heigth, width = img.shape[:2] AttributeError: 'NoneType' object has no attribute 'shape'
时间: 2024-03-13 22:41:26 浏览: 179
这个错误是由于img对象为None而导致的。在这种情况下,对象没有shape属性,因此会引发AttributeError异常。
可能的原因是在读取图像时出现了问题,导致img对象为None。请确保你正确地加载了图像,并且img对象被正确地赋值。
如果你能提供更多的代码或上下文信息,我可以帮助你更好地解决这个问题。
相关问题
height, width = img.shape[:2] AttributeError: 'NoneType' object has no attribute 'shape'
在Python中,当你尝试执行 `height, width = img.shape[:2]` 这行代码时,会引发一个 `AttributeError` 错误,提示 `'NoneType' object has no attribute 'shape'`。这个错误表明你正在尝试访问 `img` 对象的 `shape` 属性,但是 `img` 是 `None` 或者没有这个属性。
通常情况下,`img` 应该是一个图像对象,比如在使用图像处理库(如OpenCV、PIL等)时,`img` 可能是一个加载的图像对象。这些库中加载图像的函数通常会返回一个图像对象,这个对象包含了图像的元数据,比如尺寸(通过 `shape` 属性)。
可能的情况是 `img` 没有成功加载到任何图像,或者它根本不是一个图像对象,而是一个 `None` 类型。这可能是由于以下原因造成的:
1. 图像文件路径错误或文件损坏,导致无法加载图像。
2. 图像处理库的函数调用不正确,例如参数错误,导致返回了 `None`。
3. 在加载图像之前,变量 `img` 被错误地赋值为 `None`。
为了解决这个问题,你需要检查图像加载的代码部分,确保图像文件路径正确,且图像处理库被正确使用。此外,可以添加一些错误检查的代码,以确保在尝试访问 `shape` 属性之前,`img` 不是 `None`。
示例代码:
```python
if img is not None:
height, width = img.shape[:2]
else:
print("图像加载失败,请检查图像路径或文件状态。")
```
orig_height, orig_width = img.shape[:2] AttributeError: 'NoneType' object has no attribute 'shape'
从错误信息来看,问题出在 `img` 是 `None`。这通常意味着在调用 `_preprocess_frame_gpu` 或 `_letterbox_gpu` 方法时,传入的图像数据为 `None`。我们需要确保在调用这些方法之前,图像已经正确加载。
以下是改进后的代码,添加了对图像加载失败的检查,并确保不会传递 `None` 给预处理函数:
```python
import cv2
import numpy as np
import pycuda.driver as cuda
import pycuda.gpuarray as gpuarray
from pycuda.compiler import SourceModule
class TRTEngine:
def __init__(self, engine_path):
# 初始化部分保持不变
self.ctx_lock = threading.Lock()
self.cfx = cuda.Device(0).make_context()
self.stream = cuda.Stream()
self.logger = trt.Logger(trt.Logger.WARNING)
self._register_plugins()
self.engine = self._load_engine(engine_path)
if self.engine is None:
raise RuntimeError("Failed to load TensorRT engine")
self.context = self.engine.create_execution_context()
# 输入参数初始化
self.input_name = None
self.input_shape = None
for binding in self.engine:
if self.engine.get_tensor_mode(binding) == trt.TensorIOMode.INPUT:
self.input_name = binding
if self.engine.has_implicit_batch_dimension:
self.input_shape = self.engine.get_tensor_shape(binding)[1:]
else:
self.input_shape = self.engine.get_tensor_profile_shape(binding, 0)[1][1:]
break
if self.input_name is None or self.input_shape is None:
raise RuntimeError("Could not find input binding")
print(f"模型输入名称: {self.input_name}, 输入形状: {self.input_shape}")
if self.engine.has_implicit_batch_dimension:
self.context.set_binding_shape(0, (1,) + self.input_shape)
else:
self.context.set_input_shape(self.input_name, (1,) + self.input_shape)
self._setup_bindings()
def _letterbox_gpu(self, img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
"""GPU加速的letterbox函数"""
if img is None:
raise ValueError("Input image is None. Please ensure the image is loaded correctly.")
shape = img.shape[:2]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
new_h, new_w = new_shape
r = min(new_h / shape[0], new_w / shape[1])
if not scaleup:
r = min(r, 1.0)
scaled_w = int(round(shape[1] * r))
scaled_h = int(round(shape[0] * r))
dw = new_w - scaled_w
dh = new_h - scaled_h
top, bottom = dh // 2, dh - (dh // 2)
left, right = dw // 2, dw - (dw // 2)
# 将图像上传到GPU
img_gpu = gpuarray.to_gpu(img.astype(np.float32))
# 缩放图像
if (scaled_w, scaled_h) != (shape[1], shape[0]):
img_resized = cv2.cuda.resize(img_gpu, (scaled_w, scaled_h), interpolation=cv2.INTER_LINEAR)
else:
img_resized = img_gpu
# 创建填充后的图像
result = np.ones((new_h, new_w, 3), dtype=np.uint8) * color[0]
result[top:top+scaled_h, left:left+scaled_w] = img_resized.get()
return result, (r, r), (dw, dh)
def infer(self, frame):
with self.ctx_lock:
self.cfx.push()
try:
if frame is None:
raise ValueError("Input frame is None. Please ensure the frame is loaded correctly.")
input_data = self._preprocess_frame_gpu(frame)
expected_size = trt.volume((1, *self.input_shape))
if input_data.size != expected_size:
raise ValueError(f"输入数据大小不匹配:{input_data.size} vs {expected_size}")
np.copyto(self.inputs[0]['host'], input_data.ravel())
for inp in self.inputs:
cuda.memcpy_htod_async(inp['device'], inp['host'], self.stream)
if self.engine.has_implicit_batch_dimension:
self.context.execute_async_v2(
bindings=self.bindings,
stream_handle=self.stream.handle
)
else:
self.context.set_input_shape(self.input_name, (1,) + self.input_shape)
for out in self.outputs:
out['shape'] = self.context.get_tensor_shape(out['name'])
out['host'] = cuda.pagelocked_empty(trt.volume(out['shape']), out['dtype'])
for out in self.outputs:
self.context.set_tensor_address(out['name'], int(out['device']))
for inp in self.inputs:
self.context.set_tensor_address(inp['name'], int(inp['device']))
self.context.execute_async_v3(stream_handle=self.stream.handle)
outputs = []
for out in self.outputs:
output = np.empty(out['shape'], dtype=out['dtype'])
cuda.memcpy_dtoh_async(output, out['device'], self.stream)
outputs.append(output)
self.stream.synchronize()
return self._postprocess(outputs)
finally:
self.cfx.pop()
def _preprocess_frame_gpu(self, img, size=(640, 640)):
"""GPU加速的视频帧预处理方法"""
if img is None:
raise ValueError("Input image is None. Please ensure the image is loaded correctly.")
orig_height, orig_width = img.shape[:2]
# 执行GPU加速的letterbox处理
img, self.ratio, (self.dw, self.dh) = self._letterbox_gpu(img, new_shape=size, stride=32)
# 将图像上传到GPU
img_gpu = cuda.np_to_array(img, order='C')
# 颜色空间转换:BGR -> RGB
mod = SourceModule("""
__global__ void bgr_to_rgb(float *img, int height, int width) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < height * width) {
int b_idx = idx * 3;
int r_idx = b_idx + 2;
float temp = img[b_idx];
img[b_idx] = img[r_idx];
img[r_idx] = temp;
}
}
""")
bgr_to_rgb = mod.get_function("bgr_to_rgb")
bgr_to_rgb(img_gpu, np.int32(orig_height), np.int32(orig_width), block=(1024, 1, 1), grid=(int(np.ceil(orig_height * orig_width / 1024)), 1))
# 归一化:将像素值从[0, 255]映射到[0, 1]
img_gpu /= 255.0
# 调整维度顺序:HWC -> CHW
img_gpu = img_gpu.transpose((2, 0, 1)).astype(np.float32)
return img_gpu.get()
def _postprocess(self, outputs):
if len(outputs) < 4:
return []
num_detections = int(outputs[0][0][0])
boxes = outputs[1][0][:num_detections]
scores = outputs[2][0][:num_detections]
class_ids = outputs[3][0][:num_detections].astype(int)
boxes[:, [0, 2]] = (boxes[:, [0, 2]] - self.dw // 2) / self.ratio[0]
boxes[:, [1, 3]] = (boxes[:, [1, 3]] - self.dh // 2) / self.ratio[1]
boxes[:, [0, 2]] = np.clip(boxes[:, [0, 2]], 0, self.orig_width)
boxes[:, [1, 3]] = np.clip(boxes[:, [1, 3]], 0, self.orig_height)
return [{
"box": box.astype(int).tolist(),
"score": float(score),
"class_id": int(cls_id)
} for box, score, cls_id in zip(boxes, scores, class_ids)]
```
### 解释
1. **检查图像是否为 `None`**:
- 在 `_letterbox_gpu` 和 `_preprocess_frame_gpu` 方法中,首先检查 `img` 是否为 `None`。
- 如果是 `None`,抛出一个 `ValueError` 异常,提示用户图像未正确加载。
2. **确保图像正确加载**:
- 在 `infer` 方法中,同样检查 `frame` 是否为 `None`,以确保在推理之前图像已正确加载。
###
阅读全文
相关推荐
















