tensorflow 3D U-Net代码
时间: 2025-06-02 10:01:17 浏览: 15
### TensorFlow 实现 3D U-Net 的代码
在 TensorFlow 中实现 3D U-Net 是一种常见的方法,用于解决诸如医学图像分割等任务。以下是一个基于 TensorFlow 的 3D U-Net 实现示例,结合了相关文献和项目中的技术细节[^1]。
```python
import tensorflow as tf
from tensorflow.keras import layers, models
def create_3d_unet(input_shape=(128, 128, 128, 1)):
inputs = layers.Input(shape=input_shape)
# Encoder
conv1 = layers.Conv3D(32, 3, activation='relu', padding='same')(inputs)
conv1 = layers.Conv3D(32, 3, activation='relu', padding='same')(conv1)
pool1 = layers.MaxPooling3D(pool_size=(2, 2, 2))(conv1)
conv2 = layers.Conv3D(64, 3, activation='relu', padding='same')(pool1)
conv2 = layers.Conv3D(64, 3, activation='relu', padding='same')(conv2)
pool2 = layers.MaxPooling3D(pool_size=(2, 2, 2))(conv2)
conv3 = layers.Conv3D(128, 3, activation='relu', padding='same')(pool2)
conv3 = layers.Conv3D(128, 3, activation='relu', padding='same')(conv3)
pool3 = layers.MaxPooling3D(pool_size=(2, 2, 2))(conv3)
# Bottleneck
conv4 = layers.Conv3D(256, 3, activation='relu', padding='same')(pool3)
conv4 = layers.Conv3D(256, 3, activation='relu', padding='same')(conv4)
# Decoder
up5 = layers.UpSampling3D(size=(2, 2, 2))(conv4)
merge5 = layers.Concatenate(axis=-1)([conv3, up5])
conv5 = layers.Conv3D(128, 3, activation='relu', padding='same')(merge5)
conv5 = layers.Conv3D(128, 3, activation='relu', padding='same')(conv5)
up6 = layers.UpSampling3D(size=(2, 2, 2))(conv5)
merge6 = layers.Concatenate(axis=-1)([conv2, up6])
conv6 = layers.Conv3D(64, 3, activation='relu', padding='same')(merge6)
conv6 = layers.Conv3D(64, 3, activation='relu', padding='same')(conv6)
up7 = layers.UpSampling3D(size=(2, 2, 2))(conv6)
merge7 = layers.Concatenate(axis=-1)([conv1, up7])
conv7 = layers.Conv3D(32, 3, activation='relu', padding='same')(merge7)
conv7 = layers.Conv3D(32, 3, activation='relu', padding='same')(conv7)
# Output layer
outputs = layers.Conv3D(1, 1, activation='sigmoid')(conv7)
model = models.Model(inputs=inputs, outputs=outputs)
return model
```
上述代码定义了一个标准的 3D U-Net 结构,其中包含编码器、瓶颈层和解码器部分。每个卷积层后接一个激活函数 (ReLU),并在下采样和上采样过程中使用最大池化和反卷积操作[^2]。
此外,在推理阶段,输入张量可能需要进行特定格式的转换 (如 PHWC4 格式),以优化 GPU 计算性能[^3]。
如果需要将此模型导出为 ONNX 格式,可以参考以下命令行工具[^4]:
```bash
python -m tf2onnx.convert --graphdef ./results/pb_convert/board.pb --output ./results/pb_convert/board.onnx --inputs xyz_0:0,xyz_1:0,xyz_2:0,xyz_3:0,xyz_4:0,neigh_idx_0:0,neigh_idx_1:0,neigh_idx_2:0,neigh_idx_3:0,neigh_idx_4:0,sub_idx_0:0,sub_idx_1:0,sub_idx_2:0,sub_idx_3:0,sub_idx_4:0,interp_idx_0:0,interp_idx_1:0,interp_idx_2:0,interp_idx_3:0,interp_idx_4:0,xyz:0,Const:0 --outputs probs:0 --verbose
```
更多关于 TensorFlow 的资源可以参考官方文档和其他社区贡献的教程[^5]。
###
阅读全文
相关推荐


















