HRnet-W18

时间: 2025-05-31 17:25:12 浏览: 35
### HRNet-W18 模型架构与实现细节 HRNet (High-Resolution Network) 是一种用于计算机视觉任务的神经网络结构,特别适用于人体姿态估计、语义分割和其他密集预测任务。HRNet 的核心思想是在整个前向传播过程中保持高分辨率表示的同时,逐步引入低分辨率表示并进行多次跨分辨率融合[^1]。 #### 模型架构概述 HRNet-W18 属于 HRNet 家族中的轻量级版本之一。“W18” 表示该模型的基础卷积层宽度为 18 维度。其主要特点如下: - **高分辨率分支**:HRNet 始终维持至少一条高分辨率路径,在训练和推理阶段不会丢失精细特征信息。 - **多尺度融合机制**:通过交换机模块(Exchange Block),不同分辨率的特征图可以相互交互,从而增强全局上下文感知能力[^2]。 具体来说,HRNet 结构由多个 stage 构成,每个 stage 都会增加新的低分辨率分支,并持续保留已有分支的信息流。最终,所有分支的结果会被重新上采样到最高分辨率,并拼接在一起作为输出。 #### 实现细节 以下是基于 PyTorch 的 HRNet-W18 模型的一个简化实现框架: ```python import torch.nn as nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out def make_stage(block, num_inchannels, num_modules, num_branches, block_num, fuse_method='SUM'): modules = [] for _ in range(num_modules): multi_resolutions_module = MultiResolutionModule( block=block, num_branches=num_branches, blocks=block_num, num_blocks=[4]*num_branches, num_inchannels=num_inchannels, num_channels=[18*(2**i) for i in range(num_branches)], fuse_method=fuse_method ) modules.append(multi_resolutions_module) return nn.Sequential(*modules) class HighResolutionNet(nn.Module): def __init__(self, cfg, **kwargs): super(HighResolutionNet, self).__init__() # Stem network self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) # Stages of the HRNet self.stage1_cfg = cfg['STAGE1'] num_channels = self.stage1_cfg['NUM_CHANNELS'][0] block = Bottleneck num_blocks = self.stage1_cfg['NUM_BLOCKS'][0] self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) self.stage2_cfg = cfg['STAGE2'] num_channels = self.stage2_cfg['NUM_CHANNELS'] block = BasicBlock num_blocks = self.stage2_cfg['NUM_BLOCKS'] self.transition1 = self._make_transition_layer([256], num_channels) self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels) ... def _make_layer(self, block, inplanes, planes, blocks, stride=1): layers = [] downsample = None ... return nn.Sequential(*layers) def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): transition_layers = [] ... return nn.ModuleList(transition_layers) def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True): num_modules = layer_config['NUM_MODULES'] num_branches = layer_config['NUM_BRANCHES'] num_blocks = layer_config['NUM_BLOCKS'] num_channels = layer_config['NUM_CHANNELS'] block = blocks_dict[layer_config['BLOCK']] fuse_method = layer_config['FUSE_METHOD'] return make_stage(block, num_inchannels, num_modules, num_branches, num_blocks, fuse_method), \ [item * block.expansion for item in num_channels] def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.layer1(x) x_list = [] for i in range(self.stage2_cfg['NUM_BRANCHES']): if self.transition1[i] is not None: x_list.append(self.transition1[i](x)) else: x_list.append(x) y_list = self.stage2(x_list) ... return y_list[-1] cfg_hrnet_w18 = { 'STAGE1': {'NUM_MODULES': 1, 'NUM_RANCHES': 1, 'BLOCK': 'BOTTLENECK', ...}, 'STAGE2': {...}, 'STAGE3': {...}, 'STAGE4': {...} } model = HighResolutionNet(cfg_hrnet_w18) ``` 此代码片段展示了如何构建一个基础版的 HRNet-W18 模型。完整的配置文件通常可以通过官方仓库获取[^3]。
阅读全文

相关推荐

有配置文件和onnx文件,我想看这个模型的FPS _base_ = [ '../../../../_base_/default_runtime.py', '../../../../_base_/datasets/wflw.py' ] checkpoint_config = dict(interval=500) evaluation = dict(interval=10, metric=['NME'], save_best='NME') optimizer = dict( type='Adam', lr=2e-3, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[40, 55]) total_epochs = 1000 log_config = dict( interval=10, hooks=[ dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=98, dataset_joints=98, dataset_channel=[ list(range(98)), ], inference_channel=list(range(98))) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], ##-------------------------------- # # #-------------2023-04-23------------ num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) in_channels=[18, 36, 72, 144] in_index=(0, 1, 2, 3) if data_cfg['heatmap_size'][0] ==8: in_channels=[18, 36, 72] in_index=(0, 1, 2) if data_cfg['heatmap_size'][0] ==4: in_channels=[18, 36] in_index=(0, 1) # model settings model = dict( type='TopDown', # pretrained='open-mmlab://msra/hrnetv2_w18', pretrained='./data/hrnetv2_w18_wflw_256x256-2bf032a6_20210125.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_chan

最新推荐

recommend-type

2021年南宁通信段安全知识题库.doc

2021年南宁通信段安全知识题库.doc
recommend-type

2021年电子科大秋电子商务法在线作业.doc

2021年电子科大秋电子商务法在线作业.doc
recommend-type

2021年高新技术计算机职业类考试题库资料介绍NVQ.doc

2021年高新技术计算机职业类考试题库资料介绍NVQ.doc
recommend-type

2022cad制图实训心得体会.docx

2022cad制图实训心得体会.docx
recommend-type

2022华为嵌入式笔试题.docx

2022华为嵌入式笔试题.docx
recommend-type

ChmDecompiler 3.60:批量恢复CHM电子书源文件工具

### 知识点详细说明 #### 标题说明 1. **Chm电子书批量反编译器(ChmDecompiler) 3.60**: 这里提到的是一个软件工具的名称及其版本号。软件的主要功能是批量反编译CHM格式的电子书。CHM格式是微软编译的HTML文件格式,常用于Windows平台下的帮助文档或电子书。版本号3.60说明这是该软件的一个更新的版本,可能包含改进的新功能或性能提升。 #### 描述说明 2. **专门用来反编译CHM电子书源文件的工具软件**: 这里解释了该软件的主要作用,即用于解析CHM文件,提取其中包含的原始资源,如网页、文本、图片等。反编译是一个逆向工程的过程,目的是为了将编译后的文件还原至其原始形态。 3. **迅速地释放包括在CHM电子书里面的全部源文件**: 描述了软件的快速处理能力,能够迅速地将CHM文件中的所有资源提取出来。 4. **恢复源文件的全部目录结构及文件名**: 这说明软件在提取资源的同时,会尝试保留这些资源在原CHM文件中的目录结构和文件命名规则,以便用户能够识别和利用这些资源。 5. **完美重建.HHP工程文件**: HHP文件是CHM文件的项目文件,包含了编译CHM文件所需的所有元数据和结构信息。软件可以重建这些文件,使用户在提取资源之后能够重新编译CHM文件,保持原有的文件设置。 6. **多种反编译方式供用户选择**: 提供了不同的反编译选项,用户可以根据需要选择只提取某些特定文件或目录,或者提取全部内容。 7. **支持批量操作**: 在软件的注册版本中,可以进行批量反编译操作,即同时对多个CHM文件执行反编译过程,提高了效率。 8. **作为CHM电子书的阅读器**: 软件还具有阅读CHM电子书的功能,这是一个附加特点,允许用户在阅读过程中直接提取所需的文件。 9. **与资源管理器无缝整合**: 表明ChmDecompiler能够与Windows的资源管理器集成,使得用户可以在资源管理器中直接使用该软件的功能,无需单独启动程序。 #### 标签说明 10. **Chm电子书批量反编译器**: 这是软件的简短标签,用于标识软件的功能类型和目的,即批量反编译CHM电子书。 #### 文件名称列表说明 11. **etextwizard.cdsetup.exe**: 这是一个安装程序的文件名,带有.exe扩展名,表明它是一个可执行文件。这可能是用户安装ChmDecompiler软件的安装包。 12. **说明_Readme.html**: 这是一个包含说明文档的HTML文件,通常包含软件的安装指南、使用方法、常见问题解答等。用户应该在安装或使用软件之前仔细阅读该文档。 综合来看,ChmDecompiler是一款功能强大的工具软件,它可以处理CHM电子书的反编译需求,支持多种反编译方式,同时提供方便的用户界面和功能集成,极大地降低了用户进行电子书资料恢复或二次编辑的难度。此外,软件的安装程序和说明文档也遵循了行业标准,方便用户使用和理解。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

redistemplate.opsForValue()返回值

<think>嗯,用户想知道RedisTemplate.opsForValue()方法的返回值类型。首先,我需要回忆一下Spring Data Redis的相关知识。记得RedisTemplate提供了不同数据结构的操作类,比如opsForValue对应字符串类型。opsForValue()方法返回的是一个ValueOperations对象,这个对象负责操作字符串类型的数据。 接下来,我需要确认返回类型的具体信息。根据官方文档,ValueOperations是一个接口,它定义了set、get等方法。当用户调用RedisTemplate.opsForValue()时,实际上会返回一个实现该接口
recommend-type

ktorrent 2.2.4版本Linux客户端发布

标题:“ktorrent”指的是一个流行的BitTorrent客户端软件,通常运行在类Unix操作系统上,特别是在Linux系统中。BitTorrent是一种点对点(P2P)文件共享协议,它允许用户之间共享文件,并且使用一种高效的“分片”下载技术,这意味着用户可以从许多其他用户那里同时下载文件的不同部分,从而加快下载速度并减少对单一源服务器的压力。 描述:提供的描述部分仅包含了重复的文件名“ktorrent-2.2.4.tar.gz”,这实际上表明了该信息是关于特定版本的ktorrent软件包,即版本2.2.4。它以.tar.gz格式提供,这是一种常见的压缩包格式,通常用于Unix-like系统中。在Linux环境下,tar是一个用于打包文件的工具,而.gz后缀表示文件已经被gzip压缩。用户需要先解压缩.tar.gz文件,然后才能安装软件。 标签:“ktorrent,linux”指的是该软件包是专为Linux操作系统设计的。标签还提示用户ktorrent可以在Linux环境下运行。 压缩包子文件的文件名称列表:这里提供了一个文件名“ktorrent-2.2.4”,该文件可能是从互联网上下载的,用于安装ktorrent版本2.2.4。 关于ktorrent软件的详细知识点: 1. 客户端功能:ktorrent提供了BitTorrent协议的完整实现,用户可以通过该客户端来下载和上传文件。它支持创建和管理种子文件(.torrent),并可以从其他用户那里下载大型文件。 2. 兼容性:ktorrent设计上与KDE桌面环境高度兼容,因为它是用C++和Qt框架编写的,但它也能在非KDE的其他Linux桌面环境中运行。 3. 功能特点:ktorrent提供了多样的配置选项,比如设置上传下载速度限制、选择存储下载文件的目录、设置连接数限制、自动下载种子包内的多个文件等。 4. 用户界面:ktorrent拥有一个直观的图形用户界面(GUI),使得用户可以轻松地管理下载任务,包括启动、停止、暂停以及查看各种统计数据,如下载速度、上传速度、完成百分比等。 5. 插件系统:ktorrent支持插件系统,因此用户可以扩展其功能,比如添加RSS订阅支持、自动下载和种子管理等。 6. 多平台支持:虽然ktorrent是为Linux系统设计的,但有一些类似功能的软件可以在不同的操作系统上运行,比如Windows和macOS。 7. 社区支持:ktorrent拥有活跃的社区,经常更新和改进软件。社区提供的支持包括论坛、文档以及bug跟踪。 安装和配置ktorrent的步骤大致如下: - 首先,用户需要下载相应的.tar.gz压缩包文件。 - 然后,使用终端命令解压该文件。通常使用命令“tar xzvf ktorrent-2.2.4.tar.gz”。 - 解压后,用户进入解压得到的目录并可能需要运行“qmake”来生成Makefile文件。 - 接着,使用“make”命令进行编译。 - 最后,通过“make install”命令安装软件。某些情况下可能需要管理员权限。 在编译过程中,用户可以根据自己的需求配置编译选项,比如选择安装路径、包含特定功能等。在Linux系统中,安装和配置过程可能会因发行版而异,有些发行版可能通过其包管理器直接提供对ktorrent的安装支持。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为