活动介绍

GPIO_InitStructure.GPIO_OType = GPIO_OType_PP

时间: 2025-05-08 08:12:33 浏览: 38
### STM32 GPIO_OType_PP (Push-Pull Configuration) 的用法 在 STM32 微控制器中,`GPIO_OType_PP` 表示推挽(push-pull)输出模式。这种配置通常用于驱动外部负载,比如 LED 或继电器等设备。以下是关于 `GPIO_OType_PP` 的具体说明以及如何配置它的方法。 #### 推挽输出的工作原理 当 GPIO 被设置为推挽输出模式时,它可以通过内部上拉和下拉晶体管来控制信号的状态。在这种模式下,输出可以切换到高电平或低电平状态,并且能够提供较强的电流驱动能力[^1]。 #### 配置步骤概述 为了实现推挽输出功能,在初始化阶段需要完成以下几个方面的配置: - **端口模式** (`GPIOMode_TypeDef`):选择通用推挽输出模式。 - **速度选项** (`GPIOSpeed_TypeDef`):设定引脚的操作频率范围。 - **输出类型** (`GPIOOType_TypeDef`):指定为推挽型输出。 - **上下拉电阻** (`GPIOPuPd_TypeDef`):可选无上下拉、仅上拉或者仅下拉。 下面是一个具体的代码实例展示如何通过标准外设库来进行上述各项参数的初始化过程。 ```c #include "stm32f30x_gpio.h" void GPIO_Init_PUSH_PULL(void){ GPIO_InitTypeDef GPIO_InitStruct; // 启用 GPIOA 时钟 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE); // 配置 PA5 引脚作为推挽输出 GPIO_InitStruct.GPIO_Pin = GPIO_Pin_5; // 定义使用的针脚编号 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT; // 设定操作模式为输出 GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; // 设置最大传输速率至 50 MHz GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; // 使用 Push Pull 输出形式 GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; // 不启用任何内置阻抗匹配网络 GPIO_Init(GPIOA, &GPIO_InitStruct); // 应用这些设定给目标硬件资源 } ``` 此段程序片段展示了怎样针对特定 I/O 线路执行基础属性调整以便于后续应用开发需求所准备好了环境条件下的实际运用情况介绍完毕之后我们再来看几个值得注意的地方: - 上述例子中的 `RCC_AHBPeriphClockCmd()` 函数是用来开启对应外设模块电源供应之前必须先激活其关联总线上的同步逻辑电路部分才能正常运作起来; - 对应不同型号系列之间可能存在细微差异因此务必参照官方文档资料确认细节信息准确性. 最后提醒一下开发者们应该始终遵循良好编程习惯即每次修改寄存器前都应该仔细阅读数据手册并理解每一步动作背后的意义这样才能写出更加稳健可靠的嵌入式应用程序!
阅读全文

相关推荐

为什么一把tim中断给注销掉,该程序的oled屏就可以亮了,我想知道ADC,TIM,DMA在下面这个buck电路中起着什么样的作用,而且为什么这个程序达不到稳压的作用,还有oled屏上的实际电压是F4板子上那个引脚的,它应该显示多少伏#include “stm32f4xx.h” #include “delay.h” #include “oled.h” #include “stdio.h” #include “stdlib.h” #include “arm_math.h” #include “pid.h” #include “./adc/bsp_adc.h” #include “tim.h” extern float voltage1, voltage2, voltage3; extern float Vout_actual; float Target= 12; // 目标输出电压12 float a; //extern __IO uint16_t ADC_ConvertedValue; extern uint16_t TIM_Advance_Impulse; volatile uint32_t sys_tick = 0; // 全局计时器变量 extern float pid_out; extern uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; #define FILTER_SAMPLES 5 float voltage_buffer[FILTER_SAMPLES] = {0}; uint8_t buffer_index = 0; // 修改ADC读取函数 void ADC_Read(void) { // 原始读取 voltage1 = (float)ADC_ConvertedValue[0] * 0.000244140625 * 3.3; // 移动平均滤波 voltage_buffer[buffer_index] = voltage1; buffer_index = (buffer_index + 1) % FILTER_SAMPLES; float sum = 0; for (int i = 0; i < FILTER_SAMPLES; i++) { sum += voltage_buffer[i]; } Vout_actual = sum / FILTER_SAMPLES; } int main(void) { #define MAX_VOLTAGE 13.0f // 最大允许电压 // 在主循环中添加 if (Vout_actual > MAX_VOLTAGE) { // 触发保护:关闭PWM输出 TIM_CtrlPWMOutputs(TIM1, DISABLE); OLED_ShowString(0, 3, (u8*)"OVER VOLTAGE!", 16); while(1); // 死循环保护 } // 1. 初始化SysTick if(SysTick_Config(SystemCoreClock / 1000)) { // 错误处理 while(1); } // 3. 初始化外设 OLED_Init(); delay_ms(500); // 确保OLED完全启动 Adc_Init(); TIM_Init(); // TIM1中断已禁用 uint32_t last_pid_time = 0; const uint32_t pid_interval = 10; // PID计算间隔(ms) char str[40]; // 添加滤波初始化 for (int i = 0; i < FILTER_SAMPLES; i++) { voltage_buffer[i] = 0; } while(1) { ADC_Read(); // 读取并滤波ADC值 // 每10ms执行一次PID计算 if (sys_tick - last_pid_time >= pid_interval) { last_pid_time = sys_tick; pid_out = pid_control(2.0, 0.1, 0.01, Target, Vout_actual); TIM1->CCR1 = (uint16_t)(pid_out * 8.4); // 8400/100=84 → 8.4 // 显示PID输出 sprintf(str, "PID Out: %.1f%%", pid_out); OLED_ShowString(0, 2, (u8*)str, 12); } // 显示实际电压 sprintf(str, "Vout: %.2fV", Vout_actual); OLED_ShowString(0, 1, (u8*)str, 12); OLED_Refresh_Gram(); delay_ms(1); } } #include “stm32f4xx_it.h” #include “oled.h” #include <math.h> #include “./adc/bsp_adc.h” #include “pid.h” extern uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; extern float voltage1; uint16_t TIM_Advance_Impulse ;//高级定时器占空比 extern float Vout_actual; float Vout_set; // 目标输出电压 float pid_out; extern volatile uint32_t sys_tick; extern float pid_out; volatile uint32_t tim1_update_count = 0; #define PID_CALC_INTERVAL 20 // 每20次中断(即1ms,如果中断频率20kHz)计算一次 void TIM1_UP_IRQHandler(void) { if(TIM_GetITStatus(TIM1,TIM_IT_Update) == SET) { tim1_update_count++; if (tim1_update_count >= PID_CALC_INTERVAL) { tim1_update_count = 0; // // 读取全局变量Vout_actual,由主循环更新 // pid_out = pid_control (5 , 0.25, 0 ,Vout_set ,Vout_actual); // TIM1->CCR1 = pid_out; } TIM_ClearITPendingBit(TIM1, TIM_IT_Update); } } void DMA2_Stream0_IRQHandler(void) { if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0) != RESET) { DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); } } void NMI_Handler(void) { } void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs / while (1) {} } void BusFault_Handler(void) { / Go to infinite loop when Bus Fault exception occurs / while (1) {} } void UsageFault_Handler(void) { / Go to infinite loop when Usage Fault exception occurs */ while (1) {} } void DebugMon_Handler(void) { } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { sys_tick++; // 每毫秒增加1 } #include “delay.h” #include “core_cm4.h” #include “misc.h” // couter 减1的时间 等于 1/systick_clk // 当counter 从 reload 的值减小到0的时候,为一个循环,如果开启了中断则执行中断服务程序, // 同时 CTRL 的 countflag 位会置1 // 这一个循环的时间为 reload * (1/systick_clk) void delay_us( __IO uint32_t us) { uint32_t i; SysTick_Config(SystemCoreClock/1000000); for(i=0;i<us;i++) { // 当计数器的值减小到0的时候,CRTL寄存器的位16会置1 while( !((SysTick->CTRL)&(1<<16)) ); } // 关闭SysTick定时器 SysTick->CTRL &=~SysTick_CTRL_ENABLE_Msk; } void delay_ms( __IO uint32_t ms) { uint32_t i; SysTick_Config(SystemCoreClock/1000); for(i=0;i<ms;i++) { // 当计数器的值减小到0的时候,CRTL寄存器的位16会置1 // 当置1时,读取该位会清0 while( !((SysTick->CTRL)&(1<<16)) ); } // 关闭SysTick定时器 SysTick->CTRL &=~ SysTick_CTRL_ENABLE_Msk; } /***********************END OF FILE/ #include “oled.h” #include “oledfont.h” #include “delay.h” //OLED的显存 //存放格式如下. //[0]0 1 2 3 … 127 //[1]0 1 2 3 … 127 //[2]0 1 2 3 … 127 //[3]0 1 2 3 … 127 //[4]0 1 2 3 … 127 //[5]0 1 2 3 … 127 //[6]0 1 2 3 … 127 //[7]0 1 2 3 … 127 u8 OLED_GRAM[128][8]; #if OLED_MODE==0 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; OLED_DC=cmd; OLED_CS=0; for(i=0;i<8;i++) { OLED_SCL=0; if(dat&0x80) OLED_SDA=1; else OLED_SDA=0; OLED_SCL=1; dat<<=1; } OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==1 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { OLED_DATA_OUT(dat); OLED_RST=cmd; OLED_CS=0; OLED_WR=0; OLED_WR=1; OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==2 void OLED_WR_Byte(u8 dat,u8 cmd) { } #endif //更新显存到LCD void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } void OLED_Set_Pos(unsigned char x, unsigned char y) { OLED_WR_Byte(0xb0+y,OLED_CMD); OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD); OLED_WR_Byte((x&0x0f)|0x01,OLED_CMD); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!! void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++) { for(n=0;n<128;n++) { OLED_GRAM[n][i]=0; } } OLED_Refresh_Gram();//更新显示 } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//超出范围了. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2) { u16 t; int xerr=0,yerr=0,delta_x,delta_y,distance; int incx,incy,uRow,uCol; delta_x=x2-x1; //计算坐标增量 delta_y=y2-y1; uRow=x1; uCol=y1; if(delta_x>0)incx=1; //设置单步方向 else if(delta_x==0)incx=0;//垂直线 else {incx=-1;delta_x=-delta_x;} if(delta_y>0)incy=1; else if(delta_y==0)incy=0;//水平线 else{incy=-1;delta_y=-delta_y;} if( delta_x>delta_y)distance=delta_x; //选取基本增量坐标轴 else distance=delta_y; for(t=0;t<=distance+1;t++ )//画线输出 { OLED_DrawPoint(uRow,uCol,1);//画点 xerr+=delta_x ; yerr+=delta_y ; if(xerr>distance) { xerr-=distance; uRow+=incx; } if(yerr>distance) { yerr-=distance; uCol+=incy; } } } void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2) { OLED_DrawLine(x1,y1,x2,y1); OLED_DrawLine(x1,y1,x1,y2); OLED_DrawLine(x1,y2,x2,y2); OLED_DrawLine(x2,y1,x2,y2); } //x1,y1,x2,y2 填充区域的对角坐标 //确保x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63 //dot:0,清空;1,填充 void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot) { u8 x,y; for(x=x1;x<=x2;x++) { for(y=y1;y<=y2;y++) { OLED_DrawPoint(x,y,dot); } } OLED_Refresh_Gram();//更新显示 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 12/16/24 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0)) * (size/2); //得到字体一个字符对应点阵集所占的字节数 chr=chr-’ ';//得到偏移后的值 for(t=0;t<csize;t++) { if(size12)temp=ascii_1206[chr][t]; //调用1206字体 else if(size16)temp=ascii_1608[chr][t]; //调用1608字体 else if(size==24)temp=ascii_2412[chr][t]; //调用2412字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n函数 u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n–)result*=m; return result; } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //num:数值(0~4294967295); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow0&&t<(len-1)) { if(temp0) { OLED_ShowChar(x+(size/2)*t,y,’ ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); } } //显示字符串 //x,y:起点坐标 //size:字体大小 //*p:字符串起始地址 void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size) { while((*p<=‘~’)&&(*p>=’ '))//判断是不是非法字符! { if(x>(128-(size/2))){x=0;y+=size;} if(y>(64-size)){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,size,1); x+=size/2; p++; } } //显示汉字 //x,y:起点坐标 //pos:数组位置汉字显示 //size:字体大小 //mode:0,反白显示;1,正常显示 void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0))*(size);//得到字体一个字符对应点阵集所占的字节数 if(size!=12&&size!=16&&size!=24&&size!=32)return; //不支持的size for(t=0;t<csize;t++) { if(size==12)temp=FontHzk_12[pos][t]; //调用1206字体 else if(size==16)temp=FontHzk_16[pos][t]; //调用1608字体 else if(size==24)temp=FontHzk_24[pos][t]; //调用2412字体 else if(size==32)temp=FontHzk_32[pos][t]; //调用3216字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //显示BMP图片128×64 //起始点坐标(x,y),x的范围0~127,y为页的范围0~7 void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]) { u16 j=0; u8 x,y; if(y1%8==0)y=y1/8; else y=y1/8+1; for(y=y0;y<y1;y++) { OLED_Set_Pos(x0,y); for(x=x0;x<x1;x++) { OLED_WR_Byte(BMP[j++],OLED_DATA); } } } //GND 接电源地 //VCC 接5V或3.3v电源 //D0 接PD6(SCL) //D1 接PD7(SDA) //RES 接PD4 //DC 接PD5 //CS 接PD3 void OLED_Init() { GPIO_InitTypeDef GPIO_InitStructure; #if OLED_MODE==0 //4线SPI模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOC|RCC_AHB1Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_6;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOE,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOE,GPIO_Pin_2|GPIO_Pin_6); //拉高电平 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOC,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13); //拉高电平 OLED_Clear(); #endif #if OLED_MODE==1 //8080模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOC,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOD,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOD,GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); GPIO_InitStructure.GPIO_Pin = 0XFF; //PC0-7 GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_SetBits(GPIOC,0xFF); //PC0-7输出高 #endif #if OLED_MODE==2 //IIC模式 #endif OLED_RST=1; delay_ms(100); OLED_RST=0; delay_ms(100); OLED_RST=1; OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示 OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率 OLED_WR_Byte(80,OLED_CMD); //[3:0],分频因子;[7:4],震荡频率 OLED_WR_Byte(0xA8,OLED_CMD); //设置驱动路数 OLED_WR_Byte(0X3F,OLED_CMD); //默认0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //设置显示偏移 OLED_WR_Byte(0X00,OLED_CMD); //默认为0 OLED_WR_Byte(0x40,OLED_CMD); //设置显示开始行 [5:0],行数. OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置 OLED_WR_Byte(0x14,OLED_CMD); //bit2,开启/关闭 OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式 OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10; OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 OLED_WR_Byte(0xDA,OLED_CMD); //设置COM硬件引脚配置 OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置 OLED_WR_Byte(0x81,OLED_CMD); //对比度设置 OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认0X7F (亮度设置,越大越亮) OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期 OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //设置VCOMH 电压倍率 OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏) OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示 OLED_WR_Byte(0xAF,OLED_CMD); //开启显示 OLED_Clear(); } #include “oled.h” #include “oledfont.h” #include “delay.h” //OLED的显存 //存放格式如下. //[0]0 1 2 3 … 127 //[1]0 1 2 3 … 127 //[2]0 1 2 3 … 127 //[3]0 1 2 3 … 127 //[4]0 1 2 3 … 127 //[5]0 1 2 3 … 127 //[6]0 1 2 3 … 127 //[7]0 1 2 3 … 127 u8 OLED_GRAM[128][8]; #if OLED_MODE==0 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; OLED_DC=cmd; OLED_CS=0; for(i=0;i<8;i++) { OLED_SCL=0; if(dat&0x80) OLED_SDA=1; else OLED_SDA=0; OLED_SCL=1; dat<<=1; } OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==1 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { OLED_DATA_OUT(dat); OLED_RST=cmd; OLED_CS=0; OLED_WR=0; OLED_WR=1; OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==2 void OLED_WR_Byte(u8 dat,u8 cmd) { } #endif //更新显存到LCD void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } void OLED_Set_Pos(unsigned char x, unsigned char y) { OLED_WR_Byte(0xb0+y,OLED_CMD); OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD); OLED_WR_Byte((x&0x0f)|0x01,OLED_CMD); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!! void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++) { for(n=0;n<128;n++) { OLED_GRAM[n][i]=0; } } OLED_Refresh_Gram();//更新显示 } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//超出范围了. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2) { u16 t; int xerr=0,yerr=0,delta_x,delta_y,distance; int incx,incy,uRow,uCol; delta_x=x2-x1; //计算坐标增量 delta_y=y2-y1; uRow=x1; uCol=y1; if(delta_x>0)incx=1; //设置单步方向 else if(delta_x==0)incx=0;//垂直线 else {incx=-1;delta_x=-delta_x;} if(delta_y>0)incy=1; else if(delta_y==0)incy=0;//水平线 else{incy=-1;delta_y=-delta_y;} if( delta_x>delta_y)distance=delta_x; //选取基本增量坐标轴 else distance=delta_y; for(t=0;t<=distance+1;t++ )//画线输出 { OLED_DrawPoint(uRow,uCol,1);//画点 xerr+=delta_x ; yerr+=delta_y ; if(xerr>distance) { xerr-=distance; uRow+=incx; } if(yerr>distance) { yerr-=distance; uCol+=incy; } } } void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2) { OLED_DrawLine(x1,y1,x2,y1); OLED_DrawLine(x1,y1,x1,y2); OLED_DrawLine(x1,y2,x2,y2); OLED_DrawLine(x2,y1,x2,y2); } //x1,y1,x2,y2 填充区域的对角坐标 //确保x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63 //dot:0,清空;1,填充 void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot) { u8 x,y; for(x=x1;x<=x2;x++) { for(y=y1;y<=y2;y++) { OLED_DrawPoint(x,y,dot); } } OLED_Refresh_Gram();//更新显示 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 12/16/24 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0)) * (size/2); //得到字体一个字符对应点阵集所占的字节数 chr=chr-’ ';//得到偏移后的值 for(t=0;t<csize;t++) { if(size12)temp=ascii_1206[chr][t]; //调用1206字体 else if(size16)temp=ascii_1608[chr][t]; //调用1608字体 else if(size==24)temp=ascii_2412[chr][t]; //调用2412字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n函数 u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n–)result*=m; return result; } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //num:数值(0~4294967295); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow0&&t<(len-1)) { if(temp0) { OLED_ShowChar(x+(size/2)*t,y,’ ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); } } //显示字符串 //x,y:起点坐标 //size:字体大小 //*p:字符串起始地址 void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size) { while((*p<=‘~’)&&(*p>=’ '))//判断是不是非法字符! { if(x>(128-(size/2))){x=0;y+=size;} if(y>(64-size)){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,size,1); x+=size/2; p++; } } //显示汉字 //x,y:起点坐标 //pos:数组位置汉字显示 //size:字体大小 //mode:0,反白显示;1,正常显示 void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0))*(size);//得到字体一个字符对应点阵集所占的字节数 if(size!=12&&size!=16&&size!=24&&size!=32)return; //不支持的size for(t=0;t<csize;t++) { if(size==12)temp=FontHzk_12[pos][t]; //调用1206字体 else if(size==16)temp=FontHzk_16[pos][t]; //调用1608字体 else if(size==24)temp=FontHzk_24[pos][t]; //调用2412字体 else if(size==32)temp=FontHzk_32[pos][t]; //调用3216字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //显示BMP图片128×64 //起始点坐标(x,y),x的范围0~127,y为页的范围0~7 void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]) { u16 j=0; u8 x,y; if(y1%8==0)y=y1/8; else y=y1/8+1; for(y=y0;y<y1;y++) { OLED_Set_Pos(x0,y); for(x=x0;x<x1;x++) { OLED_WR_Byte(BMP[j++],OLED_DATA); } } } //GND 接电源地 //VCC 接5V或3.3v电源 //D0 接PD6(SCL) //D1 接PD7(SDA) //RES 接PD4 //DC 接PD5 //CS 接PD3 void OLED_Init() { GPIO_InitTypeDef GPIO_InitStructure; #if OLED_MODE==0 //4线SPI模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOC|RCC_AHB1Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_6;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOE,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOE,GPIO_Pin_2|GPIO_Pin_6); //拉高电平 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOC,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13); //拉高电平 OLED_Clear(); #endif #if OLED_MODE==1 //8080模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOC,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOD,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOD,GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); GPIO_InitStructure.GPIO_Pin = 0XFF; //PC0-7 GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_SetBits(GPIOC,0xFF); //PC0-7输出高 #endif #if OLED_MODE==2 //IIC模式 #endif OLED_RST=1; delay_ms(100); OLED_RST=0; delay_ms(100); OLED_RST=1; OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示 OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率 OLED_WR_Byte(80,OLED_CMD); //[3:0],分频因子;[7:4],震荡频率 OLED_WR_Byte(0xA8,OLED_CMD); //设置驱动路数 OLED_WR_Byte(0X3F,OLED_CMD); //默认0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //设置显示偏移 OLED_WR_Byte(0X00,OLED_CMD); //默认为0 OLED_WR_Byte(0x40,OLED_CMD); //设置显示开始行 [5:0],行数. OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置 OLED_WR_Byte(0x14,OLED_CMD); //bit2,开启/关闭 OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式 OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10; OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 OLED_WR_Byte(0xDA,OLED_CMD); //设置COM硬件引脚配置 OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置 OLED_WR_Byte(0x81,OLED_CMD); //对比度设置 OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认0X7F (亮度设置,越大越亮) OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期 OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //设置VCOMH 电压倍率 OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏) OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示 OLED_WR_Byte(0xAF,OLED_CMD); //开启显示 OLED_Clear(); } #include “tim.h” uint16_t TIM1_Impluse = 4200;//预设占空比 float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /-----------------------------PA8,PA7------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ /-----------------------------PA9,PB14------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ /-----------------------------PA10,PB1------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ // TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; //模拟模式 pa6死刹 // TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6; //引脚 // TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 // TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 // TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; //浮空 // GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 } //TIM1 static void TIM_A1_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /-----------------------------基本结构体------------------------------------/ TIM_TimeBaseInitStructure.TIM_Period = (840-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(10-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /-----------------------------基本结构体------------------------------------/ /-----------------------------输出比较------------------------------------/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /-----------------------------输出比较------------------------------------/ /-----------------------------死区刹车------------------------------------/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 20; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /-----------------------------死区刹车------------------------------------/ // TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_A1_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /-----------------------------中断------------------------------------/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=14; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /-----------------------------中断------------------------------------/ } void TIM_Init(void) { TIM_A1_NVIC_Config(); TIM_GPIO_Config(); TIM_A1_Mode_Config(); } #include “./adc/bsp_adc.h” __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]={0}; float voltage1=0, voltage2=0, voltage3=0; float Vout_actual; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /=通道1==/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); /*=====================通道2======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK2,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT2, &GPIO_InitStructure); /*=====================通道3=======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK3,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT3, &GPIO_InitStructure); } static void ADC_Mode_Config(void) { DMA_InitTypeDef DMA_InitStructure; ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // ------------------DMA Init 结构体参数 初始化-------------------------- // ADC1使用DMA2,数据流0,通道0,这个是手册固定死的 // 开启DMA时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 外设基址为:ADC 数据寄存器地址 DMA_InitStructure.DMA_PeripheralBaseAddr = RHEOSTAT_ADC_DR_ADDR; // 存储器地址,实际上就是一个内部SRAM的变量 DMA_InitStructure.DMA_Memory0BaseAddr = (u32)ADC_ConvertedValue; // 数据传输方向为外设到存储器 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 缓冲区大小为,指一次传输的数据量 DMA_InitStructure.DMA_BufferSize = RHEOSTAT_NOFCHANEL; // 外设寄存器只有一个,地址不用递增 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 存储器地址固定 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // // 外设数据大小为半字,即两个字节 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 存储器数据大小也为半字,跟外设数据大小相同 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 循环传输模式 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // DMA 传输通道优先级为高,当使用一个DMA通道时,优先级设置不影响 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 禁止DMA FIFO ,使用直连模式 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // FIFO 大小,FIFO模式禁止时,这个不用配置 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 选择 DMA 通道,通道存在于流中 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; //初始化DMA流,流相当于一个大的管道,管道里面有很多通道 DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 使能DMA传输完成中断 DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC, ENABLE); // 使能DMA流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); // 开启ADC时钟 RCC_APB2PeriphClockCmd(ADC_CLK , ENABLE); // -------------------ADC Common 结构体 参数 初始化------------------------ // 独立ADC模式 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 时钟为fpclk x分频 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // 禁止DMA直接访问模式 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; // 采样时间间隔 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_20Cycles; ADC_CommonInit(&ADC_CommonInitStructure); // -------------------ADC Init 结构体 参数 初始化-------------------------- ADC_StructInit(&ADC_InitStructure); // ADC 分辨率 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 扫描模式,多通道采集需要 ADC_InitStructure.ADC_ScanConvMode = ENABLE; // 连续转换 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //禁止外部边沿触发 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; //外部触发通道,本例子使用软件触发,此值随便赋值即可 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; //数据右对齐 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //转换通道 1个 ADC_InitStructure.ADC_NbrOfConversion = RHEOSTAT_NOFCHANEL; ADC_Init(ADC_, &ADC_InitStructure); //--------------------------------------------------------------------------- // 配置 ADC 通道转换顺序和采样时间周期 ADC_RegularChannelConfig(ADC_, ADC_CHANNEL1, 1, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL2, 2, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL3, 3, ADC_SampleTime_15Cycles); // 使能DMA请求 after last transfer (Single-ADC mode) ADC_DMARequestAfterLastTransferCmd(ADC_, ENABLE); // 使能ADC DMA ADC_DMACmd(ADC_, ENABLE); // 使能ADC ADC_Cmd(ADC_, ENABLE); //开始adc转换,软件触发 ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //配置DMA NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority =6; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void Adc_Init(void) { ADC_GPIO_Config(); ADC_Mode_Config(); ADC_NVIC_Config(); } #ifndef __BSP_ADC_H #define __BSP_ADC_H #include “stm32f4xx.h” #define RHEOSTAT_NOFCHANEL 3 /=通道1 IO==/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOE #define ADC_GPIO_PIN1 GPIO_Pin_5 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOE #define ADC_CHANNEL1 ADC_Channel_15 /=====================通道2 IO ======================/ // ADC IO宏定义 #define ADC_GPIO_PORT2 GPIOA #define ADC_GPIO_PIN2 GPIO_Pin_2 #define ADC_GPIO_CLK2 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL2 ADC_Channel_2 /=====================通道3 IO ======================/ // ADC IO宏定义 #define ADC_GPIO_PORT3 GPIOA #define ADC_GPIO_PIN3 GPIO_Pin_3 #define ADC_GPIO_CLK3 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL3 ADC_Channel_3 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); void ADC_Read(void); #endif /* __BSP_ADC_H */ #include “pid.h” float kp, ki, kd; // PID参数 float last_error = 0,last_error_2 = 0 , last_output, setpoint, input, output; // 修改pid.c #define MAX_INTEGRAL 20.0f // 积分限幅 float pid_control(float KP, float KI, float KD, float Set_Point, float Now_Point) { static float integral = 0; float error = Set_Point - Now_Point; // 积分项限幅 integral += error; if (integral > MAX_INTEGRAL) integral = MAX_INTEGRAL; if (integral < -MAX_INTEGRAL) integral = -MAX_INTEGRAL; float output = KP * error + KI * integral + KD * (error - last_error); last_error = error; // 输出限幅 (0-100%) if (output > 100.0f) output = 100.0f; if (output < 0.0f) output = 0.0f; return output; } #ifndef __BSP_ADC_H #define __BSP_ADC_H #include "stm32f4xx.h" #define RHEOSTAT_NOFCHANEL 3 /*=====================通道1 IO======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOE #define ADC_GPIO_PIN1 GPIO_Pin_5 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOE #define ADC_CHANNEL1 ADC_Channel_15 /*=====================通道2 IO ======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT2 GPIOA #define ADC_GPIO_PIN2 GPIO_Pin_2 #define ADC_GPIO_CLK2 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL2 ADC_Channel_2 /*=====================通道3 IO ======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT3 GPIOA #define ADC_GPIO_PIN3 GPIO_Pin_3 #define ADC_GPIO_CLK3 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL3 ADC_Channel_3 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); void ADC_Read(void); #endif /* __BSP_ADC_H */

为什么一把tim中断给注销掉,该程序的oled屏就可以亮了,我的意思是之前的程序里是有tim中断的时候,oled屏怎么都不亮,而当我只把TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); 这串代码给注释掉时,oled就能亮显示了,这是为什么,所以我才我想知道ADC,TIM,DMA在下面这个buck电路中起着什么样的作用而且该代码能不能更有秩序一点,main函数里有点太乱了,而且为什么这个程序达不到稳压的作用,还有oled屏上的实际电压是F4板子上那个引脚的,它应该显示多少伏#include “stm32f4xx.h” #include “delay.h” #include “oled.h” #include “stdio.h” #include “stdlib.h” #include “arm_math.h” #include “pid.h” #include “./adc/bsp_adc.h” #include “tim.h” extern float voltage1, voltage2, voltage3; extern float Vout_actual; float Target= 12; // 目标输出电压12 float a; //extern __IO uint16_t ADC_ConvertedValue; extern uint16_t TIM_Advance_Impulse; volatile uint32_t sys_tick = 0; // 全局计时器变量 extern float pid_out; extern uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; #define FILTER_SAMPLES 5 float voltage_buffer[FILTER_SAMPLES] = {0}; uint8_t buffer_index = 0; // 修改ADC读取函数 void ADC_Read(void) { // 原始读取 voltage1 = (float)ADC_ConvertedValue[0] * 0.000244140625 * 3.3; // 移动平均滤波 voltage_buffer[buffer_index] = voltage1; buffer_index = (buffer_index + 1) % FILTER_SAMPLES; float sum = 0; for (int i = 0; i < FILTER_SAMPLES; i++) { sum += voltage_buffer[i]; } Vout_actual = sum / FILTER_SAMPLES; } int main(void) { #define MAX_VOLTAGE 13.0f // 最大允许电压 // 在主循环中添加 if (Vout_actual > MAX_VOLTAGE) { // 触发保护:关闭PWM输出 TIM_CtrlPWMOutputs(TIM1, DISABLE); OLED_ShowString(0, 3, (u8*)“OVER VOLTAGE!”, 16); while(1); // 死循环保护 } // 1. 初始化SysTick if(SysTick_Config(SystemCoreClock / 1000)) { // 错误处理 while(1); } // 3. 初始化外设 OLED_Init(); delay_ms(500); // 确保OLED完全启动 Adc_Init(); TIM_Init(); // TIM1中断已禁用 uint32_t last_pid_time = 0; const uint32_t pid_interval = 10; // PID计算间隔(ms) char str[40]; // 添加滤波初始化 for (int i = 0; i < FILTER_SAMPLES; i++) { voltage_buffer[i] = 0; } while(1) { ADC_Read(); // 读取并滤波ADC值 // 每10ms执行一次PID计算 if (sys_tick - last_pid_time >= pid_interval) { last_pid_time = sys_tick; pid_out = pid_control(2.0, 0.1, 0.01, Target, Vout_actual); TIM1->CCR1 = (uint16_t)(pid_out * 8.4); // 8400/100=84 → 8.4 // 显示PID输出 sprintf(str, “PID Out: %.1f%%”, pid_out); OLED_ShowString(0, 2, (u8*)str, 12); } // 显示实际电压 sprintf(str, “Vout: %.2fV”, Vout_actual); OLED_ShowString(0, 1, (u8*)str, 12); OLED_Refresh_Gram(); delay_ms(1); } } #include “stm32f4xx_it.h” #include “oled.h” #include <math.h> #include “./adc/bsp_adc.h” #include “pid.h” extern uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; extern float voltage1; uint16_t TIM_Advance_Impulse ;//高级定时器占空比 extern float Vout_actual; float Vout_set; // 目标输出电压 float pid_out; extern volatile uint32_t sys_tick; extern float pid_out; volatile uint32_t tim1_update_count = 0; #define PID_CALC_INTERVAL 20 // 每20次中断(即1ms,如果中断频率20kHz)计算一次 void TIM1_UP_IRQHandler(void) { if(TIM_GetITStatus(TIM1,TIM_IT_Update) == SET) { tim1_update_count++; if (tim1_update_count >= PID_CALC_INTERVAL) { tim1_update_count = 0; // // 读取全局变量Vout_actual,由主循环更新 // pid_out = pid_control (5 , 0.25, 0 ,Vout_set ,Vout_actual); // TIM1->CCR1 = pid_out; } TIM_ClearITPendingBit(TIM1, TIM_IT_Update); } } void DMA2_Stream0_IRQHandler(void) { if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0) != RESET) { DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); } } void NMI_Handler(void) { } void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs / while (1) {} } void BusFault_Handler(void) { / Go to infinite loop when Bus Fault exception occurs / while (1) {} } void UsageFault_Handler(void) { / Go to infinite loop when Usage Fault exception occurs */ while (1) {} } void DebugMon_Handler(void) { } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { sys_tick++; // 每毫秒增加1 } #include “delay.h” #include “core_cm4.h” #include “misc.h” // couter 减1的时间 等于 1/systick_clk // 当counter 从 reload 的值减小到0的时候,为一个循环,如果开启了中断则执行中断服务程序, // 同时 CTRL 的 countflag 位会置1 // 这一个循环的时间为 reload * (1/systick_clk) void delay_us( __IO uint32_t us) { uint32_t i; SysTick_Config(SystemCoreClock/1000000); for(i=0;i<us;i++) { // 当计数器的值减小到0的时候,CRTL寄存器的位16会置1 while( !((SysTick->CTRL)&(1<<16)) ); } // 关闭SysTick定时器 SysTick->CTRL &=~SysTick_CTRL_ENABLE_Msk; } void delay_ms( __IO uint32_t ms) { uint32_t i; SysTick_Config(SystemCoreClock/1000); for(i=0;i<ms;i++) { // 当计数器的值减小到0的时候,CRTL寄存器的位16会置1 // 当置1时,读取该位会清0 while( !((SysTick->CTRL)&(1<<16)) ); } // 关闭SysTick定时器 SysTick->CTRL &=~ SysTick_CTRL_ENABLE_Msk; } /***********************END OF FILE/ #include “oled.h” #include “oledfont.h” #include “delay.h” //OLED的显存 //存放格式如下. //[0]0 1 2 3 … 127 //[1]0 1 2 3 … 127 //[2]0 1 2 3 … 127 //[3]0 1 2 3 … 127 //[4]0 1 2 3 … 127 //[5]0 1 2 3 … 127 //[6]0 1 2 3 … 127 //[7]0 1 2 3 … 127 u8 OLED_GRAM[128][8]; #if OLED_MODE==0 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; OLED_DC=cmd; OLED_CS=0; for(i=0;i<8;i++) { OLED_SCL=0; if(dat&0x80) OLED_SDA=1; else OLED_SDA=0; OLED_SCL=1; dat<<=1; } OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==1 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { OLED_DATA_OUT(dat); OLED_RST=cmd; OLED_CS=0; OLED_WR=0; OLED_WR=1; OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==2 void OLED_WR_Byte(u8 dat,u8 cmd) { } #endif //更新显存到LCD void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } void OLED_Set_Pos(unsigned char x, unsigned char y) { OLED_WR_Byte(0xb0+y,OLED_CMD); OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD); OLED_WR_Byte((x&0x0f)|0x01,OLED_CMD); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!! void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++) { for(n=0;n<128;n++) { OLED_GRAM[n][i]=0; } } OLED_Refresh_Gram();//更新显示 } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//超出范围了. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2) { u16 t; int xerr=0,yerr=0,delta_x,delta_y,distance; int incx,incy,uRow,uCol; delta_x=x2-x1; //计算坐标增量 delta_y=y2-y1; uRow=x1; uCol=y1; if(delta_x>0)incx=1; //设置单步方向 else if(delta_x0)incx=0;//垂直线 else {incx=-1;delta_x=-delta_x;} if(delta_y>0)incy=1; else if(delta_y0)incy=0;//水平线 else{incy=-1;delta_y=-delta_y;} if( delta_x>delta_y)distance=delta_x; //选取基本增量坐标轴 else distance=delta_y; for(t=0;t<=distance+1;t++ )//画线输出 { OLED_DrawPoint(uRow,uCol,1);//画点 xerr+=delta_x ; yerr+=delta_y ; if(xerr>distance) { xerr-=distance; uRow+=incx; } if(yerr>distance) { yerr-=distance; uCol+=incy; } } } void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2) { OLED_DrawLine(x1,y1,x2,y1); OLED_DrawLine(x1,y1,x1,y2); OLED_DrawLine(x1,y2,x2,y2); OLED_DrawLine(x2,y1,x2,y2); } //x1,y1,x2,y2 填充区域的对角坐标 //确保x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63 //dot:0,清空;1,填充 void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot) { u8 x,y; for(x=x1;x<=x2;x++) { for(y=y1;y<=y2;y++) { OLED_DrawPoint(x,y,dot); } } OLED_Refresh_Gram();//更新显示 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 12/16/24 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0)) * (size/2); //得到字体一个字符对应点阵集所占的字节数 chr=chr-’ ';//得到偏移后的值 for(t=0;t<csize;t++) { if(size12)temp=ascii_1206[chr][t]; //调用1206字体 else if(size16)temp=ascii_1608[chr][t]; //调用1608字体 else if(size==24)temp=ascii_2412[chr][t]; //调用2412字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n函数 u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n–)result*=m; return result; } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //num:数值(0~4294967295); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow0&&t<(len-1)) { if(temp0) { OLED_ShowChar(x+(size/2)*t,y,’ ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+‘0’,size,1); } } //显示字符串 //x,y:起点坐标 //size:字体大小 //*p:字符串起始地址 void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size) { while((*p<=‘~’)&&(*p>=’ '))//判断是不是非法字符! { if(x>(128-(size/2))){x=0;y+=size;} if(y>(64-size)){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,size,1); x+=size/2; p++; } } //显示汉字 //x,y:起点坐标 //pos:数组位置汉字显示 //size:字体大小 //mode:0,反白显示;1,正常显示 void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0))*(size);//得到字体一个字符对应点阵集所占的字节数 if(size!=12&&size!=16&&size!=24&&size!=32)return; //不支持的size for(t=0;t<csize;t++) { if(size12)temp=FontHzk_12[pos][t]; //调用1206字体 else if(size16)temp=FontHzk_16[pos][t]; //调用1608字体 else if(size24)temp=FontHzk_24[pos][t]; //调用2412字体 else if(size32)temp=FontHzk_32[pos][t]; //调用3216字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //显示BMP图片128×64 //起始点坐标(x,y),x的范围0~127,y为页的范围0~7 void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]) { u16 j=0; u8 x,y; if(y1%8==0)y=y1/8; else y=y1/8+1; for(y=y0;y<y1;y++) { OLED_Set_Pos(x0,y); for(x=x0;x<x1;x++) { OLED_WR_Byte(BMP[j++],OLED_DATA); } } } //GND 接电源地 //VCC 接5V或3.3v电源 //D0 接PD6(SCL) //D1 接PD7(SDA) //RES 接PD4 //DC 接PD5 //CS 接PD3 void OLED_Init() { GPIO_InitTypeDef GPIO_InitStructure; #if OLED_MODE==0 //4线SPI模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOC|RCC_AHB1Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_6;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOE,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOE,GPIO_Pin_2|GPIO_Pin_6); //拉高电平 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOC,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13); //拉高电平 OLED_Clear(); #endif #if OLED_MODE==1 //8080模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOC,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOD,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOD,GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); GPIO_InitStructure.GPIO_Pin = 0XFF; //PC0-7 GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_SetBits(GPIOC,0xFF); //PC0-7输出高 #endif #if OLED_MODE==2 //IIC模式 #endif OLED_RST=1; delay_ms(100); OLED_RST=0; delay_ms(100); OLED_RST=1; OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示 OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率 OLED_WR_Byte(80,OLED_CMD); //[3:0],分频因子;[7:4],震荡频率 OLED_WR_Byte(0xA8,OLED_CMD); //设置驱动路数 OLED_WR_Byte(0X3F,OLED_CMD); //默认0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //设置显示偏移 OLED_WR_Byte(0X00,OLED_CMD); //默认为0 OLED_WR_Byte(0x40,OLED_CMD); //设置显示开始行 [5:0],行数. OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置 OLED_WR_Byte(0x14,OLED_CMD); //bit2,开启/关闭 OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式 OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10; OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 OLED_WR_Byte(0xDA,OLED_CMD); //设置COM硬件引脚配置 OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置 OLED_WR_Byte(0x81,OLED_CMD); //对比度设置 OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认0X7F (亮度设置,越大越亮) OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期 OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //设置VCOMH 电压倍率 OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65vcc;001,0.77vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏) OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示 OLED_WR_Byte(0xAF,OLED_CMD); //开启显示 OLED_Clear(); } #include “oled.h” #include “oledfont.h” #include “delay.h” //OLED的显存 //存放格式如下. //[0]0 1 2 3 … 127 //[1]0 1 2 3 … 127 //[2]0 1 2 3 … 127 //[3]0 1 2 3 … 127 //[4]0 1 2 3 … 127 //[5]0 1 2 3 … 127 //[6]0 1 2 3 … 127 //[7]0 1 2 3 … 127 u8 OLED_GRAM[128][8]; #if OLED_MODE==0 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; OLED_DC=cmd; OLED_CS=0; for(i=0;i<8;i++) { OLED_SCL=0; if(dat&0x80) OLED_SDA=1; else OLED_SDA=0; OLED_SCL=1; dat<<=1; } OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==1 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { OLED_DATA_OUT(dat); OLED_RST=cmd; OLED_CS=0; OLED_WR=0; OLED_WR=1; OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==2 void OLED_WR_Byte(u8 dat,u8 cmd) { } #endif //更新显存到LCD void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } void OLED_Set_Pos(unsigned char x, unsigned char y) { OLED_WR_Byte(0xb0+y,OLED_CMD); OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD); OLED_WR_Byte((x&0x0f)|0x01,OLED_CMD); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!! void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++) { for(n=0;n<128;n++) { OLED_GRAM[n][i]=0; } } OLED_Refresh_Gram();//更新显示 } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//超出范围了. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2) { u16 t; int xerr=0,yerr=0,delta_x,delta_y,distance; int incx,incy,uRow,uCol; delta_x=x2-x1; //计算坐标增量 delta_y=y2-y1; uRow=x1; uCol=y1; if(delta_x>0)incx=1; //设置单步方向 else if(delta_x0)incx=0;//垂直线 else {incx=-1;delta_x=-delta_x;} if(delta_y>0)incy=1; else if(delta_y0)incy=0;//水平线 else{incy=-1;delta_y=-delta_y;} if( delta_x>delta_y)distance=delta_x; //选取基本增量坐标轴 else distance=delta_y; for(t=0;t<=distance+1;t++ )//画线输出 { OLED_DrawPoint(uRow,uCol,1);//画点 xerr+=delta_x ; yerr+=delta_y ; if(xerr>distance) { xerr-=distance; uRow+=incx; } if(yerr>distance) { yerr-=distance; uCol+=incy; } } } void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2) { OLED_DrawLine(x1,y1,x2,y1); OLED_DrawLine(x1,y1,x1,y2); OLED_DrawLine(x1,y2,x2,y2); OLED_DrawLine(x2,y1,x2,y2); } //x1,y1,x2,y2 填充区域的对角坐标 //确保x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63 //dot:0,清空;1,填充 void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot) { u8 x,y; for(x=x1;x<=x2;x++) { for(y=y1;y<=y2;y++) { OLED_DrawPoint(x,y,dot); } } OLED_Refresh_Gram();//更新显示 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 12/16/24 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0)) * (size/2); //得到字体一个字符对应点阵集所占的字节数 chr=chr-’ ';//得到偏移后的值 for(t=0;t<csize;t++) { if(size12)temp=ascii_1206[chr][t]; //调用1206字体 else if(size16)temp=ascii_1608[chr][t]; //调用1608字体 else if(size==24)temp=ascii_2412[chr][t]; //调用2412字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n函数 u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n–)result*=m; return result; } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //num:数值(0~4294967295); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow0&&t<(len-1)) { if(temp0) { OLED_ShowChar(x+(size/2)*t,y,’ ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+‘0’,size,1); } } //显示字符串 //x,y:起点坐标 //size:字体大小 //*p:字符串起始地址 void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size) { while((*p<=‘~’)&&(*p>=’ '))//判断是不是非法字符! { if(x>(128-(size/2))){x=0;y+=size;} if(y>(64-size)){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,size,1); x+=size/2; p++; } } //显示汉字 //x,y:起点坐标 //pos:数组位置汉字显示 //size:字体大小 //mode:0,反白显示;1,正常显示 void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0))*(size);//得到字体一个字符对应点阵集所占的字节数 if(size!=12&&size!=16&&size!=24&&size!=32)return; //不支持的size for(t=0;t<csize;t++) { if(size12)temp=FontHzk_12[pos][t]; //调用1206字体 else if(size16)temp=FontHzk_16[pos][t]; //调用1608字体 else if(size24)temp=FontHzk_24[pos][t]; //调用2412字体 else if(size32)temp=FontHzk_32[pos][t]; //调用3216字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //显示BMP图片128×64 //起始点坐标(x,y),x的范围0~127,y为页的范围0~7 void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]) { u16 j=0; u8 x,y; if(y1%8==0)y=y1/8; else y=y1/8+1; for(y=y0;y<y1;y++) { OLED_Set_Pos(x0,y); for(x=x0;x<x1;x++) { OLED_WR_Byte(BMP[j++],OLED_DATA); } } } //GND 接电源地 //VCC 接5V或3.3v电源 //D0 接PD6(SCL) //D1 接PD7(SDA) //RES 接PD4 //DC 接PD5 //CS 接PD3 void OLED_Init() { GPIO_InitTypeDef GPIO_InitStructure; #if OLED_MODE==0 //4线SPI模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOC|RCC_AHB1Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_6;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOE,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOE,GPIO_Pin_2|GPIO_Pin_6); //拉高电平 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOC,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13); //拉高电平 OLED_Clear(); #endif #if OLED_MODE==1 //8080模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOC,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOD,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOD,GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); GPIO_InitStructure.GPIO_Pin = 0XFF; //PC0-7 GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_SetBits(GPIOC,0xFF); //PC0-7输出高 #endif #if OLED_MODE==2 //IIC模式 #endif OLED_RST=1; delay_ms(100); OLED_RST=0; delay_ms(100); OLED_RST=1; OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示 OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率 OLED_WR_Byte(80,OLED_CMD); //[3:0],分频因子;[7:4],震荡频率 OLED_WR_Byte(0xA8,OLED_CMD); //设置驱动路数 OLED_WR_Byte(0X3F,OLED_CMD); //默认0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //设置显示偏移 OLED_WR_Byte(0X00,OLED_CMD); //默认为0 OLED_WR_Byte(0x40,OLED_CMD); //设置显示开始行 [5:0],行数. OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置 OLED_WR_Byte(0x14,OLED_CMD); //bit2,开启/关闭 OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式 OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10; OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 OLED_WR_Byte(0xDA,OLED_CMD); //设置COM硬件引脚配置 OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置 OLED_WR_Byte(0x81,OLED_CMD); //对比度设置 OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认0X7F (亮度设置,越大越亮) OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期 OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //设置VCOMH 电压倍率 OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65vcc;001,0.77vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏) OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示 OLED_WR_Byte(0xAF,OLED_CMD); //开启显示 OLED_Clear(); } #include “tim.h” uint16_t TIM1_Impluse = 4200;//预设占空比 float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /-----------------------------PA8,PA7------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ /-----------------------------PA9,PB14------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ /-----------------------------PA10,PB1------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ // TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; //模拟模式 pa6死刹 // TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6; //引脚 // TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 // TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 // TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; //浮空 // GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 } //TIM1 static void TIM_A1_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /-----------------------------基本结构体------------------------------------/ TIM_TimeBaseInitStructure.TIM_Period = (840-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(10-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /-----------------------------基本结构体------------------------------------/ /-----------------------------输出比较------------------------------------/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /-----------------------------输出比较------------------------------------/ /-----------------------------死区刹车------------------------------------/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 20; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /-----------------------------死区刹车------------------------------------/ // TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_A1_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /-----------------------------中断------------------------------------/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=14; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /-----------------------------中断------------------------------------/ } void TIM_Init(void) { TIM_A1_NVIC_Config(); TIM_GPIO_Config(); TIM_A1_Mode_Config(); } #include “./adc/bsp_adc.h” __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]={0}; float voltage1=0, voltage2=0, voltage3=0; float Vout_actual; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /=通道1==/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); /=通道2==/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK2,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT2, &GPIO_InitStructure); /=通道3===/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK3,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT3, &GPIO_InitStructure); } static void ADC_Mode_Config(void) { DMA_InitTypeDef DMA_InitStructure; ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // ------------------DMA Init 结构体参数 初始化-------------------------- // ADC1使用DMA2,数据流0,通道0,这个是手册固定死的 // 开启DMA时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 外设基址为:ADC 数据寄存器地址 DMA_InitStructure.DMA_PeripheralBaseAddr = RHEOSTAT_ADC_DR_ADDR; // 存储器地址,实际上就是一个内部SRAM的变量 DMA_InitStructure.DMA_Memory0BaseAddr = (u32)ADC_ConvertedValue; // 数据传输方向为外设到存储器 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 缓冲区大小为,指一次传输的数据量 DMA_InitStructure.DMA_BufferSize = RHEOSTAT_NOFCHANEL; // 外设寄存器只有一个,地址不用递增 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 存储器地址固定 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // // 外设数据大小为半字,即两个字节 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 存储器数据大小也为半字,跟外设数据大小相同 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 循环传输模式 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // DMA 传输通道优先级为高,当使用一个DMA通道时,优先级设置不影响 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 禁止DMA FIFO ,使用直连模式 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // FIFO 大小,FIFO模式禁止时,这个不用配置 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 选择 DMA 通道,通道存在于流中 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; //初始化DMA流,流相当于一个大的管道,管道里面有很多通道 DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 使能DMA传输完成中断 DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC, ENABLE); // 使能DMA流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); // 开启ADC时钟 RCC_APB2PeriphClockCmd(ADC_CLK , ENABLE); // -------------------ADC Common 结构体 参数 初始化------------------------ // 独立ADC模式 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 时钟为fpclk x分频 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // 禁止DMA直接访问模式 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; // 采样时间间隔 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_20Cycles; ADC_CommonInit(&ADC_CommonInitStructure); // -------------------ADC Init 结构体 参数 初始化-------------------------- ADC_StructInit(&ADC_InitStructure); // ADC 分辨率 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 扫描模式,多通道采集需要 ADC_InitStructure.ADC_ScanConvMode = ENABLE; // 连续转换 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //禁止外部边沿触发 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; //外部触发通道,本例子使用软件触发,此值随便赋值即可 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; //数据右对齐 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //转换通道 1个 ADC_InitStructure.ADC_NbrOfConversion = RHEOSTAT_NOFCHANEL; ADC_Init(ADC_, &ADC_InitStructure); //--------------------------------------------------------------------------- // 配置 ADC 通道转换顺序和采样时间周期 ADC_RegularChannelConfig(ADC_, ADC_CHANNEL1, 1, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL2, 2, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL3, 3, ADC_SampleTime_15Cycles); // 使能DMA请求 after last transfer (Single-ADC mode) ADC_DMARequestAfterLastTransferCmd(ADC_, ENABLE); // 使能ADC DMA ADC_DMACmd(ADC_, ENABLE); // 使能ADC ADC_Cmd(ADC_, ENABLE); //开始adc转换,软件触发 ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //配置DMA NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority =6; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void Adc_Init(void) { ADC_GPIO_Config(); ADC_Mode_Config(); ADC_NVIC_Config(); } #ifndef __BSP_ADC_H #define __BSP_ADC_H #include “stm32f4xx.h” #define RHEOSTAT_NOFCHANEL 3 /=通道1 IO==/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOE #define ADC_GPIO_PIN1 GPIO_Pin_5 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOE #define ADC_CHANNEL1 ADC_Channel_15 /=====================通道2 IO ======================/ // ADC IO宏定义 #define ADC_GPIO_PORT2 GPIOA #define ADC_GPIO_PIN2 GPIO_Pin_2 #define ADC_GPIO_CLK2 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL2 ADC_Channel_2 /=====================通道3 IO ======================/ // ADC IO宏定义 #define ADC_GPIO_PORT3 GPIOA #define ADC_GPIO_PIN3 GPIO_Pin_3 #define ADC_GPIO_CLK3 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL3 ADC_Channel_3 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); void ADC_Read(void); #endif /* __BSP_ADC_H */ #include “pid.h” float kp, ki, kd; // PID参数 float last_error = 0,last_error_2 = 0 , last_output, setpoint, input, output; // 修改pid.c #define MAX_INTEGRAL 20.0f // 积分限幅 float pid_control(float KP, float KI, float KD, float Set_Point, float Now_Point) { static float integral = 0; float error = Set_Point - Now_Point; // 积分项限幅 integral += error; if (integral > MAX_INTEGRAL) integral = MAX_INTEGRAL; if (integral < -MAX_INTEGRAL) integral = -MAX_INTEGRAL; float output = KP * error + KI * integral + KD * (error - last_error); last_error = error; // 输出限幅 (0-100%) if (output > 100.0f) output = 100.0f; if (output < 0.0f) output = 0.0f; return output; } #ifndef __BSP_ADC_H #define __BSP_ADC_H #include “stm32f4xx.h” #define RHEOSTAT_NOFCHANEL 3 /=通道1 IO==/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOE #define ADC_GPIO_PIN1 GPIO_Pin_5 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOE #define ADC_CHANNEL1 ADC_Channel_15 /=====================通道2 IO ======================/ // ADC IO宏定义 #define ADC_GPIO_PORT2 GPIOA #define ADC_GPIO_PIN2 GPIO_Pin_2 #define ADC_GPIO_CLK2 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL2 ADC_Channel_2 /=====================通道3 IO ======================/ // ADC IO宏定义 #define ADC_GPIO_PORT3 GPIOA #define ADC_GPIO_PIN3 GPIO_Pin_3 #define ADC_GPIO_CLK3 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL3 ADC_Channel_3 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); void ADC_Read(void); #endif /* __BSP_ADC_H */

我现在有一个buck电路和一个已经烧录了buck稳压程序的P4板子和一个学生电源和一根高品质SMA公母转换天线延展线(RG316适用SMA-JK连接)和一个OLED屏,我要怎么接线,给多大电压,才能使OLED屏显示PA4口(ADC电压采样口)所接收到的电压下面是我的代码#include "stm32f4xx.h" #include "delay.h" #include "oled.h" #include "stdio.h" #include "stdlib.h" #include "arm_math.h" #include "pid.h" #include "./adc/bsp_adc.h" #include "tim.h" float pid_out; volatile uint8_t adc_data_ready = 0; volatile uint8_t tim_update_flag ; volatile uint32_t last_adc_value = 0; float Vout_actual = 0.0f; float Target = 20.0f; // 目标输出电压 float voltage1; // 全局PID控制器 PID_Controller pid; extern __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; extern uint16_t TIM1_Impluse ;//高级定时器占空比 int main(void) { OLED_Init(); Adc_Init(); TIM_Init(); // 输入20V→输出15V:kp=0.3-0.6, ki=0.05-0.2, kd=0.01-0.05 //输入35V→输出20V:kp=0.2-0.4, ki=0.02-0.1, kd=0.005-0.02 pid.kp = 0.5f; // 从较小值开始调试 pid.ki = 0.1f; pid.kd = 0.01f; pid.max_output = 100.0f; pid.min_output = 0.0f; pid.integral = 0; pid.prev_error = 0; while(1) { if (adc_data_ready) { // 计算电压 voltage1 = last_adc_value * 3.3f*0.000244140625; Vout_actual = voltage1; adc_data_ready = 0; } if (tim_update_flag) { // 使用PID计算 pid_out = pid_control(&pid, Target, Vout_actual); // 安全更新PWM (限制在0-8400) TIM1_Impluse = pid_out * 84; // 0-100% -> 0-8400 TIM1->CCR1 = TIM1_Impluse; // // 重置标志 tim_update_flag = 0; } // a=pid_control (5 , 0.25, 0 ,Target ,Vout_actual); // ADC_Read(); // float six = 6; // char str[40]; // sprintf(str,"Vout_actual = %.3f",Vout_actual); // OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*1,(u8 *)str,WORD_SIZE); // OLED_Refresh_Gram(); // delay_us(100); static char display_buffer[2][40]; snprintf(display_buffer[0], 40, "Vout: %.2fV", Vout_actual); delay_ms(50); snprintf(display_buffer[1], 40, "Duty: %d", TIM1->CCR1); OLED_ShowString(0, 1, (u8*)display_buffer[0], 12); OLED_ShowString(0, 18, (u8*)display_buffer[1], 12); OLED_Refresh_Gram(); } } #include "stm32f4xx_it.h" #include "oled.h" #include <math.h> #include "./adc/bsp_adc.h" #include "pid.h" extern uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; extern float voltage1; extern float pid_out; extern float Vout_actual; extern uint16_t TIM1_Impluse ;//高级定时器占空比 extern volatile uint8_t adc_data_ready ; extern volatile uint8_t tim_update_flag ; extern volatile uint32_t last_adc_value; void TIM1_UP_TIM10_IRQHandler(void) { if(TIM_GetITStatus(TIM1,TIM_IT_Update) == SET) { // Vout_actual = voltage1; // pid_out = pid_control (5 , 0.25, 0 ,Vout_set ,Vout_actual); // TIM1->CCR1 = pid_out; // tim_update_flag = 1; // 设置标志,表示发生了一次更新中断 TIM_ClearITPendingBit(TIM1, TIM_IT_Update); } } void DMA2_Stream0_IRQHandler(void) { // 处理传输完成中断 if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0)) { DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); last_adc_value = ADC_ConvertedValue[0]; adc_data_ready = 1; } // 处理半传输中断 if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_HTIF0)) { DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_HTIF0); } // 处理传输错误中断 if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TEIF0)) { DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TEIF0); // 这里可以添加错误处理代码 } } void NMI_Handler(void) { } void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) {} } void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) {} } void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) {} } void DebugMon_Handler(void) { } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { } #include "tim.h" uint16_t TIM1_Impluse = 4200;//预设占空比 float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /*-----------------------------PA8,PA7------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA9,PB14------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA10,PB1------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ // TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; //模拟模式 pa6死刹 // TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6; //引脚 // TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 // TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 // TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; //浮空 // GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 } //TIM1 static void TIM_A1_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /*-----------------------------基本结构体------------------------------------*/ TIM_TimeBaseInitStructure.TIM_Period = (8400-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(1-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /*-----------------------------基本结构体------------------------------------*/ /*-----------------------------输出比较------------------------------------*/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /*-----------------------------输出比较------------------------------------*/ /*-----------------------------死区刹车------------------------------------*/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 20; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /*-----------------------------死区刹车------------------------------------*/ TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_A1_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /*-----------------------------中断------------------------------------*/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /*-----------------------------中断------------------------------------*/ } void TIM_Init(void) { TIM_A1_NVIC_Config(); TIM_GPIO_Config(); TIM_A1_Mode_Config(); } #include "oled.h" #include "oledfont.h" #include "delay.h" //OLED的显存 //存放格式如下. //[0]0 1 2 3 ... 127 //[1]0 1 2 3 ... 127 //[2]0 1 2 3 ... 127 //[3]0 1 2 3 ... 127 //[4]0 1 2 3 ... 127 //[5]0 1 2 3 ... 127 //[6]0 1 2 3 ... 127 //[7]0 1 2 3 ... 127 u8 OLED_GRAM[128][8]; #if OLED_MODE==0 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; OLED_DC=cmd; OLED_CS=0; for(i=0;i<8;i++) { OLED_SCL=0; if(dat&0x80) OLED_SDA=1; else OLED_SDA=0; OLED_SCL=1; dat<<=1; } OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==1 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { OLED_DATA_OUT(dat); OLED_RST=cmd; OLED_CS=0; OLED_WR=0; OLED_WR=1; OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==2 void OLED_WR_Byte(u8 dat,u8 cmd) { } #endif //更新显存到LCD void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } void OLED_Set_Pos(unsigned char x, unsigned char y) { OLED_WR_Byte(0xb0+y,OLED_CMD); OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD); OLED_WR_Byte((x&0x0f)|0x01,OLED_CMD); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!! void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++) { for(n=0;n<128;n++) { OLED_GRAM[n][i]=0; } } OLED_Refresh_Gram();//更新显示 } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//超出范围了. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2) { u16 t; int xerr=0,yerr=0,delta_x,delta_y,distance; int incx,incy,uRow,uCol; delta_x=x2-x1; //计算坐标增量 delta_y=y2-y1; uRow=x1; uCol=y1; if(delta_x>0)incx=1; //设置单步方向 else if(delta_x==0)incx=0;//垂直线 else {incx=-1;delta_x=-delta_x;} if(delta_y>0)incy=1; else if(delta_y==0)incy=0;//水平线 else{incy=-1;delta_y=-delta_y;} if( delta_x>delta_y)distance=delta_x; //选取基本增量坐标轴 else distance=delta_y; for(t=0;t<=distance+1;t++ )//画线输出 { OLED_DrawPoint(uRow,uCol,1);//画点 xerr+=delta_x ; yerr+=delta_y ; if(xerr>distance) { xerr-=distance; uRow+=incx; } if(yerr>distance) { yerr-=distance; uCol+=incy; } } } void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2) { OLED_DrawLine(x1,y1,x2,y1); OLED_DrawLine(x1,y1,x1,y2); OLED_DrawLine(x1,y2,x2,y2); OLED_DrawLine(x2,y1,x2,y2); } //x1,y1,x2,y2 填充区域的对角坐标 //确保x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63 //dot:0,清空;1,填充 void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot) { u8 x,y; for(x=x1;x<=x2;x++) { for(y=y1;y<=y2;y++) { OLED_DrawPoint(x,y,dot); } } OLED_Refresh_Gram();//更新显示 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 12/16/24 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0)) * (size/2); //得到字体一个字符对应点阵集所占的字节数 chr=chr-' ';//得到偏移后的值 for(t=0;t<csize;t++) { if(size==12)temp=ascii_1206[chr][t]; //调用1206字体 else if(size==16)temp=ascii_1608[chr][t]; //调用1608字体 else if(size==24)temp=ascii_2412[chr][t]; //调用2412字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n函数 u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n--)result*=m; return result; } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //num:数值(0~4294967295); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) { if(temp==0) { OLED_ShowChar(x+(size/2)*t,y,' ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); } } //显示字符串 //x,y:起点坐标 //size:字体大小 //*p:字符串起始地址 void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size) { while((*p<='~')&&(*p>=' '))//判断是不是非法字符! { if(x>(128-(size/2))){x=0;y+=size;} if(y>(64-size)){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,size,1); x+=size/2; p++; } } //显示汉字 //x,y:起点坐标 //pos:数组位置汉字显示 //size:字体大小 //mode:0,反白显示;1,正常显示 void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0))*(size);//得到字体一个字符对应点阵集所占的字节数 if(size!=12&&size!=16&&size!=24&&size!=32)return; //不支持的size for(t=0;t<csize;t++) { if(size==12)temp=FontHzk_12[pos][t]; //调用1206字体 else if(size==16)temp=FontHzk_16[pos][t]; //调用1608字体 else if(size==24)temp=FontHzk_24[pos][t]; //调用2412字体 else if(size==32)temp=FontHzk_32[pos][t]; //调用3216字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //显示BMP图片128×64 //起始点坐标(x,y),x的范围0~127,y为页的范围0~7 void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]) { u16 j=0; u8 x,y; if(y1%8==0)y=y1/8; else y=y1/8+1; for(y=y0;y<y1;y++) { OLED_Set_Pos(x0,y); for(x=x0;x<x1;x++) { OLED_WR_Byte(BMP[j++],OLED_DATA); } } } //GND 接电源地 //VCC 接5V或3.3v电源 //D0 接PD6(SCL) //D1 接PD7(SDA) //RES 接PD4 //DC 接PD5 //CS 接PD3 void OLED_Init() { GPIO_InitTypeDef GPIO_InitStructure; #if OLED_MODE==0 //4线SPI模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOC|RCC_AHB1Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_6;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOE,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOE,GPIO_Pin_2|GPIO_Pin_6); //拉高电平 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOC,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13); //拉高电平 OLED_Clear(); #endif #if OLED_MODE==1 //8080模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOC,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOD,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOD,GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); GPIO_InitStructure.GPIO_Pin = 0XFF; //PC0-7 GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_SetBits(GPIOC,0xFF); //PC0-7输出高 #endif #if OLED_MODE==2 //IIC模式 #endif OLED_RST=1; delay_ms(100); OLED_RST=0; delay_ms(100); OLED_RST=1; OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示 OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率 OLED_WR_Byte(80,OLED_CMD); //[3:0],分频因子;[7:4],震荡频率 OLED_WR_Byte(0xA8,OLED_CMD); //设置驱动路数 OLED_WR_Byte(0X3F,OLED_CMD); //默认0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //设置显示偏移 OLED_WR_Byte(0X00,OLED_CMD); //默认为0 OLED_WR_Byte(0x40,OLED_CMD); //设置显示开始行 [5:0],行数. OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置 OLED_WR_Byte(0x14,OLED_CMD); //bit2,开启/关闭 OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式 OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10; OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 OLED_WR_Byte(0xDA,OLED_CMD); //设置COM硬件引脚配置 OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置 OLED_WR_Byte(0x81,OLED_CMD); //对比度设置 OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认0X7F (亮度设置,越大越亮) OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期 OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //设置VCOMH 电压倍率 OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏) OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示 OLED_WR_Byte(0xAF,OLED_CMD); //开启显示 OLED_Clear(); } #ifndef _oled_H #define _oled_H #include "sys/system.h" #include "stdlib.h" #define WORD_SIZE 12 #define X_OFFSET_WORD 0 #define Y_OFFSET_WORD 0 #define X_OFFSTE_PIXEL 0 #define Y_OFFSTE_PIXEL 0 #if WORD_SIZE != 12 && WORD_SIZE != 16 && WORD_SIZE != 24 #define WORD_SIZE 12 #endif #if WORD_SIZE == 24 #define WORD_WIDTH 12 #define WORD_HIGH 24 #endif #if WORD_SIZE == 16 #define WORD_WIDTH 8 #define WORD_HIGH 16 #endif #if WORD_SIZE == 12 #define WORD_WIDTH 6 #define WORD_HIGH 12 #endif //OLED模式设置 //0:4线串行SPI模式 //1:并行8080模式 //2:IIC模式 #define OLED_MODE 0 #define SIZE 16 #define XLevelL 0x00 #define XLevelH 0x10 #define Max_Column 128 #define Max_Row 64 #define Brightness 0xFF #define X_WIDTH 128 #define Y_WIDTH 64 #if OLED_MODE==0 //OLDE-SPI4线控制管脚定义 #define OLED_SCL PCout(1) #define OLED_SDA PCout(0) #define OLED_RST PCout(13) #define OLED_DC PEout(6) #define OLED_CS PEout(2) #endif #if OLED_MODE==1 //OLDE-8080总线控制管脚定义 #define OLED_CS PDout(3) #define OLED_RST PDout(4) #define OLED_DC PDout(5) #define OLED_WR PDout(6) #define OLED_RD PDout(7) #define OLED_DATA_OUT(x) GPIO_Write(GPIOC,x);//输出 #endif #if OLED_MODE==2 //OLDE-IIC总线控制管脚定义 #endif #define OLED_CMD 0 //写命令 #define OLED_DATA 1 //写数据 //OLED控制用函数 void OLED_WR_Byte(u8 dat,u8 cmd); void OLED_Display_On(void); void OLED_Display_Off(void); void OLED_Set_Pos(unsigned char x, unsigned char y); void OLED_Init(void); void OLED_Refresh_Gram(void); void OLED_Clear(void); void OLED_DrawPoint(u8 x,u8 y,u8 t); void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2); void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2); void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot); void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size); void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size); void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode); void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]); #endif #include "./adc/bsp_adc.h" __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]={0}; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /*=====================通道1======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); } void ADC_DMA_Config(void) { DMA_InitTypeDef DMA_InitStructure; // 1. 使能 DMA 时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 2. 配置 DMA 参数 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; // DMA 通道 0 DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)ADC_ConvertedValue ; // ADC 数据寄存器地址 DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)ADC_ConvertedValue; // 内存缓冲区地址 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 外设到内存 DMA_InitStructure.DMA_BufferSize = RHEOSTAT_NOFCHANEL; // 缓冲区大小 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 外设地址不递增 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // 内存地址递增 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 外设数据大小:半字(16位) DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 内存数据大小:半字(16位) DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // 循环模式 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 高优先级 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // 禁用 FIFO 模式 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; // FIFO 阈值 DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; // 内存突发传输:单次 DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 外设突发传输:单次 // 3. 初始化 DMA DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 4. 使能 DMA 中断(传输完成、传输错误) DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC | DMA_IT_TE | DMA_IT_HT, ENABLE); // 5. 使能 DMA 流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); } void ADC_Config(void) { ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // 1. 使能 ADC 时钟 RCC_APB2PeriphClockCmd(ADC_CLK, ENABLE); // 2. 配置 ADC 通用参数 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 独立模式 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // ADC 时钟分频:PCLK2/4 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; // DMA 访问模式 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; // 采样延迟 ADC_CommonInit(&ADC_CommonInitStructure); // 3. 配置 ADC 参数 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 12位分辨率 ADC_InitStructure.ADC_ScanConvMode = ENABLE; // 扫描模式使能 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; // 连续转换模式 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; // 无外部触发 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; // 外部触发源 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; // 数据右对齐 ADC_InitStructure.ADC_NbrOfConversion = RHEOSTAT_NOFCHANEL ; // 转换通道数 ADC_Init(ADC_, &ADC_InitStructure); // 4. 配置 ADC 通道(通道4,PA4) ADC_RegularChannelConfig(ADC_, ADC_Channel_4, 1, ADC_SampleTime_84Cycles); // 5. 使能 ADC DMA ADC_DMACmd(ADC_, ENABLE); // 6. 使能 ADC ADC_Cmd(ADC_, ENABLE); // 7. 启动 ADC 转换 ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void Adc_Init(void) { ADC_GPIO_Config(); ADC_DMA_Config(); ADC_Config(); ADC_NVIC_Config(); } #ifndef __BSP_ADC_H #define __BSP_ADC_H #include "stm32f4xx.h" #define RHEOSTAT_NOFCHANEL 1 /*=====================通道1 IO======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOA #define ADC_GPIO_PIN1 GPIO_Pin_4 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL1 ADC_Channel_4 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 // DMA 配置 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); #endif /* __BSP_ADC_H */ #include "pid.h" float pid_control(PID_Controller* pid, float setpoint, float input) { // 计算当前误差 float error = setpoint - input; // 比例项 float p_term = pid->kp * error; // 积分项(带抗饱和) pid->integral += error; // 积分限幅 if(pid->integral > pid->max_output) pid->integral = pid->max_output; else if(pid->integral < pid->min_output) pid->integral = pid->min_output; float i_term = pid->ki * pid->integral; // 微分项(标准实现) float d_term = pid->kd * (error - pid->prev_error); // PID输出 float output = p_term + i_term + d_term; // 输出限幅 if(output > pid->max_output) output = pid->max_output; else if(output < pid->min_output) output = pid->min_output; // 更新误差历史 pid->prev_error = error; return output; } #ifndef __PID_H_ #define __PID_H_ typedef struct { float kp, ki, kd; float integral; float prev_error; float max_output; float min_output; } PID_Controller; float pid_control(PID_Controller* pid, float setpoint, float input); #endif

为什么这一个buck文件加上adc或者是tim初始化就会使ole屏不亮,把这两个初始化去掉,oled屏又亮了,怎么解决(我用的使F4的板子和芯片)#include "stm32f4xx.h" #include "delay.h" #include "oled.h" #include "stdio.h" #include "stdlib.h" #include "arm_math.h" #include "pid.h" #include "./adc/bsp_adc.h" #include "tim.h" extern float voltage1, voltage2, voltage3; extern float Vout_actual; float Target= 12; // 目标输出电压12 float a; //extern __IO uint16_t ADC_ConvertedValue; extern uint16_t TIM_Advance_Impulse; int main(void) { OLED_Init(); arm_sin_f32(23); // Adc_Init(); TIM_Init(); while(1) { // a=pid_control (5 , 0.25, 0 ,Target ,Vout_actual); ADC_Read(); // float six = 6; char str[40]; sprintf(str,"Vout_actual = %.3f",Vout_actual); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*1,(u8 *)str,WORD_SIZE); OLED_Refresh_Gram(); delay_us(100); } } #include "./adc/bsp_adc.h" __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]={0}; float voltage1=0, voltage2=0, voltage3=0; float Vout_actual; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /*=====================通道1======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); /*=====================通道2======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK2,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT2, &GPIO_InitStructure); /*=====================通道3=======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK3,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT3, &GPIO_InitStructure); } static void ADC_Mode_Config(void) { DMA_InitTypeDef DMA_InitStructure; ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // ------------------DMA Init 结构体参数 初始化-------------------------- // ADC1使用DMA2,数据流0,通道0,这个是手册固定死的 // 开启DMA时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 外设基址为:ADC 数据寄存器地址 DMA_InitStructure.DMA_PeripheralBaseAddr = RHEOSTAT_ADC_DR_ADDR; // 存储器地址,实际上就是一个内部SRAM的变量 DMA_InitStructure.DMA_Memory0BaseAddr = (u32)ADC_ConvertedValue; // 数据传输方向为外设到存储器 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 缓冲区大小为,指一次传输的数据量 DMA_InitStructure.DMA_BufferSize = RHEOSTAT_NOFCHANEL; // 外设寄存器只有一个,地址不用递增 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 存储器地址固定 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // // 外设数据大小为半字,即两个字节 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 存储器数据大小也为半字,跟外设数据大小相同 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 循环传输模式 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // DMA 传输通道优先级为高,当使用一个DMA通道时,优先级设置不影响 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 禁止DMA FIFO ,使用直连模式 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // FIFO 大小,FIFO模式禁止时,这个不用配置 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 选择 DMA 通道,通道存在于流中 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; //初始化DMA流,流相当于一个大的管道,管道里面有很多通道 DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 使能DMA传输完成中断 DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC, ENABLE); // 使能DMA流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); // 开启ADC时钟 RCC_APB2PeriphClockCmd(ADC_CLK , ENABLE); // -------------------ADC Common 结构体 参数 初始化------------------------ // 独立ADC模式 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 时钟为fpclk x分频 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // 禁止DMA直接访问模式 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; // 采样时间间隔 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_20Cycles; ADC_CommonInit(&ADC_CommonInitStructure); // -------------------ADC Init 结构体 参数 初始化-------------------------- ADC_StructInit(&ADC_InitStructure); // ADC 分辨率 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 扫描模式,多通道采集需要 ADC_InitStructure.ADC_ScanConvMode = ENABLE; // 连续转换 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //禁止外部边沿触发 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; //外部触发通道,本例子使用软件触发,此值随便赋值即可 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; //数据右对齐 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //转换通道 1个 ADC_InitStructure.ADC_NbrOfConversion = RHEOSTAT_NOFCHANEL; ADC_Init(ADC_, &ADC_InitStructure); //--------------------------------------------------------------------------- // 配置 ADC 通道转换顺序和采样时间周期 ADC_RegularChannelConfig(ADC_, ADC_CHANNEL1, 1, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL2, 2, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL3, 3, ADC_SampleTime_15Cycles); // 使能DMA请求 after last transfer (Single-ADC mode) ADC_DMARequestAfterLastTransferCmd(ADC_, ENABLE); // 使能ADC DMA ADC_DMACmd(ADC_, ENABLE); // 使能ADC ADC_Cmd(ADC_, ENABLE); //开始adc转换,软件触发 ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //配置DMA NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority =0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void ADC_Read(void) { voltage1=(float)ADC_ConvertedValue[0]*0.000244140625*3.3; voltage2=(float)ADC_ConvertedValue[1]*0.000244140625*3.3; voltage3=(float)ADC_ConvertedValue[2]*0.000244140625*3.3; Vout_actual = voltage1; } void Adc_Init(void) { ADC_GPIO_Config(); ADC_Mode_Config(); ADC_NVIC_Config(); } #ifndef __BSP_ADC_H #define __BSP_ADC_H #include "stm32f4xx.h" #define RHEOSTAT_NOFCHANEL 3 /*=====================通道1 IO======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOE #define ADC_GPIO_PIN1 GPIO_Pin_5 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOE #define ADC_CHANNEL1 ADC_Channel_15 /*=====================通道2 IO ======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT2 GPIOA #define ADC_GPIO_PIN2 GPIO_Pin_2 #define ADC_GPIO_CLK2 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL2 ADC_Channel_2 /*=====================通道3 IO ======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT3 GPIOA #define ADC_GPIO_PIN3 GPIO_Pin_3 #define ADC_GPIO_CLK3 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL3 ADC_Channel_3 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); void ADC_Read(void); #endif /* __BSP_ADC_H */ #include "tim.h" uint16_t TIM1_Impluse = 4200;//预设占空比 float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /*-----------------------------PA8,PA7------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA9,PB14------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA10,PB1------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ // TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; //模拟模式 pa6死刹 // TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6; //引脚 // TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 // TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 // TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; //浮空 // GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 } //TIM1 static void TIM_A1_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /*-----------------------------基本结构体------------------------------------*/ TIM_TimeBaseInitStructure.TIM_Period = (8400-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(1-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /*-----------------------------基本结构体------------------------------------*/ /*-----------------------------输出比较------------------------------------*/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /*-----------------------------输出比较------------------------------------*/ /*-----------------------------死区刹车------------------------------------*/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 20; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /*-----------------------------死区刹车------------------------------------*/ TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_A1_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /*-----------------------------中断------------------------------------*/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /*-----------------------------中断------------------------------------*/ } void TIM_Init(void) { TIM_A1_NVIC_Config(); TIM_GPIO_Config(); TIM_A1_Mode_Config(); } #ifndef __TIM_H #define __TIM_H #include "sys.h" void TIM_Init(void); #endif #include "stm32f4xx_it.h" #include "oled.h" #include <math.h> #include "./adc/bsp_adc.h" #include "pid.h" extern uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; extern float voltage1; uint16_t TIM_Advance_Impulse ;//高级定时器占空比 extern float Vout_actual; float Vout_set; // 目标输出电压 float pid_out; extern float pid_out; void TIM1_UP_IRQHandler(void) { if(TIM_GetITStatus(TIM1,TIM_IT_Update) == SET) { Vout_actual = voltage1; pid_out = pid_control (5 , 0.25, 0 ,Vout_set ,Vout_actual); TIM1->CCR1 = pid_out; TIM_ClearITPendingBit(TIM1, TIM_IT_Update); } } void DMA2_Stream0_IRQHandler(void) { // 检查传输完成中断标志 if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0) != RESET) { // 清除中断标志 DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); // 调用ADC_Read计算电压 ADC_Read(); } } void NMI_Handler(void) { } void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) {} } void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) {} } void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) {} } void DebugMon_Handler(void) { } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { } #include "pid.h" float kp, ki, kd; // PID参数 float last_error = 0,last_error_2 = 0 , last_output, setpoint, input, output; float pid_control(float KP , float KI , float KD , float Set_Point , float Now_Point) { kp = KP; ki = KI; kd = KD; setpoint = Set_Point; input = Now_Point; float error = setpoint - input; float delta_error = error - last_error; output += kp*delta_error + ki*error + kd*(error-2*last_error+last_error_2); last_error_2 = last_error; last_error = error; last_output = output; //输出限幅 // if(output >= 100.0f ) output = 100.0f; return output; } #ifndef __PID_H_ #define __PID_H_ float pid_control(float KP , float KI , float KD , float Set_Point , float Now_Point); #endif #include "oled.h" #include "oledfont.h" #include "delay.h" //OLED的显存 //存放格式如下. //[0]0 1 2 3 ... 127 //[1]0 1 2 3 ... 127 //[2]0 1 2 3 ... 127 //[3]0 1 2 3 ... 127 //[4]0 1 2 3 ... 127 //[5]0 1 2 3 ... 127 //[6]0 1 2 3 ... 127 //[7]0 1 2 3 ... 127 u8 OLED_GRAM[128][8]; #if OLED_MODE==0 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; OLED_DC=cmd; OLED_CS=0; for(i=0;i<8;i++) { OLED_SCL=0; if(dat&0x80) OLED_SDA=1; else OLED_SDA=0; OLED_SCL=1; dat<<=1; } OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==1 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { OLED_DATA_OUT(dat); OLED_RST=cmd; OLED_CS=0; OLED_WR=0; OLED_WR=1; OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==2 void OLED_WR_Byte(u8 dat,u8 cmd) { } #endif //更新显存到LCD void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } void OLED_Set_Pos(unsigned char x, unsigned char y) { OLED_WR_Byte(0xb0+y,OLED_CMD); OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD); OLED_WR_Byte((x&0x0f)|0x01,OLED_CMD); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!! void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++) { for(n=0;n<128;n++) { OLED_GRAM[n][i]=0; } } OLED_Refresh_Gram();//更新显示 } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//超出范围了. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2) { u16 t; int xerr=0,yerr=0,delta_x,delta_y,distance; int incx,incy,uRow,uCol; delta_x=x2-x1; //计算坐标增量 delta_y=y2-y1; uRow=x1; uCol=y1; if(delta_x>0)incx=1; //设置单步方向 else if(delta_x==0)incx=0;//垂直线 else {incx=-1;delta_x=-delta_x;} if(delta_y>0)incy=1; else if(delta_y==0)incy=0;//水平线 else{incy=-1;delta_y=-delta_y;} if( delta_x>delta_y)distance=delta_x; //选取基本增量坐标轴 else distance=delta_y; for(t=0;t<=distance+1;t++ )//画线输出 { OLED_DrawPoint(uRow,uCol,1);//画点 xerr+=delta_x ; yerr+=delta_y ; if(xerr>distance) { xerr-=distance; uRow+=incx; } if(yerr>distance) { yerr-=distance; uCol+=incy; } } } void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2) { OLED_DrawLine(x1,y1,x2,y1); OLED_DrawLine(x1,y1,x1,y2); OLED_DrawLine(x1,y2,x2,y2); OLED_DrawLine(x2,y1,x2,y2); } //x1,y1,x2,y2 填充区域的对角坐标 //确保x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63 //dot:0,清空;1,填充 void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot) { u8 x,y; for(x=x1;x<=x2;x++) { for(y=y1;y<=y2;y++) { OLED_DrawPoint(x,y,dot); } } OLED_Refresh_Gram();//更新显示 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 12/16/24 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0)) * (size/2); //得到字体一个字符对应点阵集所占的字节数 chr=chr-' ';//得到偏移后的值 for(t=0;t<csize;t++) { if(size==12)temp=ascii_1206[chr][t]; //调用1206字体 else if(size==16)temp=ascii_1608[chr][t]; //调用1608字体 else if(size==24)temp=ascii_2412[chr][t]; //调用2412字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n函数 u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n--)result*=m; return result; } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //num:数值(0~4294967295); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) { if(temp==0) { OLED_ShowChar(x+(size/2)*t,y,' ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); } } //显示字符串 //x,y:起点坐标 //size:字体大小 //*p:字符串起始地址 void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size) { while((*p<='~')&&(*p>=' '))//判断是不是非法字符! { if(x>(128-(size/2))){x=0;y+=size;} if(y>(64-size)){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,size,1); x+=size/2; p++; } } //显示汉字 //x,y:起点坐标 //pos:数组位置汉字显示 //size:字体大小 //mode:0,反白显示;1,正常显示 void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0))*(size);//得到字体一个字符对应点阵集所占的字节数 if(size!=12&&size!=16&&size!=24&&size!=32)return; //不支持的size for(t=0;t<csize;t++) { if(size==12)temp=FontHzk_12[pos][t]; //调用1206字体 else if(size==16)temp=FontHzk_16[pos][t]; //调用1608字体 else if(size==24)temp=FontHzk_24[pos][t]; //调用2412字体 else if(size==32)temp=FontHzk_32[pos][t]; //调用3216字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //显示BMP图片128×64 //起始点坐标(x,y),x的范围0~127,y为页的范围0~7 void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]) { u16 j=0; u8 x,y; if(y1%8==0)y=y1/8; else y=y1/8+1; for(y=y0;y<y1;y++) { OLED_Set_Pos(x0,y); for(x=x0;x<x1;x++) { OLED_WR_Byte(BMP[j++],OLED_DATA); } } } //GND 接电源地 //VCC 接5V或3.3v电源 //D0 接PD6(SCL) //D1 接PD7(SDA) //RES 接PD4 //DC 接PD5 //CS 接PD3 void OLED_Init() { GPIO_InitTypeDef GPIO_InitStructure; #if OLED_MODE==0 //4线SPI模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOC|RCC_AHB1Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_6;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOE,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOE,GPIO_Pin_2|GPIO_Pin_6); //拉高电平 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOC,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13); //拉高电平 OLED_Clear(); #endif #if OLED_MODE==1 //8080模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOC,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOD,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOD,GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); GPIO_InitStructure.GPIO_Pin = 0XFF; //PC0-7 GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_SetBits(GPIOC,0xFF); //PC0-7输出高 #endif #if OLED_MODE==2 //IIC模式 #endif OLED_RST=1; delay_ms(100); OLED_RST=0; delay_ms(100); OLED_RST=1; OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示 OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率 OLED_WR_Byte(80,OLED_CMD); //[3:0],分频因子;[7:4],震荡频率 OLED_WR_Byte(0xA8,OLED_CMD); //设置驱动路数 OLED_WR_Byte(0X3F,OLED_CMD); //默认0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //设置显示偏移 OLED_WR_Byte(0X00,OLED_CMD); //默认为0 OLED_WR_Byte(0x40,OLED_CMD); //设置显示开始行 [5:0],行数. OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置 OLED_WR_Byte(0x14,OLED_CMD); //bit2,开启/关闭 OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式 OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10; OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 OLED_WR_Byte(0xDA,OLED_CMD); //设置COM硬件引脚配置 OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置 OLED_WR_Byte(0x81,OLED_CMD); //对比度设置 OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认0X7F (亮度设置,越大越亮) OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期 OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //设置VCOMH 电压倍率 OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏) OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示 OLED_WR_Byte(0xAF,OLED_CMD); //开启显示 OLED_Clear(); } #ifndef _oled_H #define _oled_H #include "sys/system.h" #include "stdlib.h" #define WORD_SIZE 12 #define X_OFFSET_WORD 0 #define Y_OFFSET_WORD 0 #define X_OFFSTE_PIXEL 0 #define Y_OFFSTE_PIXEL 0 #if WORD_SIZE != 12 && WORD_SIZE != 16 && WORD_SIZE != 24 #define WORD_SIZE 12 #endif #if WORD_SIZE == 24 #define WORD_WIDTH 12 #define WORD_HIGH 24 #endif #if WORD_SIZE == 16 #define WORD_WIDTH 8 #define WORD_HIGH 16 #endif #if WORD_SIZE == 12 #define WORD_WIDTH 6 #define WORD_HIGH 12 #endif //OLED模式设置 //0:4线串行SPI模式 //1:并行8080模式 //2:IIC模式 #define OLED_MODE 0 #define SIZE 16 #define XLevelL 0x00 #define XLevelH 0x10 #define Max_Column 128 #define Max_Row 64 #define Brightness 0xFF #define X_WIDTH 128 #define Y_WIDTH 64 #if OLED_MODE==0 //OLDE-SPI4线控制管脚定义 #define OLED_SCL PCout(1) #define OLED_SDA PCout(0) #define OLED_RST PCout(13) #define OLED_DC PEout(6) #define OLED_CS PEout(2) #endif #if OLED_MODE==1 //OLDE-8080总线控制管脚定义 #define OLED_CS PDout(3) #define OLED_RST PDout(4) #define OLED_DC PDout(5) #define OLED_WR PDout(6) #define OLED_RD PDout(7) #define OLED_DATA_OUT(x) GPIO_Write(GPIOC,x);//输出 #endif #if OLED_MODE==2 //OLDE-IIC总线控制管脚定义 #endif #define OLED_CMD 0 //写命令 #define OLED_DATA 1 //写数据 //OLED控制用函数 void OLED_WR_Byte(u8 dat,u8 cmd); void OLED_Display_On(void); void OLED_Display_Off(void); void OLED_Set_Pos(unsigned char x, unsigned char y); void OLED_Init(void); void OLED_Refresh_Gram(void); void OLED_Clear(void); void OLED_DrawPoint(u8 x,u8 y,u8 t); void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2); void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2); void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot); void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size); void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size); void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode); void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]); #endif

int main(void) { // 初始化SysTick SysTick_Init(); OLED_Init(); delay_ms(500); Adc_Init(); TIM_Init(); uint32_t last_display_time = 0; char str[40]; while(1) { if(adc_data_ready) { adc_data_ready = 0; ADC_Read(); // 读取并计算电压 // PID计算 pid_out = pid_control(0.8f, 0.05f, 0.02f, Target, Vout_actual); // 更新PWM占空比 (百分比转换为计数值) TIM1->CCR1 = (uint16_t)(pid_out * 8400 / 100.0f); } // 每10ms刷新显示 (非阻塞) if(systick_count - last_display_time >= 10) { last_display_time = systick_count; sprintf(str, "Vout: %.2fV", Vout_actual); OLED_ShowString(0, 1, (u8*)str, 12); OLED_Refresh_Gram(); } } }按上述所说内容我将代码改成下面这样了,那为什么oled屏还是不亮呢,而且这个程序稳的了压吗?#include "stm32f4xx_it.h" #include "oled.h" #include <math.h> #include "./adc/bsp_adc.h" #include "pid.h" extern float Vout_actual; extern float Target ; // 目标输出电压 extern float pid_out; extern volatile uint32_t time; volatile uint8_t adc_data_ready = 0;// 全局变量 // 简化中断处理函数 void TIM1_UP_IRQHandler(void) { if (TIM_GetITStatus(TIM1, TIM_IT_Update)) { TIM_ClearFlag(TIM1,TIM_IT_Update); } } void DMA2_Stream0_IRQHandler(void) { if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0) != RESET) { adc_data_ready = 1; // 设置数据就绪标志 DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); } } // 使用TIM2作为毫秒计时器 void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { time++; TIM_ClearITPendingBit(TIM2, TIM_IT_Update); } } void NMI_Handler(void) { } void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) {} } void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) {} } void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) {} } void DebugMon_Handler(void) { } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { } #include "stm32f4xx.h" #include "delay.h" #include "oled.h" #include "stdio.h" #include "stdlib.h" #include "arm_math.h" #include "pid.h" #include "./adc/bsp_adc.h" #include "tim.h" #include "General_Tim.h" extern float voltage1, voltage2, voltage3; extern float Vout_actual; extern volatile uint8_t adc_data_ready; float Target= 1; // 目标输出电压 float pid_out; uint32_t time = 0; // ms 计时变量 int main(void) { GENERAL_TIM_Init(); OLED_Init(); delay_ms(500); Adc_Init(); TIM_Init(); char str[40]; uint32_t time = 0; // ms 计时变量 while(1) { char str[40]; if(adc_data_ready) { adc_data_ready = 0; ADC_Read(); // 读取并计算电压 // PID计算 pid_out = pid_control(0.8f, 0.05f, 0.02f, Target, Vout_actual); // 更新PWM占空比 (百分比转换为计数值) TIM1->CCR1 = pid_out * 8400 ; } if ( time == 10 ) /* 10 * 1 ms = 10ms 时间到 */ { time = 0; sprintf(str, "Vout: %.2fV", Vout_actual); OLED_ShowString(0, 1, (u8*)str, 12); OLED_Refresh_Gram(); } } } #include "oled.h" #include "oledfont.h" #include "delay.h" //OLED的显存 //存放格式如下. //[0]0 1 2 3 ... 127 //[1]0 1 2 3 ... 127 //[2]0 1 2 3 ... 127 //[3]0 1 2 3 ... 127 //[4]0 1 2 3 ... 127 //[5]0 1 2 3 ... 127 //[6]0 1 2 3 ... 127 //[7]0 1 2 3 ... 127 u8 OLED_GRAM[128][8]; #if OLED_MODE==0 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; OLED_DC=cmd; OLED_CS=0; for(i=0;i<8;i++) { OLED_SCL=0; if(dat&0x80) OLED_SDA=1; else OLED_SDA=0; OLED_SCL=1; dat<<=1; } OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==1 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { OLED_DATA_OUT(dat); OLED_RST=cmd; OLED_CS=0; OLED_WR=0; OLED_WR=1; OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==2 void OLED_WR_Byte(u8 dat,u8 cmd) { } #endif //更新显存到LCD void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } void OLED_Set_Pos(unsigned char x, unsigned char y) { OLED_WR_Byte(0xb0+y,OLED_CMD); OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD); OLED_WR_Byte((x&0x0f)|0x01,OLED_CMD); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!! void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++) { for(n=0;n<128;n++) { OLED_GRAM[n][i]=0; } } OLED_Refresh_Gram();//更新显示 } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//超出范围了. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2) { u16 t; int xerr=0,yerr=0,delta_x,delta_y,distance; int incx,incy,uRow,uCol; delta_x=x2-x1; //计算坐标增量 delta_y=y2-y1; uRow=x1; uCol=y1; if(delta_x>0)incx=1; //设置单步方向 else if(delta_x==0)incx=0;//垂直线 else {incx=-1;delta_x=-delta_x;} if(delta_y>0)incy=1; else if(delta_y==0)incy=0;//水平线 else{incy=-1;delta_y=-delta_y;} if( delta_x>delta_y)distance=delta_x; //选取基本增量坐标轴 else distance=delta_y; for(t=0;t<=distance+1;t++ )//画线输出 { OLED_DrawPoint(uRow,uCol,1);//画点 xerr+=delta_x ; yerr+=delta_y ; if(xerr>distance) { xerr-=distance; uRow+=incx; } if(yerr>distance) { yerr-=distance; uCol+=incy; } } } void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2) { OLED_DrawLine(x1,y1,x2,y1); OLED_DrawLine(x1,y1,x1,y2); OLED_DrawLine(x1,y2,x2,y2); OLED_DrawLine(x2,y1,x2,y2); } //x1,y1,x2,y2 填充区域的对角坐标 //确保x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63 //dot:0,清空;1,填充 void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot) { u8 x,y; for(x=x1;x<=x2;x++) { for(y=y1;y<=y2;y++) { OLED_DrawPoint(x,y,dot); } } OLED_Refresh_Gram();//更新显示 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 12/16/24 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0)) * (size/2); //得到字体一个字符对应点阵集所占的字节数 chr=chr-' ';//得到偏移后的值 for(t=0;t<csize;t++) { if(size==12)temp=ascii_1206[chr][t]; //调用1206字体 else if(size==16)temp=ascii_1608[chr][t]; //调用1608字体 else if(size==24)temp=ascii_2412[chr][t]; //调用2412字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n函数 u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n--)result*=m; return result; } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //num:数值(0~4294967295); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) { if(temp==0) { OLED_ShowChar(x+(size/2)*t,y,' ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); } } //显示字符串 //x,y:起点坐标 //size:字体大小 //*p:字符串起始地址 void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size) { while((*p<='~')&&(*p>=' '))//判断是不是非法字符! { if(x>(128-(size/2))){x=0;y+=size;} if(y>(64-size)){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,size,1); x+=size/2; p++; } } //显示汉字 //x,y:起点坐标 //pos:数组位置汉字显示 //size:字体大小 //mode:0,反白显示;1,正常显示 void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0))*(size);//得到字体一个字符对应点阵集所占的字节数 if(size!=12&&size!=16&&size!=24&&size!=32)return; //不支持的size for(t=0;t<csize;t++) { if(size==12)temp=FontHzk_12[pos][t]; //调用1206字体 else if(size==16)temp=FontHzk_16[pos][t]; //调用1608字体 else if(size==24)temp=FontHzk_24[pos][t]; //调用2412字体 else if(size==32)temp=FontHzk_32[pos][t]; //调用3216字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //显示BMP图片128×64 //起始点坐标(x,y),x的范围0~127,y为页的范围0~7 void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]) { u16 j=0; u8 x,y; if(y1%8==0)y=y1/8; else y=y1/8+1; for(y=y0;y<y1;y++) { OLED_Set_Pos(x0,y); for(x=x0;x<x1;x++) { OLED_WR_Byte(BMP[j++],OLED_DATA); } } } //GND 接电源地 //VCC 接5V或3.3v电源 //D0 接PD6(SCL) //D1 接PD7(SDA) //RES 接PD4 //DC 接PD5 //CS 接PD3 void OLED_Init() { GPIO_InitTypeDef GPIO_InitStructure; #if OLED_MODE==0 //4线SPI模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOC|RCC_AHB1Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_6;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOE,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOE,GPIO_Pin_2|GPIO_Pin_6); //拉高电平 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOC,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13); //拉高电平 OLED_Clear(); #endif #if OLED_MODE==1 //8080模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOC,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOD,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOD,GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); GPIO_InitStructure.GPIO_Pin = 0XFF; //PC0-7 GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_SetBits(GPIOC,0xFF); //PC0-7输出高 #endif #if OLED_MODE==2 //IIC模式 #endif OLED_RST=1; delay_ms(100); OLED_RST=0; delay_ms(100); OLED_RST=1; OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示 OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率 OLED_WR_Byte(80,OLED_CMD); //[3:0],分频因子;[7:4],震荡频率 OLED_WR_Byte(0xA8,OLED_CMD); //设置驱动路数 OLED_WR_Byte(0X3F,OLED_CMD); //默认0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //设置显示偏移 OLED_WR_Byte(0X00,OLED_CMD); //默认为0 OLED_WR_Byte(0x40,OLED_CMD); //设置显示开始行 [5:0],行数. OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置 OLED_WR_Byte(0x14,OLED_CMD); //bit2,开启/关闭 OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式 OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10; OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 OLED_WR_Byte(0xDA,OLED_CMD); //设置COM硬件引脚配置 OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置 OLED_WR_Byte(0x81,OLED_CMD); //对比度设置 OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认0X7F (亮度设置,越大越亮) OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期 OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //设置VCOMH 电压倍率 OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏) OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示 OLED_WR_Byte(0xAF,OLED_CMD); //开启显示 OLED_Clear(); } #ifndef _oled_H #define _oled_H #include "sys/system.h" #include "stdlib.h" #define WORD_SIZE 12 #define X_OFFSET_WORD 0 #define Y_OFFSET_WORD 0 #define X_OFFSTE_PIXEL 0 #define Y_OFFSTE_PIXEL 0 #if WORD_SIZE != 12 && WORD_SIZE != 16 && WORD_SIZE != 24 #define WORD_SIZE 12 #endif #if WORD_SIZE == 24 #define WORD_WIDTH 12 #define WORD_HIGH 24 #endif #if WORD_SIZE == 16 #define WORD_WIDTH 8 #define WORD_HIGH 16 #endif #if WORD_SIZE == 12 #define WORD_WIDTH 6 #define WORD_HIGH 12 #endif //OLED模式设置 //0:4线串行SPI模式 //1:并行8080模式 //2:IIC模式 #define OLED_MODE 0 #define SIZE 16 #define XLevelL 0x00 #define XLevelH 0x10 #define Max_Column 128 #define Max_Row 64 #define Brightness 0xFF #define X_WIDTH 128 #define Y_WIDTH 64 #if OLED_MODE==0 //OLDE-SPI4线控制管脚定义 #define OLED_SCL PCout(1) #define OLED_SDA PCout(0) #define OLED_RST PCout(13) #define OLED_DC PEout(6) #define OLED_CS PEout(2) #endif #if OLED_MODE==1 //OLDE-8080总线控制管脚定义 #define OLED_CS PDout(3) #define OLED_RST PDout(4) #define OLED_DC PDout(5) #define OLED_WR PDout(6) #define OLED_RD PDout(7) #define OLED_DATA_OUT(x) GPIO_Write(GPIOC,x);//输出 #endif #if OLED_MODE==2 //OLDE-IIC总线控制管脚定义 #endif #define OLED_CMD 0 //写命令 #define OLED_DATA 1 //写数据 //OLED控制用函数 void OLED_WR_Byte(u8 dat,u8 cmd); void OLED_Display_On(void); void OLED_Display_Off(void); void OLED_Set_Pos(unsigned char x, unsigned char y); void OLED_Init(void); void OLED_Refresh_Gram(void); void OLED_Clear(void); void OLED_DrawPoint(u8 x,u8 y,u8 t); void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2); void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2); void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot); void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size); void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size); void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode); void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]); #endif #include "tim.h" uint16_t TIM1_Impluse = 4200;//预设占空比 float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /*-----------------------------PA8,PA7------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA9,PB14------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA10,PB1------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ } //TIM1 static void TIM_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /*-----------------------------基本结构体------------------------------------*/ TIM_TimeBaseInitStructure.TIM_Period = (8400-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(10-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /*-----------------------------基本结构体------------------------------------*/ // 配置TIM1更新事件作为TRGO输出 TIM_SelectOutputTrigger(TIM1, TIM_TRGOSource_Update); /*-----------------------------输出比较------------------------------------*/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /*-----------------------------输出比较------------------------------------*/ /*-----------------------------死区刹车------------------------------------*/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 20; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /*-----------------------------死区刹车------------------------------------*/ TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /*-----------------------------中断------------------------------------*/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /*-----------------------------中断------------------------------------*/ } void TIM_Init(void) { TIM_NVIC_Config(); TIM_GPIO_Config(); TIM_Mode_Config(); } #include "./adc/bsp_adc.h" __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]={0}; float voltage1=0, voltage2=0, voltage3=0; float Vout_actual; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /*=====================通道1======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); /*=====================通道2======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK2,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT2, &GPIO_InitStructure); /*=====================通道3=======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK3,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT3, &GPIO_InitStructure); } static void ADC_Mode_Config(void) { DMA_InitTypeDef DMA_InitStructure; ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // ------------------DMA Init 结构体参数 初始化-------------------------- // ADC1使用DMA2,数据流0,通道0,这个是手册固定死的 // 开启DMA时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 外设基址为:ADC 数据寄存器地址 DMA_InitStructure.DMA_PeripheralBaseAddr = RHEOSTAT_ADC_DR_ADDR; // 存储器地址,实际上就是一个内部SRAM的变量 DMA_InitStructure.DMA_Memory0BaseAddr = (u32)ADC_ConvertedValue; // 数据传输方向为外设到存储器 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 缓冲区大小为,指一次传输的数据量 DMA_InitStructure.DMA_BufferSize = RHEOSTAT_NOFCHANEL; // 外设寄存器只有一个,地址不用递增 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 存储器地址固定 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // // 外设数据大小为半字,即两个字节 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 存储器数据大小也为半字,跟外设数据大小相同 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 循环传输模式 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // DMA 传输通道优先级为高,当使用一个DMA通道时,优先级设置不影响 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 禁止DMA FIFO ,使用直连模式 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // FIFO 大小,FIFO模式禁止时,这个不用配置 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 选择 DMA 通道,通道存在于流中 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; //初始化DMA流,流相当于一个大的管道,管道里面有很多通道 DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 使能DMA传输完成中断 DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC, ENABLE); // 使能DMA流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); // 开启ADC时钟 RCC_APB2PeriphClockCmd(ADC_CLK , ENABLE); // -------------------ADC Common 结构体 参数 初始化------------------------ // 独立ADC模式 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 时钟为fpclk x分频 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // 禁止DMA直接访问模式 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; // 采样时间间隔 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_20Cycles; ADC_CommonInit(&ADC_CommonInitStructure); // -------------------ADC Init 结构体 参数 初始化-------------------------- ADC_StructInit(&ADC_InitStructure); // ADC 分辨率 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 扫描模式,多通道采集需要 ADC_InitStructure.ADC_ScanConvMode = ENABLE; // 连续转换 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //禁止外部边沿触发 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising; //外部触发通道, ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; // TIM1触发; //数据右对齐 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //转换通道 1个 ADC_InitStructure.ADC_NbrOfConversion = RHEOSTAT_NOFCHANEL; ADC_Init(ADC_, &ADC_InitStructure); //--------------------------------------------------------------------------- // 配置 ADC 通道转换顺序和采样时间周期 ADC_RegularChannelConfig(ADC_, ADC_CHANNEL1, 1, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL2, 2, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL3, 3, ADC_SampleTime_15Cycles); // 使能DMA请求 after last transfer (Single-ADC mode) ADC_DMARequestAfterLastTransferCmd(ADC_, ENABLE); // 使能ADC DMA ADC_DMACmd(ADC_, ENABLE); // 使能ADC ADC_Cmd(ADC_, ENABLE); // //开始adc转换,软件触发 // ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //配置DMA NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority =1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } // 修改ADC读取函数 (adc部分) #define VOLTAGE_SCALE 4.0f // 根据实际分压电阻调整 (12V→3V分压) void ADC_Read(void) { // 正确计算电压值 (考虑分压比例) voltage1 = ADC_ConvertedValue[0] * 3.3f* 0.000244140625; Vout_actual= voltage1; } void Adc_Init(void) { ADC_GPIO_Config(); ADC_Mode_Config(); ADC_NVIC_Config(); } #ifndef __BSP_ADC_H #define __BSP_ADC_H #include "stm32f4xx.h" #define RHEOSTAT_NOFCHANEL 3 /*=====================通道1 IO======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOE #define ADC_GPIO_PIN1 GPIO_Pin_5 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOE #define ADC_CHANNEL1 ADC_Channel_15 /*=====================通道2 IO ======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT2 GPIOA #define ADC_GPIO_PIN2 GPIO_Pin_2 #define ADC_GPIO_CLK2 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL2 ADC_Channel_2 /*=====================通道3 IO ======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT3 GPIOA #define ADC_GPIO_PIN3 GPIO_Pin_3 #define ADC_GPIO_CLK3 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL3 ADC_Channel_3 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); void ADC_Read(void); #endif /* __BSP_ADC_H */ #include "pid.h" float kp, ki, kd; // PID参数 float last_error = 0,last_error_2 = 0 , last_output, setpoint, input, output; float pid_control(float KP , float KI , float KD , float Set_Point , float Now_Point) { kp = KP; ki = KI; kd = KD; setpoint = Set_Point; input = Now_Point; float error = setpoint - input; float delta_error = error - last_error; output += kp*delta_error + ki*error + kd*(error-2*last_error+last_error_2); last_error_2 = last_error; last_error = error; last_output = output; //输出限幅 if(output >= 100.0f ) output = 100.0f; return output; } #include "General_Tim.h" // 中断优先级配置 static void GENERAL_TIM_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; // 设置中断组为0 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); // 设置中断来源 NVIC_InitStructure.NVIC_IRQChannel =TIM2_IRQn ; // 设置主优先级为 0 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; // 设置抢占优先级为3 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } ///* // * 注意:TIM_TimeBaseInitTypeDef结构体里面有5个成员,TIM6和TIM7的寄存器里面只有 // * TIM_Prescaler和TIM_Period,所以使用TIM6和TIM7的时候只需初始化这两个成员即可, // * 另外三个成员是通用定时器和高级定时器才有. // *----------------------------------------------------------------------------- // *typedef struct // *{ TIM_Prescaler 都有 // * TIM_CounterMode TIMx,x[6,7]没有,其他都有 // * TIM_Period 都有 // * TIM_ClockDivision TIMx,x[6,7]没有,其他都有 // * TIM_RepetitionCounter TIMx,x[1,8,15,16,17]才有 // *}TIM_TimeBaseInitTypeDef; // *----------------------------------------------------------------------------- // */ static void GENERAL_TIM_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); // 1ms中断 (TIM2在APB1上,时钟84MHz) TIM_TimeBaseStructure.TIM_Period = 84000 - 1; // 84MHz/84000 = 1kHz TIM_TimeBaseStructure.TIM_Prescaler = 0; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_Cmd(TIM2, ENABLE); } void GENERAL_TIM_Init(void) { GENERAL_TIM_NVIC_Config(); GENERAL_TIM_Mode_Config(); } /*********************************************END OF FILE**********************/

下面这个buck闭环电路程序的oled屏亮不亮,下面是这个函数的代码#include "stm32f4xx.h" #include "./usart/bsp_usart.h" #include "delay.h" #include "sys.h" #include "PID.h" #include "math.h" #include "./adc/bsp_adc.h" #include "tim.h" #include "oled.h" #include "stdio.h" #include "stdlib.h" extern float voltage1, voltage2, voltage3; extern float Vout_actual; float Target= 25; // 目标输出电压25 float a; //extern __IO uint16_t ADC_ConvertedValue; extern uint16_t TIM_Advance_Impulse; int main(void) { OLED_Init(); // 首先初始化OLED TIM_Init(); PID_init(); Adc_Init(); while(1) { ADC_Read(); a= PID_DC( Target ,Vout_actual, 20.0f ); float six = 6; char str[40]; sprintf(str,"Vout_actual = %.3f",Vout_actual); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*1,(u8 *)str,WORD_SIZE); OLED_Refresh_Gram(); delay_us(100); sprintf(str,"six = %.3f",six); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*1,(u8 *)str,WORD_SIZE); OLED_Refresh_Gram(); delay_us(100); } } /*********************************************END OF FILE**********************/ pid文件:#include "stdio.h" #include "sys.h" #include "PID.h" //extern float V0,V1,V2; float duty=0; float pid_out=0; struct _pid { float SetSpeed; //定义设定值 float ActualSpeed; //定义实际值 float err; //定义偏差值 float err_last; //定义上一个偏差值 float Kp, Ki, Kd; //定义比例、积分、微分系数 float voltage; //定义电压值(控制执行器的变量) float integral; //定义积分值 float S; //返回值 }pid; void PID_init() { pid.SetSpeed = 0.0; pid.ActualSpeed = 0.0; pid.err = 0.0; pid.err_last = 0.0; pid.voltage = 0.0; pid.integral = 0.0; pid.Kp = 150; pid.Ki = 0.55; pid.Kd = 0; } float PID_realize(float speed, float Actual) { pid.SetSpeed = speed; //目标值 pid.ActualSpeed = Actual; //实际值 pid.err = pid.SetSpeed - pid.ActualSpeed; //误差 pid.integral += pid.err; //积分项误差相加 pid.voltage = pid.Kp * pid.err + pid.Ki * pid.integral + pid.Kd * (pid.err - pid.err_last); //计算结果 0.2*27+0.1* pid.err_last = pid.err; //更新误差 pid.S = pid.voltage * 1.0f; //计算结果 返回值 return pid.S; } float PID_DC( float goal ,float Actual,float k ) { Actual=Actual*k; pid_out = PID_realize(goal, Actual); duty+=pid_out; if(duty>=4200) duty=4200; if(duty<=-4200) duty=0; TIM_SetCompare1(TIM8,4200+duty) ; return pid_out; } pid.h #ifndef __PID_H #define __PID_H void PID_init(void);//PID参数初始化 float PID_realize(float speed, float Actual);//实现PID算法 float PID_DC( float goal ,float Actual,float k ); #endif adc模块:#include "./adc/bsp_adc.h" __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]={0}; float voltage1=0, voltage2=0, voltage3=0; float Vout_actual; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /*=====================通道1======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); /*=====================通道2======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK2,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT2, &GPIO_InitStructure); /*=====================通道3=======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK3,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT3, &GPIO_InitStructure); } static void ADC_Mode_Config(void) { DMA_InitTypeDef DMA_InitStructure; ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // ------------------DMA Init 结构体参数 初始化-------------------------- // ADC1使用DMA2,数据流0,通道0,这个是手册固定死的 // 开启DMA时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 外设基址为:ADC 数据寄存器地址 DMA_InitStructure.DMA_PeripheralBaseAddr = RHEOSTAT_ADC_DR_ADDR; // 存储器地址,实际上就是一个内部SRAM的变量 DMA_InitStructure.DMA_Memory0BaseAddr = (u32)ADC_ConvertedValue; // 数据传输方向为外设到存储器 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 缓冲区大小为,指一次传输的数据量 DMA_InitStructure.DMA_BufferSize = RHEOSTAT_NOFCHANEL; // 外设寄存器只有一个,地址不用递增 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 存储器地址固定 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // // 外设数据大小为半字,即两个字节 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 存储器数据大小也为半字,跟外设数据大小相同 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 循环传输模式 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // DMA 传输通道优先级为高,当使用一个DMA通道时,优先级设置不影响 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 禁止DMA FIFO ,使用直连模式 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // FIFO 大小,FIFO模式禁止时,这个不用配置 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 选择 DMA 通道,通道存在于流中 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; //初始化DMA流,流相当于一个大的管道,管道里面有很多通道 DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 使能DMA传输完成中断 DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC, ENABLE); // 使能DMA流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); // 开启ADC时钟 RCC_APB2PeriphClockCmd(ADC_CLK , ENABLE); // -------------------ADC Common 结构体 参数 初始化------------------------ // 独立ADC模式 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 时钟为fpclk x分频 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // 禁止DMA直接访问模式 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; // 采样时间间隔 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_20Cycles; ADC_CommonInit(&ADC_CommonInitStructure); // -------------------ADC Init 结构体 参数 初始化-------------------------- ADC_StructInit(&ADC_InitStructure); // ADC 分辨率 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 扫描模式,多通道采集需要 ADC_InitStructure.ADC_ScanConvMode = ENABLE; // 连续转换 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //禁止外部边沿触发 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; //外部触发通道,本例子使用软件触发,此值随便赋值即可 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; //数据右对齐 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //转换通道 1个 ADC_InitStructure.ADC_NbrOfConversion = RHEOSTAT_NOFCHANEL; ADC_Init(ADC_, &ADC_InitStructure); //--------------------------------------------------------------------------- // 配置 ADC 通道转换顺序和采样时间周期 ADC_RegularChannelConfig(ADC_, ADC_CHANNEL1, 1, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL2, 2, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL3, 3, ADC_SampleTime_15Cycles); // 使能DMA请求 after last transfer (Single-ADC mode) ADC_DMARequestAfterLastTransferCmd(ADC_, ENABLE); // 使能ADC DMA ADC_DMACmd(ADC_, ENABLE); // 使能ADC ADC_Cmd(ADC_, ENABLE); //开始adc转换,软件触发 ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); //配置DMA NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void ADC_Read(void) { voltage1=(float)ADC_ConvertedValue[0]*0.000244140625*3.3; voltage2=(float)ADC_ConvertedValue[1]*0.000244140625*3.3; voltage3=(float)ADC_ConvertedValue[2]*0.000244140625*3.3; Vout_actual = voltage1; } void Adc_Init(void) { ADC_GPIO_Config(); ADC_Mode_Config(); ADC_NVIC_Config(); } adc.h #ifndef __BSP_ADC_H #define __BSP_ADC_H #include "stm32f4xx.h" #define RHEOSTAT_NOFCHANEL 3 /*=====================通道1 IO======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOA #define ADC_GPIO_PIN1 GPIO_Pin_1 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL1 ADC_Channel_1 /*=====================通道2 IO ======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT2 GPIOA #define ADC_GPIO_PIN2 GPIO_Pin_2 #define ADC_GPIO_CLK2 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL2 ADC_Channel_2 /*=====================通道3 IO ======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT3 GPIOA #define ADC_GPIO_PIN3 GPIO_Pin_3 #define ADC_GPIO_CLK3 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL3 ADC_Channel_3 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); void ADC_Read(void); #endif /* __BSP_ADC_H */ tim文件 #include "tim.h" uint16_t TIM1_Impluse = 4200;//预设占空比 float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /*-----------------------------PA8,PA7------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA9,PB14------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA10,PB1------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ // TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; //模拟模式 pa6死刹 // TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6; //引脚 // TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 // TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 // TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; //浮空 // GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 } //TIM1 static void TIM_A1_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /*-----------------------------基本结构体------------------------------------*/ TIM_TimeBaseInitStructure.TIM_Period = (8400-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(1-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /*-----------------------------基本结构体------------------------------------*/ /*-----------------------------输出比较------------------------------------*/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /*-----------------------------输出比较------------------------------------*/ /*-----------------------------死区刹车------------------------------------*/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 20; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /*-----------------------------死区刹车------------------------------------*/ TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_A1_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /*-----------------------------中断------------------------------------*/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /*-----------------------------中断------------------------------------*/ } void TIM_Init(void) { TIM_A1_NVIC_Config(); TIM_GPIO_Config(); TIM_A1_Mode_Config(); } tim.h #ifndef __TIM_H #define __TIM_H #include "sys.h" void TIM_Init(void); #endif oled模块: #include "oled.h" #include "oledfont.h" #include "delay.h" //OLED的显存 //存放格式如下. //[0]0 1 2 3 ... 127 //[1]0 1 2 3 ... 127 //[2]0 1 2 3 ... 127 //[3]0 1 2 3 ... 127 //[4]0 1 2 3 ... 127 //[5]0 1 2 3 ... 127 //[6]0 1 2 3 ... 127 //[7]0 1 2 3 ... 127 u8 OLED_GRAM[128][8]; #if OLED_MODE==0 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; OLED_DC=cmd; OLED_CS=0; for(i=0;i<8;i++) { OLED_SCL=0; if(dat&0x80) OLED_SDA=1; else OLED_SDA=0; OLED_SCL=1; dat<<=1; } OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==1 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { OLED_DATA_OUT(dat); OLED_RST=cmd; OLED_CS=0; OLED_WR=0; OLED_WR=1; OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==2 void OLED_WR_Byte(u8 dat,u8 cmd) { } #endif //更新显存到LCD void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } void OLED_Set_Pos(unsigned char x, unsigned char y) { OLED_WR_Byte(0xb0+y,OLED_CMD); OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD); OLED_WR_Byte((x&0x0f)|0x01,OLED_CMD); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!! void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++) { for(n=0;n<128;n++) { OLED_GRAM[n][i]=0; } } OLED_Refresh_Gram();//更新显示 } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//超出范围了. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2) { u16 t; int xerr=0,yerr=0,delta_x,delta_y,distance; int incx,incy,uRow,uCol; delta_x=x2-x1; //计算坐标增量 delta_y=y2-y1; uRow=x1; uCol=y1; if(delta_x>0)incx=1; //设置单步方向 else if(delta_x==0)incx=0;//垂直线 else {incx=-1;delta_x=-delta_x;} if(delta_y>0)incy=1; else if(delta_y==0)incy=0;//水平线 else{incy=-1;delta_y=-delta_y;} if( delta_x>delta_y)distance=delta_x; //选取基本增量坐标轴 else distance=delta_y; for(t=0;t<=distance+1;t++ )//画线输出 { OLED_DrawPoint(uRow,uCol,1);//画点 xerr+=delta_x ; yerr+=delta_y ; if(xerr>distance) { xerr-=distance; uRow+=incx; } if(yerr>distance) { yerr-=distance; uCol+=incy; } } } void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2) { OLED_DrawLine(x1,y1,x2,y1); OLED_DrawLine(x1,y1,x1,y2); OLED_DrawLine(x1,y2,x2,y2); OLED_DrawLine(x2,y1,x2,y2); } //x1,y1,x2,y2 填充区域的对角坐标 //确保x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63 //dot:0,清空;1,填充 void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot) { u8 x,y; for(x=x1;x<=x2;x++) { for(y=y1;y<=y2;y++) { OLED_DrawPoint(x,y,dot); } } OLED_Refresh_Gram();//更新显示 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 12/16/24 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0)) * (size/2); //得到字体一个字符对应点阵集所占的字节数 chr=chr-' ';//得到偏移后的值 for(t=0;t<csize;t++) { if(size==12)temp=ascii_1206[chr][t]; //调用1206字体 else if(size==16)temp=ascii_1608[chr][t]; //调用1608字体 else if(size==24)temp=ascii_2412[chr][t]; //调用2412字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n函数 u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n--)result*=m; return result; } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //num:数值(0~4294967295); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) { if(temp==0) { OLED_ShowChar(x+(size/2)*t,y,' ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); } } //显示字符串 //x,y:起点坐标 //size:字体大小 //*p:字符串起始地址 void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size) { while((*p<='~')&&(*p>=' '))//判断是不是非法字符! { if(x>(128-(size/2))){x=0;y+=size;} if(y>(64-size)){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,size,1); x+=size/2; p++; } } //显示汉字 //x,y:起点坐标 //pos:数组位置汉字显示 //size:字体大小 //mode:0,反白显示;1,正常显示 void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0))*(size);//得到字体一个字符对应点阵集所占的字节数 if(size!=12&&size!=16&&size!=24&&size!=32)return; //不支持的size for(t=0;t<csize;t++) { if(size==12)temp=FontHzk_12[pos][t]; //调用1206字体 else if(size==16)temp=FontHzk_16[pos][t]; //调用1608字体 else if(size==24)temp=FontHzk_24[pos][t]; //调用2412字体 else if(size==32)temp=FontHzk_32[pos][t]; //调用3216字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //显示BMP图片128×64 //起始点坐标(x,y),x的范围0~127,y为页的范围0~7 void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]) { u16 j=0; u8 x,y; if(y1%8==0)y=y1/8; else y=y1/8+1; for(y=y0;y<y1;y++) { OLED_Set_Pos(x0,y); for(x=x0;x<x1;x++) { OLED_WR_Byte(BMP[j++],OLED_DATA); } } } //GND 接电源地 //VCC 接5V或3.3v电源 //D0 接PD6(SCL) //D1 接PD7(SDA) //RES 接PD4 //DC 接PD5 //CS 接PD3 void OLED_Init() { GPIO_InitTypeDef GPIO_InitStructure; #if OLED_MODE==0 //4线SPI模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOC|RCC_AHB1Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_6;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOE,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOE,GPIO_Pin_2|GPIO_Pin_6); //拉高电平 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOC,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13); //拉高电平 OLED_Clear(); #endif #if OLED_MODE==1 //8080模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOC,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOD,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOD,GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); GPIO_InitStructure.GPIO_Pin = 0XFF; //PC0-7 GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_SetBits(GPIOC,0xFF); //PC0-7输出高 #endif #if OLED_MODE==2 //IIC模式 #endif OLED_RST=1; delay_ms(100); OLED_RST=0; delay_ms(100); OLED_RST=1; OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示 OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率 OLED_WR_Byte(80,OLED_CMD); //[3:0],分频因子;[7:4],震荡频率 OLED_WR_Byte(0xA8,OLED_CMD); //设置驱动路数 OLED_WR_Byte(0X3F,OLED_CMD); //默认0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //设置显示偏移 OLED_WR_Byte(0X00,OLED_CMD); //默认为0 OLED_WR_Byte(0x40,OLED_CMD); //设置显示开始行 [5:0],行数. OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置 OLED_WR_Byte(0x14,OLED_CMD); //bit2,开启/关闭 OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式 OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10; OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 OLED_WR_Byte(0xDA,OLED_CMD); //设置COM硬件引脚配置 OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置 OLED_WR_Byte(0x81,OLED_CMD); //对比度设置 OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认0X7F (亮度设置,越大越亮) OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期 OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //设置VCOMH 电压倍率 OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏) OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示 OLED_WR_Byte(0xAF,OLED_CMD); //开启显示 OLED_Clear(); } oled.h #ifndef _oled_H #define _oled_H #include "sys/system.h" #include "stdlib.h" #define WORD_SIZE 12 #define X_OFFSET_WORD 0 #define Y_OFFSET_WORD 0 #define X_OFFSTE_PIXEL 0 #define Y_OFFSTE_PIXEL 0 #if WORD_SIZE != 12 && WORD_SIZE != 16 && WORD_SIZE != 24 #define WORD_SIZE 12 #endif #if WORD_SIZE == 24 #define WORD_WIDTH 12 #define WORD_HIGH 24 #endif #if WORD_SIZE == 16 #define WORD_WIDTH 8 #define WORD_HIGH 16 #endif #if WORD_SIZE == 12 #define WORD_WIDTH 6 #define WORD_HIGH 12 #endif //OLED模式设置 //0:4线串行SPI模式 //1:并行8080模式 //2:IIC模式 #define OLED_MODE 0 #define SIZE 16 #define XLevelL 0x00 #define XLevelH 0x10 #define Max_Column 128 #define Max_Row 64 #define Brightness 0xFF #define X_WIDTH 128 #define Y_WIDTH 64 #if OLED_MODE==0 //OLDE-SPI4线控制管脚定义 #define OLED_SCL PCout(1) #define OLED_SDA PCout(0) #define OLED_RST PCout(13) #define OLED_DC PEout(6) #define OLED_CS PEout(2) #endif #if OLED_MODE==1 //OLDE-8080总线控制管脚定义 #define OLED_CS PDout(3) #define OLED_RST PDout(4) #define OLED_DC PDout(5) #define OLED_WR PDout(6) #define OLED_RD PDout(7) #define OLED_DATA_OUT(x) GPIO_Write(GPIOC,x);//输出 #endif #if OLED_MODE==2 //OLDE-IIC总线控制管脚定义 #endif #define OLED_CMD 0 //写命令 #define OLED_DATA 1 //写数据 //OLED控制用函数 void OLED_WR_Byte(u8 dat,u8 cmd); void OLED_Display_On(void); void OLED_Display_Off(void); void OLED_Set_Pos(unsigned char x, unsigned char y); void OLED_Init(void); void OLED_Refresh_Gram(void); void OLED_Clear(void); void OLED_DrawPoint(u8 x,u8 y,u8 t); void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2); void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2); void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot); void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size); void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size); void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode); void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]); #endif stm32f4xx_it.c中断文件:/* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_it.h" #include "./usart/bsp_usart.h" #include "./adc/bsp_adc.h" #include "PID.h" /** @addtogroup STM32F429I_DISCOVERY_Examples * @{ */ /** @addtogroup FMC_SDRAM * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M4 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ extern uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; uint16_t TIM_Advance_Impulse ;//高级定时器占空比 extern float Vout_actual; float Vout_set; // 目标输出电压 extern float pid_out; void TIM1_UP_IRQHandler(void) { if(TIM_GetITStatus(TIM1,TIM_IT_Update) == SET) { pid_out = PID_DC(Vout_set, Vout_actual, 20.0f); TIM1->CCR1 = pid_out; TIM_ClearITPendingBit(TIM1, TIM_IT_Update); } } void DMA2_Stream0_IRQHandler(void) { // 检查传输完成中断标志 if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0) != RESET) { // 清除中断标志 DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); // 调用ADC_Read计算电压 ADC_Read(); } } //void ADC_IRQHandler(void) //{ // if(ADC_GetITStatus(ADC_,ADC_IT_EOC) == SET) // { // ADC_ConvertedValue = ADC_GetConversionValue(ADC_); // } // ADC_ClearITPendingBit(ADC_,ADC_IT_EOC); //} // void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) {} } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) {} } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) {} } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) {} /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) {} /** * @brief This function handles PendSV_Handler exception. * @param None * @retval None */ void PendSV_Handler(void) {} /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) {} /******************************************************************************/ /* STM32F4xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f429_439xx.s). */ /******************************************************************************/ void DEBUG_USART_IRQHandler(void) { uint8_t ucTemp; if(USART_GetITStatus(DEBUG_USART,USART_IT_RXNE)!=RESET) { ucTemp = USART_ReceiveData( DEBUG_USART ); USART_SendData(DEBUG_USART,ucTemp); } USART_ClearITPendingBit(USART1,USART_IT_IDLE); } //void ADVANCE_TIM_IRQHandler(void) //{ // if(TIM_GetITStatus(ADVANCE_TIM,TIM_IT_Update)==SET) //溢出中断 // { // Get_AUTO_RST_Mode_Data(value,8); //自动扫描模式,自动扫描并转换8通道。转换数据存与Value数组中 // printf("\r\n试一试\r\n"); // } // TIM_ClearITPendingBit(ADVANCE_TIM,TIM_IT_Update); //清除中断标志位 //} /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

抱歉我想说我各个函数的名字是这样的,为什么要把我程序的名字换掉,不准换且我希望我的程序井然有序,main.c中程序精炼而少,最大程度上简化,而stm32f4xx_it.c文件专门用来放中断,而其他的文件也有专门发各自的程序,但一定要保证buck电路的稳压作用,#include “stm32f4xx.h” #include “delay.h” #include “oled.h” #include “stdio.h” #include “stdlib.h” #include “arm_math.h” #include “pid.h” #include “./adc/bsp_adc.h” #include “tim.h” extern float voltage1, voltage2, voltage3; extern float Vout_actual; float Target= 12; // 目标输出电压12 int main(void) { // 3. 初始化外设 OLED_Init(); delay_ms(500); // 确保OLED完全启动 Adc_Init(); TIM_Init(); // TIM1中断已禁用 uint32_t last_pid_time = 0; char str[40]; const uint32_t pid_interval = 1; // 改为1ms while(1) { ADC_Read(); char str[40]; sprintf(str, "Vout: %.2fV", Vout_actual); OLED_ShowString(0, 1, (u8*)str, 12); OLED_Refresh_Gram(); delay_ms(1); } } #include “stm32f4xx_it.h” #include “oled.h” #include <math.h> #include “./adc/bsp_adc.h” #include “pid.h” //uint16_t TIM_Advance_Impulse ;//高级定时器占空比 extern float Vout_actual; extern float Target ; // 目标输出电压 float pid_out; volatile uint32_t tim1_update_count = 0; #define PID_CALC_INTERVAL 20 // 每20次中断(即1ms,如果中断频率20kHz)计算一次 // 简化中断处理函数 void TIM1_UP_IRQHandler(void) { if (TIM_GetITStatus(TIM1, TIM_IT_Update)) { ADC_Read(); pid_out = pid_control(0.8f, 0.05f, 0.02f, Target, Vout_actual); TIM1->CCR1 = pid_out ; TIM_ClearITPendingBit(TIM1, TIM_IT_Update); } } void DMA2_Stream0_IRQHandler(void) { if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0) != RESET) { DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); } } void NMI_Handler(void) { } void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs / while (1) {} } void BusFault_Handler(void) { / Go to infinite loop when Bus Fault exception occurs / while (1) {} } void UsageFault_Handler(void) { / Go to infinite loop when Usage Fault exception occurs */ while (1) {} } void DebugMon_Handler(void) { } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { } #include “delay.h” #include “core_cm4.h” #include “misc.h” // couter 减1的时间 等于 1/systick_clk // 当counter 从 reload 的值减小到0的时候,为一个循环,如果开启了中断则执行中断服务程序, // 同时 CTRL 的 countflag 位会置1 // 这一个循环的时间为 reload * (1/systick_clk) void delay_us( __IO uint32_t us) { uint32_t i; SysTick_Config(SystemCoreClock/1000000); for(i=0;i<us;i++) { // 当计数器的值减小到0的时候,CRTL寄存器的位16会置1 while( !((SysTick->CTRL)&(1<<16)) ); } // 关闭SysTick定时器 SysTick->CTRL &=~SysTick_CTRL_ENABLE_Msk; } void delay_ms( __IO uint32_t ms) { uint32_t i; SysTick_Config(SystemCoreClock/1000); for(i=0;i<ms;i++) { // 当计数器的值减小到0的时候,CRTL寄存器的位16会置1 // 当置1时,读取该位会清0 while( !((SysTick->CTRL)&(1<<16)) ); } // 关闭SysTick定时器 SysTick->CTRL &=~ SysTick_CTRL_ENABLE_Msk; } /***********************END OF FILE/ #include “oled.h” #include “oledfont.h” #include “delay.h” //OLED的显存 //存放格式如下. //[0]0 1 2 3 … 127 //[1]0 1 2 3 … 127 //[2]0 1 2 3 … 127 //[3]0 1 2 3 … 127 //[4]0 1 2 3 … 127 //[5]0 1 2 3 … 127 //[6]0 1 2 3 … 127 //[7]0 1 2 3 … 127 u8 OLED_GRAM[128][8]; #if OLED_MODE==0 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; OLED_DC=cmd; OLED_CS=0; for(i=0;i<8;i++) { OLED_SCL=0; if(dat&0x80) OLED_SDA=1; else OLED_SDA=0; OLED_SCL=1; dat<<=1; } OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==1 //向SSD1106写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { OLED_DATA_OUT(dat); OLED_RST=cmd; OLED_CS=0; OLED_WR=0; OLED_WR=1; OLED_CS=1; OLED_DC=1; } #endif #if OLED_MODE==2 void OLED_WR_Byte(u8 dat,u8 cmd) { } #endif //更新显存到LCD void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } void OLED_Set_Pos(unsigned char x, unsigned char y) { OLED_WR_Byte(0xb0+y,OLED_CMD); OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD); OLED_WR_Byte((x&0x0f)|0x01,OLED_CMD); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!! void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++) { for(n=0;n<128;n++) { OLED_GRAM[n][i]=0; } } OLED_Refresh_Gram();//更新显示 } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//超出范围了. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } void OLED_DrawLine(u8 x1, u8 y1, u8 x2, u8 y2) { u16 t; int xerr=0,yerr=0,delta_x,delta_y,distance; int incx,incy,uRow,uCol; delta_x=x2-x1; //计算坐标增量 delta_y=y2-y1; uRow=x1; uCol=y1; if(delta_x>0)incx=1; //设置单步方向 else if(delta_x==0)incx=0;//垂直线 else {incx=-1;delta_x=-delta_x;} if(delta_y>0)incy=1; else if(delta_y==0)incy=0;//水平线 else{incy=-1;delta_y=-delta_y;} if( delta_x>delta_y)distance=delta_x; //选取基本增量坐标轴 else distance=delta_y; for(t=0;t<=distance+1;t++ )//画线输出 { OLED_DrawPoint(uRow,uCol,1);//画点 xerr+=delta_x ; yerr+=delta_y ; if(xerr>distance) { xerr-=distance; uRow+=incx; } if(yerr>distance) { yerr-=distance; uCol+=incy; } } } void OLED_DrawRectangle(u8 x1, u8 y1, u8 x2, u8 y2) { OLED_DrawLine(x1,y1,x2,y1); OLED_DrawLine(x1,y1,x1,y2); OLED_DrawLine(x1,y2,x2,y2); OLED_DrawLine(x2,y1,x2,y2); } //x1,y1,x2,y2 填充区域的对角坐标 //确保x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63 //dot:0,清空;1,填充 void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot) { u8 x,y; for(x=x1;x<=x2;x++) { for(y=y1;y<=y2;y++) { OLED_DrawPoint(x,y,dot); } } OLED_Refresh_Gram();//更新显示 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 12/16/24 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0)) * (size/2); //得到字体一个字符对应点阵集所占的字节数 chr=chr-’ ';//得到偏移后的值 for(t=0;t<csize;t++) { if(size12)temp=ascii_1206[chr][t]; //调用1206字体 else if(size16)temp=ascii_1608[chr][t]; //调用1608字体 else if(size==24)temp=ascii_2412[chr][t]; //调用2412字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n函数 u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n–)result*=m; return result; } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //num:数值(0~4294967295); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow0&&t<(len-1)) { if(temp0) { OLED_ShowChar(x+(size/2)*t,y,’ ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); } } //显示字符串 //x,y:起点坐标 //size:字体大小 //*p:字符串起始地址 void OLED_ShowString(u8 x,u8 y,const u8 *p,u8 size) { while((*p<=‘~’)&&(*p>=’ '))//判断是不是非法字符! { if(x>(128-(size/2))){x=0;y+=size;} if(y>(64-size)){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,size,1); x+=size/2; p++; } } //显示汉字 //x,y:起点坐标 //pos:数组位置汉字显示 //size:字体大小 //mode:0,反白显示;1,正常显示 void OLED_ShowFontHZ(u8 x,u8 y,u8 pos,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; u8 csize=(size/8+((size%8)?1:0))*(size);//得到字体一个字符对应点阵集所占的字节数 if(size!=12&&size!=16&&size!=24&&size!=32)return; //不支持的size for(t=0;t<csize;t++) { if(size==12)temp=FontHzk_12[pos][t]; //调用1206字体 else if(size==16)temp=FontHzk_16[pos][t]; //调用1608字体 else if(size==24)temp=FontHzk_24[pos][t]; //调用2412字体 else if(size==32)temp=FontHzk_32[pos][t]; //调用3216字体 else return; //没有的字库 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //显示BMP图片128×64 //起始点坐标(x,y),x的范围0~127,y为页的范围0~7 void OLED_DrawBMP(u8 x0, u8 y0,u8 x1, u8 y1,u8 BMP[]) { u16 j=0; u8 x,y; if(y1%8==0)y=y1/8; else y=y1/8+1; for(y=y0;y<y1;y++) { OLED_Set_Pos(x0,y); for(x=x0;x<x1;x++) { OLED_WR_Byte(BMP[j++],OLED_DATA); } } } //GND 接电源地 //VCC 接5V或3.3v电源 //D0 接PD6(SCL) //D1 接PD7(SDA) //RES 接PD4 //DC 接PD5 //CS 接PD3 void OLED_Init() { GPIO_InitTypeDef GPIO_InitStructure; #if OLED_MODE==0 //4线SPI模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOC|RCC_AHB1Periph_GPIOA,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_2|GPIO_Pin_6;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOE,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOE,GPIO_Pin_2|GPIO_Pin_6); //拉高电平 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_NOPULL;//不拉 GPIO_Init(GPIOC,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOC,GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_13); //拉高电平 OLED_Clear(); #endif #if OLED_MODE==1 //8080模式 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOC,ENABLE); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_OUT; //输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOD,&GPIO_InitStructure); //初始化结构体 GPIO_SetBits(GPIOD,GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7); GPIO_InitStructure.GPIO_Pin = 0XFF; //PC0-7 GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_SetBits(GPIOC,0xFF); //PC0-7输出高 #endif #if OLED_MODE==2 //IIC模式 #endif OLED_RST=1; delay_ms(100); OLED_RST=0; delay_ms(100); OLED_RST=1; OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示 OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率 OLED_WR_Byte(80,OLED_CMD); //[3:0],分频因子;[7:4],震荡频率 OLED_WR_Byte(0xA8,OLED_CMD); //设置驱动路数 OLED_WR_Byte(0X3F,OLED_CMD); //默认0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //设置显示偏移 OLED_WR_Byte(0X00,OLED_CMD); //默认为0 OLED_WR_Byte(0x40,OLED_CMD); //设置显示开始行 [5:0],行数. OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置 OLED_WR_Byte(0x14,OLED_CMD); //bit2,开启/关闭 OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式 OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10; OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 OLED_WR_Byte(0xDA,OLED_CMD); //设置COM硬件引脚配置 OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置 OLED_WR_Byte(0x81,OLED_CMD); //对比度设置 OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认0X7F (亮度设置,越大越亮) OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期 OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //设置VCOMH 电压倍率 OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏) OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示 OLED_WR_Byte(0xAF,OLED_CMD); //开启显示 OLED_Clear(); } #include “tim.h” uint16_t TIM1_Impluse = 4200;//预设占空比 float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /-----------------------------PA8,PA7------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ /-----------------------------PA9,PB14------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ /-----------------------------PA10,PB1------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ // TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; //模拟模式 pa6死刹 // TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6; //引脚 // TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 // TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 // TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; //浮空 // GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 } //TIM1 static void TIM_A1_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /-----------------------------基本结构体------------------------------------/ TIM_TimeBaseInitStructure.TIM_Period = (8400-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(10-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /-----------------------------基本结构体------------------------------------/ /-----------------------------输出比较------------------------------------/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /-----------------------------输出比较------------------------------------/ /-----------------------------死区刹车------------------------------------/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 20; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /-----------------------------死区刹车------------------------------------/ TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_A1_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /-----------------------------中断------------------------------------/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=14; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /-----------------------------中断------------------------------------/ } void TIM_Init(void) { //TIM_A1_NVIC_Config(); TIM_GPIO_Config(); TIM_A1_Mode_Config(); } #ifndef _system_H #define _system_H #include “stm32f4xx.h” //位带操作,实现类似51的IO口控制功能 //具体实现思想,参考<<CM3权威指南>>第五章(87页~92页).M4同M3类似,只是寄存器地址变了. //IO口操作宏定义 #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) #define MEM_ADDR(addr) *((volatile unsigned long *)(addr)) #define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum)) //IO口地址映射 #define GPIOA_ODR_Addr (GPIOA_BASE+20) //0x40020014 #define GPIOB_ODR_Addr (GPIOB_BASE+20) //0x40020414 #define GPIOC_ODR_Addr (GPIOC_BASE+20) //0x40020814 #define GPIOD_ODR_Addr (GPIOD_BASE+20) //0x40020C14 #define GPIOE_ODR_Addr (GPIOE_BASE+20) //0x40021014 #define GPIOF_ODR_Addr (GPIOF_BASE+20) //0x40021414 #define GPIOG_ODR_Addr (GPIOG_BASE+20) //0x40021814 #define GPIOH_ODR_Addr (GPIOH_BASE+20) //0x40021C14 #define GPIOI_ODR_Addr (GPIOI_BASE+20) //0x40022014 #define GPIOA_IDR_Addr (GPIOA_BASE+16) //0x40020010 #define GPIOB_IDR_Addr (GPIOB_BASE+16) //0x40020410 #define GPIOC_IDR_Addr (GPIOC_BASE+16) //0x40020810 #define GPIOD_IDR_Addr (GPIOD_BASE+16) //0x40020C10 #define GPIOE_IDR_Addr (GPIOE_BASE+16) //0x40021010 #define GPIOF_IDR_Addr (GPIOF_BASE+16) //0x40021410 #define GPIOG_IDR_Addr (GPIOG_BASE+16) //0x40021810 #define GPIOH_IDR_Addr (GPIOH_BASE+16) //0x40021C10 #define GPIOI_IDR_Addr (GPIOI_BASE+16) //0x40022010 //IO口操作,只对单一的IO口 //确保n的值小于16 #define PAout(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出 #define PAin(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入 #define PBout(n) BIT_ADDR(GPIOB_ODR_Addr,n) //输出 #define PBin(n) BIT_ADDR(GPIOB_IDR_Addr,n) //输入 #define PCout(n) BIT_ADDR(GPIOC_ODR_Addr,n) //输出 #define PCin(n) BIT_ADDR(GPIOC_IDR_Addr,n) //输入 #define PDout(n) BIT_ADDR(GPIOD_ODR_Addr,n) //输出 #define PDin(n) BIT_ADDR(GPIOD_IDR_Addr,n) //输入 #define PEout(n) BIT_ADDR(GPIOE_ODR_Addr,n) //输出 #define PEin(n) BIT_ADDR(GPIOE_IDR_Addr,n) //输入 #define PFout(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出 #define PFin(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入 #define PGout(n) BIT_ADDR(GPIOG_ODR_Addr,n) //输出 #define PGin(n) BIT_ADDR(GPIOG_IDR_Addr,n) //输入 #define PHout(n) BIT_ADDR(GPIOH_ODR_Addr,n) //输出 #define PHin(n) BIT_ADDR(GPIOH_IDR_Addr,n) //输入 #define PIout(n) BIT_ADDR(GPIOI_ODR_Addr,n) //输出 #define PIin(n) BIT_ADDR(GPIOI_IDR_Addr,n) //输入 typedef struct { float target_voltage; float actual_voltage; float pid_output; uint32_t last_pid_time; uint32_t last_display_time; uint8_t adc_ready; // ADC数据就绪标志 } SystemState; extern SystemState sys_state; #endif #include “./adc/bsp_adc.h” __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]={0}; float voltage1=0, voltage2=0, voltage3=0; float Vout_actual; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /=通道1==/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); /*=====================通道2======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK2,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT2, &GPIO_InitStructure); /*=====================通道3=======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK3,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT3, &GPIO_InitStructure); } static void ADC_Mode_Config(void) { DMA_InitTypeDef DMA_InitStructure; ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // ------------------DMA Init 结构体参数 初始化-------------------------- // ADC1使用DMA2,数据流0,通道0,这个是手册固定死的 // 开启DMA时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 外设基址为:ADC 数据寄存器地址 DMA_InitStructure.DMA_PeripheralBaseAddr = RHEOSTAT_ADC_DR_ADDR; // 存储器地址,实际上就是一个内部SRAM的变量 DMA_InitStructure.DMA_Memory0BaseAddr = (u32)ADC_ConvertedValue; // 数据传输方向为外设到存储器 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 缓冲区大小为,指一次传输的数据量 DMA_InitStructure.DMA_BufferSize = RHEOSTAT_NOFCHANEL; // 外设寄存器只有一个,地址不用递增 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 存储器地址固定 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // // 外设数据大小为半字,即两个字节 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 存储器数据大小也为半字,跟外设数据大小相同 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 循环传输模式 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // DMA 传输通道优先级为高,当使用一个DMA通道时,优先级设置不影响 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 禁止DMA FIFO ,使用直连模式 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // FIFO 大小,FIFO模式禁止时,这个不用配置 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 选择 DMA 通道,通道存在于流中 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; //初始化DMA流,流相当于一个大的管道,管道里面有很多通道 DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 使能DMA传输完成中断 DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC, ENABLE); // 使能DMA流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); // 开启ADC时钟 RCC_APB2PeriphClockCmd(ADC_CLK , ENABLE); // -------------------ADC Common 结构体 参数 初始化------------------------ // 独立ADC模式 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 时钟为fpclk x分频 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // 禁止DMA直接访问模式 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; // 采样时间间隔 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_20Cycles; ADC_CommonInit(&ADC_CommonInitStructure); // -------------------ADC Init 结构体 参数 初始化-------------------------- ADC_StructInit(&ADC_InitStructure); // ADC 分辨率 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 扫描模式,多通道采集需要 ADC_InitStructure.ADC_ScanConvMode = ENABLE; // 连续转换 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //禁止外部边沿触发 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; //外部触发通道,本例子使用软件触发,此值随便赋值即可 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; //数据右对齐 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //转换通道 1个 ADC_InitStructure.ADC_NbrOfConversion = RHEOSTAT_NOFCHANEL; ADC_Init(ADC_, &ADC_InitStructure); //--------------------------------------------------------------------------- // 配置 ADC 通道转换顺序和采样时间周期 ADC_RegularChannelConfig(ADC_, ADC_CHANNEL1, 1, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL2, 2, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL3, 3, ADC_SampleTime_15Cycles); // 使能DMA请求 after last transfer (Single-ADC mode) ADC_DMARequestAfterLastTransferCmd(ADC_, ENABLE); // 使能ADC DMA ADC_DMACmd(ADC_, ENABLE); // 使能ADC ADC_Cmd(ADC_, ENABLE); //开始adc转换,软件触发 ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //配置DMA NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority =6; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } // 修改ADC读取函数 (adc部分) #define VOLTAGE_SCALE 4.0f // 根据实际分压电阻调整 (12V→3V分压) void ADC_Read(void) { // 正确计算电压值 (考虑分压比例) voltage1 = ADC_ConvertedValue[0] * 3.3f* 0.000244140625; Vout_actual= voltage1; } void Adc_Init(void) { ADC_GPIO_Config(); ADC_Mode_Config(); ADC_NVIC_Config(); } #ifndef __BSP_ADC_H #define __BSP_ADC_H #include “stm32f4xx.h” #define RHEOSTAT_NOFCHANEL 3 /=通道1 IO==/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOE #define ADC_GPIO_PIN1 GPIO_Pin_5 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOE #define ADC_CHANNEL1 ADC_Channel_15 /=====================通道2 IO ======================/ // ADC IO宏定义 #define ADC_GPIO_PORT2 GPIOA #define ADC_GPIO_PIN2 GPIO_Pin_2 #define ADC_GPIO_CLK2 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL2 ADC_Channel_2 /=====================通道3 IO ======================/ // ADC IO宏定义 #define ADC_GPIO_PORT3 GPIOA #define ADC_GPIO_PIN3 GPIO_Pin_3 #define ADC_GPIO_CLK3 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL3 ADC_Channel_3 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); void ADC_Read(void); #endif /* __BSP_ADC_H */ #include “pid.h” #include <math.h> #include “system.h” // 辅助函数:限制数值范围 static float constrain(float value, float min, float max) { if (value < min) return min; if (value > max) return max; return value; } float pid_control(float KP, float KI, float KD, float setpoint, float input) { static float integral = 0; static float prev_error = 0; float error = setpoint - input; // 积分抗饱和:只在误差较小时积分 if (fabs(error) < 2.0f) { integral += error; } // 积分限幅 integral = constrain(integral, -50.0f, 50.0f); // 微分项 float derivative = error - prev_error; prev_error = error; // PID计算 float output = KP * error + KI * integral + KD * derivative; // 输出限幅 (0-100%) return constrain(output, 0.0f, 100.0f); }

最新推荐

recommend-type

langchain4j-anthropic-spring-boot-starter-0.31.0.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

TMS320F28335电机控制程序详解:BLDC、PMSM无感有感及异步VF源代码与开发资料

TMS320F28335这款高性能数字信号处理器(DSP)在电机控制领域的应用,涵盖了BLDC(无刷直流电机)、PMSM(永磁同步电机)的无感有感控制以及异步VF(变频调速)程序。文章不仅解释了各类型的电机控制原理,还提供了完整的开发资料,包括源代码、原理图和说明文档,帮助读者深入了解其工作原理和编程技巧。 适合人群:从事电机控制系统开发的技术人员,尤其是对TMS320F28335感兴趣的工程师。 使用场景及目标:适用于需要掌握TMS320F28335在不同电机控制应用场景下具体实现方法的专业人士,旨在提高他们对该微控制器的理解和实际操作能力。 其他说明:文中提供的开发资料为读者提供了从硬件到软件的全面支持,有助于加速项目开发进程并提升系统性能。
recommend-type

Visual C++.NET编程技术实战指南

根据提供的文件信息,可以生成以下知识点: ### Visual C++.NET编程技术体验 #### 第2章 定制窗口 - **设置窗口风格**:介绍了如何通过编程自定义窗口的外观和行为。包括改变窗口的标题栏、边框样式、大小和位置等。这通常涉及到Windows API中的`SetWindowLong`和`SetClassLong`函数。 - **创建六边形窗口**:展示了如何创建一个具有特殊形状边界的窗口,这类窗口不遵循标准的矩形形状。它需要使用`SetWindowRgn`函数设置窗口的区域。 - **创建异形窗口**:扩展了定制窗口的内容,提供了创建非标准形状窗口的方法。这可能需要创建一个不规则的窗口区域,并将其应用到窗口上。 #### 第3章 菜单和控制条高级应用 - **菜单编程**:讲解了如何创建和修改菜单项,处理用户与菜单的交互事件,以及动态地添加或删除菜单项。 - **工具栏编程**:阐述了如何使用工具栏,包括如何创建工具栏按钮、分配事件处理函数,并实现工具栏按钮的响应逻辑。 - **状态栏编程**:介绍了状态栏的创建、添加不同类型的指示器(如文本、进度条等)以及状态信息的显示更新。 - **为工具栏添加皮肤**:展示了如何为工具栏提供更加丰富的视觉效果,通常涉及到第三方的控件库或是自定义的绘图代码。 #### 第5章 系统编程 - **操作注册表**:解释了Windows注册表的结构和如何通过程序对其进行读写操作,这对于配置软件和管理软件设置非常关键。 - **系统托盘编程**:讲解了如何在系统托盘区域创建图标,并实现最小化到托盘、从托盘恢复窗口的功能。 - **鼠标钩子程序**:介绍了钩子(Hook)技术,特别是鼠标钩子,如何拦截和处理系统中的鼠标事件。 - **文件分割器**:提供了如何将文件分割成多个部分,并且能够重新组合文件的技术示例。 #### 第6章 多文档/多视图编程 - **单文档多视**:展示了如何在同一个文档中创建多个视图,这在文档编辑软件中非常常见。 #### 第7章 对话框高级应用 - **实现无模式对话框**:介绍了无模式对话框的概念及其应用场景,以及如何实现和管理无模式对话框。 - **使用模式属性表及向导属性表**:讲解了属性表的创建和使用方法,以及如何通过向导性质的对话框引导用户完成多步骤的任务。 - **鼠标敏感文字**:提供了如何实现点击文字触发特定事件的功能,这在阅读器和编辑器应用中很有用。 #### 第8章 GDI+图形编程 - **图像浏览器**:通过图像浏览器示例,展示了GDI+在图像处理和展示中的应用,包括图像的加载、显示以及基本的图像操作。 #### 第9章 多线程编程 - **使用全局变量通信**:介绍了在多线程环境下使用全局变量进行线程间通信的方法和注意事项。 - **使用Windows消息通信**:讲解了通过消息队列在不同线程间传递信息的技术,包括发送消息和处理消息。 - **使用CriticalSection对象**:阐述了如何使用临界区(CriticalSection)对象防止多个线程同时访问同一资源。 - **使用Mutex对象**:介绍了互斥锁(Mutex)的使用,用以同步线程对共享资源的访问,保证资源的安全。 - **使用Semaphore对象**:解释了信号量(Semaphore)对象的使用,它允许一个资源由指定数量的线程同时访问。 #### 第10章 DLL编程 - **创建和使用Win32 DLL**:介绍了如何创建和链接Win32动态链接库(DLL),以及如何在其他程序中使用这些DLL。 - **创建和使用MFC DLL**:详细说明了如何创建和使用基于MFC的动态链接库,适用于需要使用MFC类库的场景。 #### 第11章 ATL编程 - **简单的非属性化ATL项目**:讲解了ATL(Active Template Library)的基础使用方法,创建一个不使用属性化组件的简单项目。 - **使用ATL开发COM组件**:详细阐述了使用ATL开发COM组件的步骤,包括创建接口、实现类以及注册组件。 #### 第12章 STL编程 - **list编程**:介绍了STL(标准模板库)中的list容器的使用,讲解了如何使用list实现复杂数据结构的管理。 #### 第13章 网络编程 - **网上聊天应用程序**:提供了实现基本聊天功能的示例代码,包括客户端和服务器的通信逻辑。 - **简单的网页浏览器**:演示了如何创建一个简单的Web浏览器程序,涉及到网络通信和HTML解析。 - **ISAPI服务器扩展编程**:介绍了如何开发ISAPI(Internet Server API)服务器扩展来扩展IIS(Internet Information Services)的功能。 #### 第14章 数据库编程 - **ODBC数据库编程**:解释了ODBC(开放数据库互联)的概念,并提供了使用ODBC API进行数据库访问的示例。 - **ADO编程**:介绍了ADO(ActiveX Data Objects)技术,讲解了如何使用ADO进行数据库的增删改查等操作。 #### 第15章 HTML帮助系统编程 - **创建HTML帮助文件**:讲解了如何创建HTML帮助文件(.chm),这是微软帮助系统的一种形式。 - **区分上下文帮助**:提供了在应用程序中实现上下文敏感帮助的技术示例。 #### 第16章 安装和部署项目 - **用安装程序向导创建安装项目**:介绍了如何使用Visual Studio中的安装和部署项目向导,快速创建安装程序。 - **部署应用程序**:阐述了部署应用程序到目标系统的过程,以及如何确保应用程序的正确安装和运行。 以上内容涵盖了Visual C++.NET编程技术体验一书中涉及的各个技术点,并对每个章节中的示例做了详细的说明。这些知识点对于理解和掌握Visual C++.NET编程非常重要,并能够帮助读者在实际项目开发中应用这些技术。
recommend-type

HarmonyOS内核深度探秘:优化自由行旅游系统的策略

# 1. HarmonyOS内核概述与旅游系统需求分析 ## 1.1 HarmonyOS内核概述 HarmonyOS(鸿蒙操作系统)是由华为开发的一个分布式操作系统,旨在提供跨多种设备的无缝体验。其内核设计理念强调高效、安全和模块化,以微内核架构和分布式能力
recommend-type

tkinter模块所有控件

<think>好的,我现在需要回答用户关于Tkinter模块中所有控件列表的问题。首先,我需要回忆Tkinter的基础知识,确保自己了解各个控件的名称和用途。用户希望得到所有支持的控件列表,所以必须全面覆盖,不能遗漏。 首先,我应该从Tkinter的标准控件开始。常见的控件包括Label、Button、Entry这些基础部件。然后是Frame,用于布局,还有Canvas用于绘图。接下来是Checkbutton、Radiobutton,这些属于选择类控件。Listbox和Scrollbar通常一起使用,处理滚动内容。还有Scale(滑块)、Spinbox、Menu、Menubutton这些可能
recommend-type

局域网五子棋游戏:娱乐与聊天的完美结合

标题“网络五子棋”和描述“适合于局域网之间娱乐和聊天!”以及标签“五子棋 网络”所涉及的知识点主要围绕着五子棋游戏的网络版本及其在局域网中的应用。以下是详细的知识点: 1. 五子棋游戏概述: 五子棋是一种两人对弈的纯策略型棋类游戏,又称为连珠、五子连线等。游戏的目标是在一个15x15的棋盘上,通过先后放置黑白棋子,使得任意一方先形成连续五个同色棋子的一方获胜。五子棋的规则简单,但策略丰富,适合各年龄段的玩家。 2. 网络五子棋的意义: 网络五子棋是指可以在互联网或局域网中连接进行对弈的五子棋游戏版本。通过网络版本,玩家不必在同一地点即可进行游戏,突破了空间限制,满足了现代人们快节奏生活的需求,同时也为玩家们提供了与不同对手切磋交流的机会。 3. 局域网通信原理: 局域网(Local Area Network,LAN)是一种覆盖较小范围如家庭、学校、实验室或单一建筑内的计算机网络。它通过有线或无线的方式连接网络内的设备,允许用户共享资源如打印机和文件,以及进行游戏和通信。局域网内的计算机之间可以通过网络协议进行通信。 4. 网络五子棋的工作方式: 在局域网中玩五子棋,通常需要一个客户端程序(如五子棋.exe)和一个服务器程序。客户端负责显示游戏界面、接受用户输入、发送落子请求给服务器,而服务器负责维护游戏状态、处理玩家的游戏逻辑和落子请求。当一方玩家落子时,客户端将该信息发送到服务器,服务器确认无误后将更新后的棋盘状态传回给所有客户端,更新显示。 5. 五子棋.exe程序: 五子棋.exe是一个可执行程序,它使得用户可以在个人计算机上安装并运行五子棋游戏。该程序可能包含了游戏的图形界面、人工智能算法(如果支持单机对战AI的话)、网络通信模块以及游戏规则的实现。 6. put.wav文件: put.wav是一个声音文件,很可能用于在游戏进行时提供声音反馈,比如落子声。在网络环境中,声音文件可能被用于提升玩家的游戏体验,尤其是在局域网多人游戏场景中。当玩家落子时,系统会播放.wav文件中的声音,为游戏增添互动性和趣味性。 7. 网络五子棋的技术要求: 为了确保多人在线游戏的顺利进行,网络五子棋需要具备一些基本的技术要求,包括但不限于稳定的网络连接、高效的数据传输协议(如TCP/IP)、以及安全的数据加密措施(如果需要的话)。此外,还需要有一个良好的用户界面设计来提供直观和舒适的用户体验。 8. 社交与娱乐: 网络五子棋除了是一个娱乐游戏外,它还具有社交功能。玩家可以通过游戏内的聊天系统进行交流,分享经验和策略,甚至通过网络寻找新的朋友。这使得网络五子棋不仅是一个个人娱乐工具,同时也是一种社交活动。 总结来说,网络五子棋结合了五子棋游戏的传统魅力和现代网络技术,使得不同地区的玩家能够在局域网内进行娱乐和聊天,既丰富了人们的娱乐生活,又加强了人际交流。而实现这一切的基础在于客户端程序的设计、服务器端的稳定运行、局域网的高效通信,以及音效文件增强的游戏体验。
recommend-type

自由行旅游新篇章:HarmonyOS技术融合与系统架构深度解析

# 1. HarmonyOS技术概述 ## 1.1 HarmonyOS的起源与发展 HarmonyOS(鸿蒙操作系统)由华为公司开发,旨在构建全场景分布式OS,以应对不同设备间的互联问题。自从2019年首次发布以来,HarmonyOS迅速成长,并迅速应用于智能手机、平板、智能穿戴、车载设备等多种平台。该系
recommend-type

足底支撑相到达73%是什么问题

<think>好的,我现在要处理用户的问题:“足底支撑相达到73%可能的原因及影响”。首先,需要理解用户提到的“足底支撑相73%”具体指什么。足底支撑相通常指步态周期中脚与地面接触的时间占比,正常范围大约在60%-62%左右。如果达到73%,明显超出正常范围,可能意味着步态异常。 接下来,需要确定可能的原因。可能的原因包括生物力学异常,比如足弓异常(扁平足或高弓足)、踝关节活动度受限,或者肌肉力量不足,特别是小腿和足部肌肉。另外,神经系统疾病如脑卒中或帕金森病可能影响步态控制。骨骼关节问题如关节炎、髋膝关节病变也可能导致支撑时间延长。还有代偿性步态,比如因疼痛或受伤而改变步态模式。 然后是
recommend-type

宾馆预约系统开发与优化建议

宾馆预约系统是一个典型的在线服务应用,它允许用户通过互联网平台预定宾馆房间。这种系统通常包含多个模块,比如用户界面、房态管理、预订处理、支付处理和客户评价等。从技术层面来看,构建一个宾馆预约系统涉及到众多的IT知识和技术细节,下面将详细说明。 ### 标题知识点 - 宾馆预约系统 #### 1. 系统架构设计 宾馆预约系统作为一个完整的应用,首先需要进行系统架构设计,决定其采用的软件架构模式,如B/S架构或C/S架构。此外,系统设计还需要考虑扩展性、可用性、安全性和维护性。一般会采用三层架构,包括表示层、业务逻辑层和数据访问层。 #### 2. 前端开发 前端开发主要负责用户界面的设计与实现,包括用户注册、登录、房间搜索、预订流程、支付确认、用户反馈等功能的页面展示和交互设计。常用的前端技术栈有HTML, CSS, JavaScript, 以及各种前端框架如React, Vue.js或Angular。 #### 3. 后端开发 后端开发主要负责处理业务逻辑,包括用户管理、房间状态管理、订单处理等。后端技术包括但不限于Java (使用Spring Boot框架), Python (使用Django或Flask框架), PHP (使用Laravel框架)等。 #### 4. 数据库设计 数据库设计对系统的性能和可扩展性至关重要。宾馆预约系统可能需要设计的数据库表包括用户信息表、房间信息表、预订记录表、支付信息表等。常用的数据库系统有MySQL, PostgreSQL, MongoDB等。 #### 5. 网络安全 网络安全是宾馆预约系统的重要考虑因素,包括数据加密、用户认证授权、防止SQL注入、XSS攻击、CSRF攻击等。系统需要实现安全的认证机制,比如OAuth或JWT。 #### 6. 云服务和服务器部署 现代的宾馆预约系统可能部署在云平台上,如AWS, Azure, 腾讯云或阿里云。在云平台上,系统可以按需分配资源,提高系统的稳定性和弹性。 #### 7. 付款接口集成 支付模块需要集成第三方支付接口,如支付宝、微信支付、PayPal等,需要处理支付请求、支付状态确认、退款等业务。 #### 8. 接口设计与微服务 系统可能采用RESTful API或GraphQL等接口设计方式,提供服务的微服务化,以支持不同设备和服务的接入。 ### 描述知识点 - 这是我个人自己做的 请大家帮忙修改哦 #### 个人项目经验与团队合作 描述中的这句话暗示了该宾馆预约系统可能是由一个个人开发者创建的。个人开发和团队合作在软件开发流程中有着显著的不同。个人开发者需要关注的方面包括项目管理、需求分析、代码质量保证、测试和部署等。而在团队合作中,每个成员会承担不同的职责,需要有效的沟通和协作。 #### 用户反馈与迭代 描述还暗示了该系统目前处于需要外部反馈和修改的阶段。这表明系统可能还处于开发或测试阶段,需要通过用户的实际使用反馈来不断迭代改进。 ### 标签知识点 - 200 #### 未提供信息 “200”这个标签可能指的是HTTP状态码中表示请求成功(OK)的200状态码。但是,由于没有提供更多的上下文信息,无法进一步分析其在本例中的具体含义。 ### 压缩包子文件的文件名称列表知识点 - 1111 #### 文件命名与管理 “1111”这个文件名称可能是一个版本号、日期标记或者是一个简单的标识符。文件命名应当遵循一定的规则,以确保文件的可追溯性和管理的便利性。在软件开发过程中,合理组织文件和版本控制(如使用Git)是必不可少的。 综上所述,宾馆预约系统的开发是一项复杂的工程,它涉及前后端的开发、数据库设计、系统安全、接口设计等多个方面。开发者在开发过程中需要不断学习和应用各类IT知识,以确保系统能够安全、高效、稳定地运行。而对于个人开发项目,如何合理利用有限资源、高效地管理和优化项目过程也是至关重要的。
recommend-type

HarmonyOS在旅游领域的创新:揭秘最前沿应用实践

# 1. HarmonyOS旅游应用的市场前景分析 随着数字化转型的不断深入,旅游行业正面临着前所未有的变革。在这样的背景下,HarmonyOS作为一种新兴的操作系统,带来了全新的市场前景和机遇。本章将深入分析HarmonyOS在旅游应用领域的市场潜力、用户需求、以及技术创新对旅游体验的改善。 ## 1.1 市场需求与用户画像分析 旅游市场的需求持续增