略。本文旨在为C++游戏开发者提供一个实用的开发指南,帮助他们从零开始构建出性能优化、跨平台兼容的游戏。 # 关键字 C++编程;
recommend-type

使用scikit-learn训练模型来预测鸢尾花种类

<think>我们使用scikit-learn库来训练一个分类模型预测鸢尾花种类。鸢尾花数据集是scikit-learn内置的经典数据集,包含三种鸢尾花的四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和对应的类别标签。步骤:1.导入必要的库和数据集2.数据探索(可选,但建议了解数据)3.数据预处理(如划分训练集和测试集、标准化等)4.选择模型(例如KNN、随机森林等)5.训练模型6.模型评估7.使用模型进行预测下面以KNN(K近邻)算法为例,展示完整流程。</think>### 使用 scikit-learn 训练鸢尾花分类模型 以下是基于 scikit-learn 训练鸢尾花分类模型的
recommend-type

WWF工作流设计器C#源码解析及演示

### WWF工作流设计器控件C#源码知识点 #### 1. WWF(Windows Workflow Foundation)概述 WWF是微软公司推出的一个工作流框架,作为.NET Framework的一部分。它提供了一套丰富的API,用于设计、执行和管理工作流。工作流可以用于各种应用程序,包括Web应用、服务和桌面应用,使得开发者能够将复杂的业务逻辑以工作流的形式表现出来,简化业务流程自动化和管理。 #### 2. 工作流设计器控件(Workflow Designer Control) 工作流设计器控件是WWF中的一个组件,主要用于提供可视化设计工作流的能力。它允许用户通过拖放的方式在界面上添加、配置和连接工作流活动,从而构建出复杂的工作流应用。控件的使用大大降低了工作流设计的难度,并使得设计工作流变得直观和用户友好。 #### 3. C#源码分析 在提供的文件描述中提到了两个工程项目,它们均使用C#编写。下面分别对这两个工程进行介绍: - **WorkflowDesignerControl** - 该工程是工作流设计器控件的核心实现。它封装了设计工作流所需的用户界面和逻辑代码。开发者可以在自己的应用程序中嵌入这个控件,为最终用户提供一个设计工作流的界面。 - 重点分析:控件如何加载和显示不同的工作流活动、控件如何响应用户的交互、控件状态的保存和加载机制等。 - **WorkflowDesignerExample** - 这个工程是演示如何使用WorkflowDesignerControl的示例项目。它不仅展示了如何在用户界面中嵌入工作流设计器控件,还展示了如何处理用户的交互事件,比如如何在设计完工作流后进行保存、加载或执行等。 - 重点分析:实例程序如何响应工作流设计师的用户操作、示例程序中可能包含的事件处理逻辑、以及工作流的实例化和运行等。 #### 4. 使用Visual Studio 2008编译 文件描述中提到使用Visual Studio 2008进行编译通过。Visual Studio 2008是微软在2008年发布的集成开发环境,它支持.NET Framework 3.5,而WWF正是作为.NET 3.5的一部分。开发者需要使用Visual Studio 2008(或更新版本)来加载和编译这些代码,确保所有必要的项目引用、依赖和.NET 3.5的特性均得到支持。 #### 5. 关键技术点 - **工作流活动(Workflow Activities)**:WWF中的工作流由一系列的活动组成,每个活动代表了一个可以执行的工作单元。在工作流设计器控件中,需要能够显示和操作这些活动。 - **活动编辑(Activity Editing)**:能够编辑活动的属性是工作流设计器控件的重要功能,这对于构建复杂的工作流逻辑至关重要。 - **状态管理(State Management)**:工作流设计过程中可能涉及保存和加载状态,例如保存当前的工作流设计、加载已保存的工作流设计等。 - **事件处理(Event Handling)**:处理用户交互事件,例如拖放活动到设计面板、双击活动编辑属性等。 #### 6. 文件名称列表解释 - **WorkflowDesignerControl.sln**:解决方案文件,包含了WorkflowDesignerControl和WorkflowDesignerExample两个项目。 - **WorkflowDesignerControl.suo**:Visual Studio解决方案用户选项文件,该文件包含了开发者特有的个性化设置,比如窗口布局、断点位置等。 - **Thumbs.db**:缩略图缓存文件,由Windows自动生成,用于存储文件夹中的图片缩略图,与WWF工作流设计器控件功能无关。 - **WorkflowDesignerExample**:可能是一个文件夹,包含了示例工程相关的所有文件,或者是示例工程的可执行文件。 - **EULA.txt**:最终用户许可协议文本文件,通常说明了软件的版权和使用许可条件。 综上所述,该文件集包含了WWF工作流设计器控件的完整C#源码以及相应的Visual Studio项目文件,开发者可以利用这些资源深入理解WWF工作流设计器控件的工作机制,并将其应用于实际的项目开发中,实现工作流的设计和管理功能。
recommend-type

CAD数据在ANSA中:完美修复几何数据的策略与方法

# 摘要 CAD数据的准确性和几何完整性对于产品设计和工程分析至关重要。本文首先强调了CAD数据和几何修复的重要性,随后介绍了ANSA软件在处理CAD数据中的角色。通过详细的分析,本文探讨了几何数据的常见问题,以及有效的手动和自动修复技术。文中还提供了几何修复在实际应用中的案例分析,并讨论了行业未来对几何修复技术的需求和新兴技术趋势。文章旨在为CAD数据几何修复提供全面的理论知识、诊断方法和修复策略,并