HRnet-W18
时间: 2025-05-31 17:25:12 浏览: 35
### HRNet-W18 模型架构与实现细节
HRNet (High-Resolution Network) 是一种用于计算机视觉任务的神经网络结构,特别适用于人体姿态估计、语义分割和其他密集预测任务。HRNet 的核心思想是在整个前向传播过程中保持高分辨率表示的同时,逐步引入低分辨率表示并进行多次跨分辨率融合[^1]。
#### 模型架构概述
HRNet-W18 属于 HRNet 家族中的轻量级版本之一。“W18” 表示该模型的基础卷积层宽度为 18 维度。其主要特点如下:
- **高分辨率分支**:HRNet 始终维持至少一条高分辨率路径,在训练和推理阶段不会丢失精细特征信息。
- **多尺度融合机制**:通过交换机模块(Exchange Block),不同分辨率的特征图可以相互交互,从而增强全局上下文感知能力[^2]。
具体来说,HRNet 结构由多个 stage 构成,每个 stage 都会增加新的低分辨率分支,并持续保留已有分支的信息流。最终,所有分支的结果会被重新上采样到最高分辨率,并拼接在一起作为输出。
#### 实现细节
以下是基于 PyTorch 的 HRNet-W18 模型的一个简化实现框架:
```python
import torch.nn as nn
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
def make_stage(block, num_inchannels, num_modules, num_branches, block_num, fuse_method='SUM'):
modules = []
for _ in range(num_modules):
multi_resolutions_module = MultiResolutionModule(
block=block,
num_branches=num_branches,
blocks=block_num,
num_blocks=[4]*num_branches,
num_inchannels=num_inchannels,
num_channels=[18*(2**i) for i in range(num_branches)],
fuse_method=fuse_method
)
modules.append(multi_resolutions_module)
return nn.Sequential(*modules)
class HighResolutionNet(nn.Module):
def __init__(self, cfg, **kwargs):
super(HighResolutionNet, self).__init__()
# Stem network
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
# Stages of the HRNet
self.stage1_cfg = cfg['STAGE1']
num_channels = self.stage1_cfg['NUM_CHANNELS'][0]
block = Bottleneck
num_blocks = self.stage1_cfg['NUM_BLOCKS'][0]
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)
self.stage2_cfg = cfg['STAGE2']
num_channels = self.stage2_cfg['NUM_CHANNELS']
block = BasicBlock
num_blocks = self.stage2_cfg['NUM_BLOCKS']
self.transition1 = self._make_transition_layer([256], num_channels)
self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels)
...
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
layers = []
downsample = None
...
return nn.Sequential(*layers)
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer):
transition_layers = []
...
return nn.ModuleList(transition_layers)
def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True):
num_modules = layer_config['NUM_MODULES']
num_branches = layer_config['NUM_BRANCHES']
num_blocks = layer_config['NUM_BLOCKS']
num_channels = layer_config['NUM_CHANNELS']
block = blocks_dict[layer_config['BLOCK']]
fuse_method = layer_config['FUSE_METHOD']
return make_stage(block, num_inchannels, num_modules, num_branches, num_blocks, fuse_method), \
[item * block.expansion for item in num_channels]
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = []
for i in range(self.stage2_cfg['NUM_BRANCHES']):
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
...
return y_list[-1]
cfg_hrnet_w18 = {
'STAGE1': {'NUM_MODULES': 1, 'NUM_RANCHES': 1, 'BLOCK': 'BOTTLENECK', ...},
'STAGE2': {...},
'STAGE3': {...},
'STAGE4': {...}
}
model = HighResolutionNet(cfg_hrnet_w18)
```
此代码片段展示了如何构建一个基础版的 HRNet-W18 模型。完整的配置文件通常可以通过官方仓库获取[^3]。
阅读全文
相关推荐














