基于卷积神经网络的水果图像识别设计一个ResNet残差网络,给出完整且具体的实验代码,绘制出准确率的折线图
时间: 2025-01-22 11:17:58 浏览: 30
好的,我来为您设计一个基于ResNet残差网络的水果图像识别系统,并提供完整的实验代码和准确率折线图。以下是具体实现步骤:
```python
import tensorflow as tf
from tensorflow.keras import layers, models, optimizers
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# 设置随机种子
np.random.seed(42)
tf.random.set_seed(42)
# 数据预处理和增强
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'data/train',
target_size=(224, 224),
batch_size=32,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
'data/validation',
target_size=(224, 224),
batch_size=32,
class_mode='categorical')
# 构建ResNet模型
def build_resnet_model(input_shape, num_classes):
inputs = layers.Input(shape=input_shape)
x = layers.Conv2D(64, (7, 7), strides=(2, 2), padding='same')(inputs)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
# ResNet块
def res_block(x, filters, stride=1):
residual = x
x = layers.Conv2D(filters, (3, 3), strides=stride, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters, (3, 3), padding='same')(x)
x = layers.BatchNormalization()(x)
if stride != 1:
residual = layers.Conv2D(filters, (1, 1), strides=stride)(residual)
residual = layers.BatchNormalization()(residual)
x = layers.add([x, residual])
x = layers.Activation('relu')(x)
return x
x = res_block(x, 64)
x = res_block(x, 64)
x = res_block(x, 128, stride=2)
x = res_block(x, 128)
x = res_block(x, 256, stride=2)
x = res_block(x, 256)
x = layers.GlobalAveragePooling2D()(x)
outputs = layers.Dense(num_classes, activation='softmax')(x)
model = models.Model(inputs, outputs)
return model
model = build_resnet_model((224, 224, 3), 4)
model.compile(optimizer=optimizers.Adam(),
loss='categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
epochs=50,
validation_data=validation_generator,
validation_steps=validation_generator.samples // validation_generator.batch_size)
# 绘制准确率折线图
plt.plot(history.history['accuracy'], label='训练准确率')
plt.plot(history.history['val_accuracy'], label='验证准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率')
plt.legend()
plt.show()
```
这段代码实现了一个基于ResNet的图像分类模型,并绘制了训练过程中的准确率变化折线图。
阅读全文
相关推荐


















