活动介绍

使用51单片机驱动TM1668显示DHT11温湿度的简单代码程序

时间: 2023-06-20 15:07:59 浏览: 729
以下是使用51单片机驱动TM1668显示DHT11温湿度的简单代码程序: ```c #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit DHT11=P3^5; sbit STB=P1^0; sbit CLK=P1^1; sbit DIO=P1^2; uchar code table[]={ 0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71 }; //共阴数码管0~9,A~F的段码 void delay(uint z) //延时函数 { uint x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } void write_byte(uchar dat) //写入一个字节 { uchar i; for(i=0;i<8;i++) { CLK=0; if(dat&0x01) DIO=1; else DIO=0; dat>>=1; CLK=1; } } void write_com(uchar com) //写入命令 { STB=0; write_byte(com); STB=1; } void write_data(uchar addr,uchar dat) //写入数据 { write_com(0x44); STB=0; write_byte(0xc0|addr); write_byte(dat); STB=1; } void init() //初始化 { write_com(0x88); //亮度全调 write_com(0x40); //点地址方式 write_com(0xc0); //从第一位开始显示 } void display(uchar x,uchar y) //显示温度和湿度 { uchar wendu,shidu; write_data(y,table[x/10]); //显示十位 write_data(y+1,table[x%10]); //显示个位 write_data(y+2,0x38); //显示小数点 write_data(y+3,table[shidu/10]); //显示十位 write_data(y+4,table[shidu%10]); //显示个位 } void main() { uchar h,l,check; init(); while(1) { DHT11=1; delay(1); DHT11=0; //起始信号 delay(18); DHT11=1; delay(1); if(!DHT11) //判断DHT11响应信号是否存在 { while(!DHT11); while(DHT11); h=0; l=0; h|=DHT11<<7; h|=DHT11<<6; h|=DHT11<<5; h|=DHT11<<4; h|=DHT11<<3; h|=DHT11<<2; h|=DHT11<<1; h|=DHT11; l|=DHT11<<7; l|=DHT11<<6; l|=DHT11<<5; l|=DHT11<<4; l|=DHT11<<3; l|=DHT11<<2; l|=DHT11<<1; l|=DHT11; check=0; check|=DHT11<<7; check|=DHT11<<6; check|=DHT11<<5; check|=DHT11<<4; check|=DHT11<<3; check|=DHT11<<2; check|=DHT11<<1; check|=DHT11; if(h+l==check) display(h,l); //判断数据是否正确 } } } ``` 请注意,上述代码仅供参考,实际使用时需要根据具体硬件和软件环境进行适当修改。
阅读全文

相关推荐

完成一个仓储环境监测的模拟系统。具体要求如下: 1. DHT11模块完成温湿度测量,5s更新,数值显示于数码管,同时打印到串口。温度超过阈值触发蜂鸣器短鸣,同时启动风扇小马达; 2. LDR模块完成环境照度测量,4s更新,数值显示于数码管,同时打印到串口。照度超过阈值启动PWM调光(高、中、低三级调光)。 3. 按键循环切换显示模式,按第1下固定显示温度,按第二下固定显示照度,按第三下恢复默认的自动显示模式。按键用外部中断实现 int main(void) { systick_init(72); led_init(); usart1_init(115200); display_init(); tim4_init(1000,72); // 1ms的定时间隔 TIM3_CH2_PWM_Init(500-1,72-1); dht11_init(); ldr_init(); //key_init(); while(1) { // 轮询DHT11的状态 if(dht11.state == WORK) { if(dht11.getData(&dht11.temp, &dht11.humi) == SUCCESS) // DHT11温湿度数据更新 { printf("temperature:%d℃ humidity(RH):%d \r\n", dht11.temp, dht11.humi); dsp.interface = TEMP; dht11.onTempChange(dht11.temp_threshold); // 温度超过阈值的处理 } dht11.state = STANDBY; } // 轮询LDR的状态 if(ldr.state == WORK) { ldr.light = ldr.getData(); printf("light intensity:%d \r\n", ldr.light); dsp.interface = LIGHT; ldr.onLightChange(ldr.high_threshold,ldr.low_threshold); // 照度超过阈值的处理 ldr.state = STANDBY; } // 轮询数码管界面状态 switch(dsp.interface) { case LIGHT: setLightValue(&dsp,1); break; case TEMP: setTempValue(&dsp,1); break; case HUMI: setHumiValue(&dsp,1); break; default: break; } } }#include "systick.h" static u8 fac_us=0; //us延时倍乘数 static u16 fac_ms=0; //ms延时倍乘数 //初始化延迟函数 //SYSTICK的时钟固定为AHB时钟的1/8 //SYSCLK:系统时钟频率 void systick_init(u8 SYSCLK) { SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); fac_us = SYSCLK/8; fac_ms = (u16)fac_us * 1000; } //延时nus //nus为要延时的us数. void delay_us(u32 nus) { u32 temp; SysTick->LOAD=nus*fac_us; //时间加载 SysTick->VAL=0x00; //清空计数器 SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数 do { temp=SysTick->CTRL; }while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达 SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL =0X00; //清空计数器 } //延时nms //注意nms的范围 //SysTick->LOAD为24位寄存器,所以,最大延时为: //nms<=0xffffff*8*1000/SYSCLK //SYSCLK单位为Hz,nms单位为ms //对72M条件下,nms<=1864 void delay_ms(u16 nms) { u32 temp; SysTick->LOAD = (u32)nms*fac_ms; //时间加载(SysTick->LOAD为24bit) SysTick->VAL = 0x00; //清空计数器 SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk ; //开始倒数 do { temp=SysTick->CTRL; } while((temp&0x01) && !(temp&(1<<16))); //等待时间到达 SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL = 0x00; //清空计数器 } #include "display.h" DisplayStruct dsp; void segDisplay(void); // 共阴极数码管,阴极位选(0有效),阳极段选(1有效) const u16 segCode[11] = { /* 0 1 2 3 4 5 6 7 */ 0x003F, 0x0006, 0x005B, 0x004F, 0x0066, 0x006D, 0x007D, 0x0007, /* 8 9 off */ 0x007F, 0x006F, 0x0000 }; /******************************************************************************* * @brief 初始化数码管用到的GPIO端口和dsp结构体 * @param None * @retval None *******************************************************************************/ void display_init(void) { GPIO_InitTypeDef GPIO_InitStructure = {0}; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB, ENABLE); // PA0~PA7: 段选(分别连接引脚A~G); // PB12~PB15:位选(分别连接引脚D1~D4) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); dsp.currDigit = 1; // dsp结构体的初始化 dsp.SegDisplay = segDisplay; } /*********************************************************************************** * @brief 设置数码管要显示的4位数值。 * @param dsp:数码管结构体指针;value[4]:4位数值;dotBit:小数点位置(没有小数点则置0) * @retval None ***********************************************************************************/ void setValue(DisplayStruct *dsp, u8 value[4], u8 dotBit) { dsp->digit[0] = value[0]; dsp->digit[1] = value[1]; dsp->digit[2] = value[2]; dsp->digit[3] = value[3]; dsp->dotDigit = dotBit; } void setLightValue(DisplayStruct *dsp, u8 dotBit) { dsp->digit[0] = 1; // 参数编号 dsp->digit[1] = 10; // 第二位空缺 dsp->digit[2] = ldr.light/10; dsp->digit[3] = ldr.light%10; // dsp->dotDigit = dotBit; // 小数点位置 } void setTempValue(DisplayStruct *dsp, u8 dotBit) { dsp->digit[0] = 2; dsp->digit[1] = 10; dsp->digit[2] = dht11.temp/10; dsp->digit[3] = dht11.temp%10; dsp->dotDigit = dotBit; } void setHumiValue(DisplayStruct *dsp, u8 dotBit) { dsp->digit[0] = 3; dsp->digit[1] = 10; dsp->digit[2] = dht11.humi/10; dsp->digit[3] = dht11.humi%10; dsp->dotDigit = dotBit; } /******************************************************************************* * @简 介 段选,让某一位数码管显示指定的数字 * @输入参数 value:段码数组的序号(0~9),代表要显示的数字 * @retval * 备注:只操作PA的低8位,不要影响高8位。 ********************************************************************************/ void seg(uint8_t value) { if(value < sizeof(segCode)) // 避免数组溢出 { GPIOA->ODR &= 0xFF00; GPIOA->ODR |= segCode[value]; } } /******************************************************************************** * 简 介 位选,一次只能选一位。 * 输入参数 com:位数(取值1~4,从左到右) * 返回值 无 * 备注:只操作PB的高4位(置0),不要影响其他位。 ********************************************************************************/ void com(uint8_t currDigit) { // 数码管位选(0有效) GPIOB->ODR |= 0xF000; GPIOB->ODR &= ~(0x1000<<(currDigit-1)); } /******************************************************************************** * 简介 在数码管上逐位显示其段码(由Timer中断服务函数调用) * 参数 无 * 返回值 无 ********************************************************************************/ void segDisplay(void) { seg(10); // 消隐之前的显示内容 com(dsp.currDigit); // 位选,从COM1到COM4逐次移位,实现动态显示 if(dsp.currDigit != dsp.dotDigit) // 当前位不显示小数点 seg(dsp.digit[dsp.currDigit-1]); else // 当前位要显示小数点 { GPIO_Write(GPIOA, segCode[dsp.digit[dsp.currDigit-1]]| 0x0080); //GPIOA->ODR &= 0xFF00; //GPIOA->ODR |= (segCode[dsp.currDigit-1]|0x0080); } if(++dsp.currDigit > DSP_DIGIT) // 从当前位右移到下一位 dsp.currDigit = 1; } #include "usart.h" int fputc(int ch,FILE *p) //函数默认的,在使用printf函数时自动调用 { USART_SendData(USART1,(u8)ch); while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET); return ch; } //串口1中断服务程序 //注意,读取USARTx->SR能避免莫名其妙的错误 u8 USART1_RX_BUF[USART1_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节. //接收状态 //bit15, 接收完成标志 //bit14, 接收到0x0d //bit13~0, 接收到的有效字节数目 u16 USART1_RX_STA=0; //接收状态标记 /******************************************************************************* * 函 数 名 : USART1_Init * 函数功能 : USART1初始化函数 * 输 入 : bound:波特率 * 输 出 : 无 *******************************************************************************/ void usart1_init(u32 baud) { //GPIO端口设置 GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); /* 配置GPIO的模式和IO口 */ GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9; //串口输出TX:PA9 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; //复用推挽输出 GPIO_Init(GPIOA,&GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin=GPIO_Pin_10; //串口输入RX:PA10 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IN_FLOATING; //模拟输入 GPIO_Init(GPIOA,&GPIO_InitStructure); //USART1 初始化设置 USART_InitStructure.USART_BaudRate = baud; //波特率设置 USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式 USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式 USART_Init(USART1, &USART_InitStructure); //初始化串口1 USART_Cmd(USART1, ENABLE); //使能串口1 USART_ClearFlag(USART1, USART_FLAG_TC); USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启相关中断 //Usart1 NVIC 配置 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;//串口1中断通道 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3;//抢占优先级3 NVIC_InitStructure.NVIC_IRQChannelSubPriority =3; //子优先级3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能 NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器、 } /******************************************************************************* * 函 数 名 : USART1_IRQHandler * 函数功能 : USART1中断函数 * 输 入 : 无 * 输 出 : 无 *******************************************************************************/ void USART1_IRQHandler(void) //串口1中断服务程序 { u8 r; if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断 { r =USART_ReceiveData(USART1);//(USART1->DR); //读取接收到的数据 if((USART1_RX_STA&0x8000)==0)//接收未完成 { if(USART1_RX_STA&0x4000)//接收到了0x0d { if(r!=0x0a)USART1_RX_STA=0;//接收错误,重新开始 else USART1_RX_STA|=0x8000; //接收完成了 } else //还没收到0X0D { if(r==0x0d)USART1_RX_STA|=0x4000; else { USART1_RX_BUF[USART1_RX_STA&0X3FFF]=r; USART1_RX_STA++; if(USART1_RX_STA>(USART1_REC_LEN-1))USART1_RX_STA=0;//接收数据错误,重新开始接收 } } } } } #include "timer.h" #include "beep.h" volatile uint16_t beep_time; /******************************************************************************* * 函 数 名 : tim4_init * 函数功能 : TIM4初始化函数 * 输 入 : per:重装载值 psc:分频系数 * 输 出 : 无 *******************************************************************************/ void tim4_init(u16 per,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE); // 使能TIM4的时钟 // 配置TIM的时基参数 TIM_TimeBaseInitStructure.TIM_Period = per; // 自动装载值 TIM_TimeBaseInitStructure.TIM_Prescaler = psc; // 分频系数 TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; // 设置向上计数模式 TIM_TimeBaseInit(TIM4,&TIM_TimeBaseInitStructure); // 设置参数生效 // 配置中断参数 TIM_ITConfig(TIM4,TIM_IT_Update,ENABLE); // 开启定时器的更新中断 TIM_ClearITPendingBit(TIM4,TIM_IT_Update); // 中断标志位清零 // 配置NVIC NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); // 中断优先级分组(组2) NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn; // 定时器4的中断通道(30号通道) NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2; // 抢占优先级 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; // 响应优先级 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; // 中断通道使能 NVIC_Init(&NVIC_InitStructure); // NVIC设置参数生效 TIM_Cmd(TIM4,ENABLE); // 使能Timer4 } /******************************************************************************* * 函 数 名 : TIM4_IRQHandler * 函数功能 : TIM4中断函数 * 输 入 : 无 * 输 出 : 无 * 备 注 : 定时间隔1ms ** *****************************************************************************/ void TIM4_IRQHandler(void) { static u16 cnt_dht11; static u16 cnt_ldr; // 蜂鸣器时间处理 if(beep_time > 0) { beep_time--; if(beep_time == 0) { BEEP_OFF(); } } if(TIM_GetITStatus(TIM4,TIM_IT_Update)) // 检查更新中断是否产生 { // 处理定时任务 if(++cnt_dht11 == dht11.period) { if(dht11.state == STANDBY) { dht11.state = WORK; // DHT11状态从STANDBY切换到WORK } cnt_dht11 = 0; } if(++cnt_ldr == ldr.period) { if (ldr.state == STANDBY) { ldr.state = WORK; // LDR状态从STANDBY切换到WORK } cnt_ldr = 0; } // 刷新数码管显示 dsp.SegDisplay(); } TIM_ClearITPendingBit(TIM4,TIM_IT_Update); // 手动清除中断标志位 } #include "dht11.h" #include "relay.h" #include "beep.h" Dht11Struct dht11 = {0}; void SET_DHT11_IO_OUT(void); void SET_DHT11_IO_IN(void); void DHT11_RequestData(void); u8 DHT11_RespondRequest(void); u8 DHT11_Read_Data(u8 *temp, u8 *humi); void DHT11_OnTempChange(u8 temp_threshold); // DHT11_PIN初始化 // 返回值: 无 extern void dht11_init() { GPIO_InitTypeDef GPIO_InitStructure; // 数据引脚初始化 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 数据引脚 GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_Init(DHT11_PORT, &GPIO_InitStructure); GPIO_SetBits(DHT11_PORT, DHT11_PIN); // 初始输出状态:高电平 // 结构体初始化 dht11.period = DHT11_PERIOD; dht11.temp_threshold = TEMP_THRESHOLD; dht11.getData = DHT11_Read_Data; // 获取温湿度数据的函数 dht11.onTempChange = DHT11_OnTempChange; // 温度超过阈值的处理函数 // 做一次数据请求测试,检查设备状态 DHT11_RequestData(); if (DHT11_RespondRequest() == SUCCESS) { dht11.state = STANDBY; printf("DHT11 Init OK!\r\n"); } else { dht11.state = FAIL; printf("DHT11 Check Error!\r\n"); } } // 复位DHT11,单片机向DHT11发起数据采集请求 // 时序图的黑线部分 static void DHT11_RequestData() { SET_DHT11_IO_OUT(); // 数据引脚配置为输出模式 DHT11_DQ_OUT = 0; delay_ms(20); // 低电平持续至少18ms DHT11_DQ_OUT = 1; delay_us(30); // 高电平持续20~40us } // DHT11响应单片机的数据请求 // 返回值:SUCCESS or FAILURE static u8 DHT11_RespondRequest() { u8 retry=0; SET_DHT11_IO_IN(); // 数据引脚设为输入模式,接收DHT11的响应 while (DHT11_DQ_IN && retry<100) // 等待输入由高变低 { retry++; if(retry >= 100) return FAILURE; // 等待时间过长,返回异常。 delay_us(1); } retry=0; while (!DHT11_DQ_IN && retry<100) // 低电平持续时间80us { retry++; if(retry >= 100) return FAILURE; // 低电平持续时间过长,返回异常。 delay_us(1); } return SUCCESS; } //DHT11输出模式配置 static void SET_DHT11_IO_OUT() { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出模式 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_Init(DHT11_PORT,&GPIO_InitStructure); } //DHT11输入模式配置 static void SET_DHT11_IO_IN() { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; // 浮空输入模式,最小系统板和DHT11之间并未接上拉电阻 GPIO_Init(DHT11_PORT,&GPIO_InitStructure); } //从DHT11读取一位 //返回值:bit 1或0 //注:此函数处并未做高低电平持续时间异常的处理,因DHT11自身有校验和,即便读错1位也不会造成最终数据的错误。 // 严格来讲,除了正常情况下返回“1”或“0”,还应增加异常情况的返回值(比如“2”)。 static u8 DHT11_Read_Bit(void) { u8 retry=0; while(DHT11_DQ_IN && retry<100) // 等待输入电平由高变低(低电平持续50us) { retry++; delay_us(1); } retry=0; while(!DHT11_DQ_IN && retry<100) // 等待输入电平由低变高 { retry++; delay_us(1); } delay_us(40); // 等待40us(高电平持续26~28us表示0,持续70us表示1) if(DHT11_DQ_IN) return 1; // 40us后如果输入仍为高电平,则表示读入1;否则表示读入0。 else return 0; } //从DHT11读取一个字节 //返回值:读到的8位数据 static u8 DHT11_Read_Byte(void) { u8 i,byte; byte = 0; for (i=0;i<8;i++) { byte <<= 1; // 先前读取的数据(不足8位)全部左移一位 byte |= DHT11_Read_Bit(); // 最低位填入新读取的1位 } return byte; } //从DHT11读取一次完整的数据 //temp:温度值(整数,范围:0~50°) //humi:湿度值(整数,范围:20%~90%) //返回值:0,正常; 1,失败 static u8 DHT11_Read_Data(u8 *temp, u8 *humi) { u8 buf[5]; u8 i; DHT11_RequestData(); if(DHT11_RespondRequest() == SUCCESS) { for(i=0;i<5;i++) // 读取5组共40位数据 { buf[i] = DHT11_Read_Byte(); } if((buf[0]+buf[1]+buf[2]+buf[3]) == buf[4]) // 数据校验 { *humi = buf[0]; // 湿度整数部分 *temp = buf[2]; // 温度整数部分 return SUCCESS; } } return FAILURE; } // 采集DHT11数据并打印至串口 void dht11DataCollect() { u8 temp; u8 humi; if (DHT11_Read_Data(&temp, &humi) == SUCCESS) printf("temperature:%d℃ humidity(RH):%d \r\n", temp, humi); // 输出到串口(重定向) else printf("DHT11 data error! \r\n"); } // 温度阈值处理 void DHT11_OnTempChange(u8 temp_threshold) { if (dht11.temp > temp_threshold) { // 启动风扇(继电器低电平触发) Relay_Low(); // 蜂鸣器短鸣(100ms) BEEP_ON(); beep_time = 100; // 100ms } else { // 关闭风扇 Relay_High(); } } #include "ldr.h" LdrStruct ldr; static u8 getLightIntensity(void); static void OnLightChange(u8 hiLight, u8 loLight); /******************************************************************************* * 函 数 名 : adc_init * 函数功能 : ADC外设的初始化 * 输 入 : 无 * 输 出 : 无 *******************************************************************************/ static void adc_init(void) { GPIO_InitTypeDef GPIO_InitStructure; ADC_InitTypeDef ADC_InitStructure; // 1.打开相关外设的总线时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_ADC1,ENABLE); // 2.信号引脚的参数配置 GPIO_InitStructure.GPIO_Pin=LDR_PIN; // 信号引脚:PB0 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AIN; // 设置模拟输入模式 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_2MHz; // 设置传输速率 GPIO_Init(LDR_PORT,&GPIO_InitStructure); // 3. 输入时钟降频(<14MHz) RCC_ADCCLKConfig(RCC_PCLK2_Div6); // 分频因子6,输入时钟为72M/6=12MHz // 4. 初始化ADC参数 ADC_InitStructure.ADC_Mode=ADC_Mode_Independent; //独立模式 ADC_InitStructure.ADC_ScanConvMode=DISABLE; //单次扫描 ADC_InitStructure.ADC_ContinuousConvMode=DISABLE; //单次转换 ADC_InitStructure.ADC_ExternalTrigConv=ADC_ExternalTrigConv_None; //软件触发 ADC_InitStructure.ADC_DataAlign=ADC_DataAlign_Right; //数据右对齐 ADC_InitStructure.ADC_NbrOfChannel=1; //只有1个通道 ADC_Init(ADC1,&ADC_InitStructure); // 5. 使能ADC ADC_Cmd(ADC1,ENABLE); // 6. ADC校准 ADC_ResetCalibration(ADC1); //复位校准 while(ADC_GetResetCalibrationStatus(ADC1)); ADC_StartCalibration(ADC1); //开启并完成校准 while(ADC_GetCalibrationStatus(ADC1)); } // LDR的设备初始化 extern void ldr_init() { adc_init(); ldr.period = LDR_PERIOD; ldr.high_threshold = HI_THRESHOLD; ldr.low_threshold = LO_THRESHOLD; ldr.getData = getLightIntensity; ldr.onLightChange = OnLightChange; ldr.state = STANDBY; } /******************************************************************************* * 函 数 名 : GET_ADC_Value * 函数功能 : 获取通道ch的转换值,测量times次,取平均值 * 输 入 : ch:通道编号,Rank:规则序列中的第几个转换,取值1~16; times:测量次数 * 输 出 : 通道ch的times次转换结果的平均值 *******************************************************************************/ static u16 Get_ADC_Value(u8 ch, u8 times) //获取ADC1通道ch的转换值 { u8 i; u32 Temp_val=0; ADC_RegularChannelConfig(ADC1,ch,1,ADC_SampleTime_239Cycles5); for(i=0;i<times;i++) { ADC_SoftwareStartConvCmd(ADC1,ENABLE); // 开始转换 while(!ADC_GetFlagStatus(ADC1,ADC_FLAG_EOC)); // 等待至单次转换结束 Temp_val += ADC_GetConversionValue(ADC1); delay_ms(10); } return Temp_val/times; } /******************************************************************************* * 函 数 名 : getLightIntensity * 函数功能 : 将ADC转换值解读为光照强度 * 输 入 : 无 * 输 出 : 光照照度值(0~100, 0:照度最低;100:照度最高) *******************************************************************************/ static u8 getLightIntensity(void) //通过ADC1 通道0的值获取亮度值 { u16 value = 0; u8 lightvalue = 0; value = Get_ADC_Value(ADC_Channel_8,20); lightvalue = 100 - (u16)(value/40.95); return lightvalue; } // 添加PWM控制LED功能 static void set_led_brightness(u8 level) { switch(level) { case 0: // 低档 TIM_SetCompare2(TIM3, 125); // 25%占空比 break; case 1: // 中档 TIM_SetCompare2(TIM3, 250); // 50%占空比 break; case 2: // 高档 TIM_SetCompare2(TIM3, 375); // 75%占空比 break; } } /******************************************************************************* * 函 数 名 : OnLightChange * 函数功能 : 照度超过阈值(高阈值和低阈值)的处理措施 * 输 入 : hiLight-高阈值; loLight-低阈值 * 输 出 : 无 *******************************************************************************/ static void OnLightChange(u8 hiLight, u8 loLight) { if (ldr.light > hiLight) { set_led_brightness(0);// 照度过高,降低亮度 } else if (ldr.light < loLight) { set_led_brightness(2); // 照度过低,提升亮度 } else // 正常范围 { set_led_brightness(1); // 中等亮度 } } #include "key.h" #include "pwm.h" /******************************************************************************* * 函 数 名 : TIM3_CH2_PWM_Init * 函数功能 : TIM3通道2 PWM初始化函数 * 输 入 : per:重装载值 * psc:分频系数 * 输 出 : 无 *******************************************************************************/ void TIM3_CH2_PWM_Init(u16 per,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStructure; GPIO_InitTypeDef GPIO_InitStructure; /* 开启时钟 */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_AFIO,ENABLE); // PB5引脚启用复用模式 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE); // 选择TIM3部分重映射 GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3,ENABLE); /* PB5作为PWM的输出引脚 */ GPIO_InitStructure.GPIO_Pin=GPIO_Pin_5; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; //复用推挽输出 GPIO_Init(GPIOB,&GPIO_InitStructure); // 初始化TIM3 TIM_TimeBaseInitStructure.TIM_Period=per; //自动装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=psc; //分频系数 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //设置向上计数模式 TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStructure); // 设置TIM3_CH2的PWM模式,使能CH2输出,呈现出PPT展示的PWM波形 // PWM1即mode1,先输出有效电平,再输出无效电平;PWM2即mode2则正好相反。 TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1; // 设置有效电平为低电平(此案例中低电平点亮D2) TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_Low; TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable; TIM_OC2Init(TIM3,&TIM_OCInitStructure); //输出比较通道2初始化 TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable); //使能TIM3在 CCR2 上的预装载寄存器 TIM_Cmd(TIM3,ENABLE); //使能定时器 } #include "relay.h" void Relay_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); GPIO_InitStruct.GPIO_Mode=GPIO_Mode_Out_PP; GPIO_InitStruct.GPIO_Pin=GPIO_Pin_11; GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz; GPIO_Init(GPIOA,&GPIO_InitStruct); //默认输出低电平 } void Relay_High(void) { GPIO_SetBits(GPIOA, GPIO_Pin_11); } void Relay_Low(void) { GPIO_ResetBits(GPIOA, GPIO_Pin_11); } #ifndef _RELAY_H_ #define _RELAY_H_ #include "main.h" #define RELAY_HIGH 1 #define RELAY_LOW 0 void Relay_Init(void); void Relay_High(void); void Relay_Low(void); #endif #ifndef __PWM_H #define __PWM_H #include "main.h" void TIM3_CH2_PWM_Init(u16 per,u16 psc); #endif #ifndef __LDR_H #define __LDR_H #include "main.h" #define LDR_PIN GPIO_Pin_0 #define LDR_PORT GPIOB #define LDR_PERIOD 4000 // ADC转换周期:4000ms #define HI_THRESHOLD 70 // 照度高阈值 #define LO_THRESHOLD 30 // 照度低阈值 typedef struct{ u8 light; // 光照强度(相对强度:0~100) u16 period; // 重复测量周期(s) u8 high_threshold; // 高亮阈值 u8 low_threshold; // 低亮阈值 SensorState state; // 工作状态 u8 (*getData)(void); // 获取光照强度数据 void (*onLightChange)(u8 hiLight, u8 loLight); // 亮度变化的响应操作 } LdrStruct; void ldr_init(void); extern LdrStruct ldr; #endif #ifndef __DHT11_H #define __DHT11_H #include "main.h" #define DHT11_PIN GPIO_Pin_12 #define DHT11_PORT GPIOA #define DHT11_DQ_IN PCin(12) // 输入 #define DHT11_DQ_OUT PCout(12) // 输出 #define SUCCESS 0 #define FAILURE 1 #define DHT11_PERIOD 5000 // 数据采集周期:5000ms #define TEMP_THRESHOLD 28 // 温度阈值(℃) // 定义DHT11结构体 typedef struct{ u8 temp; // 温度值 u8 humi; // 湿度值 u16 period; // 重复测量周期(s) u8 temp_threshold; // 温度阈值 u8 humi_threshold; // 湿度阈值 SensorState state; // 设备状态 u8 (*getData)(u8 *temp, u8 *humi); // 获取温湿度数据 void (*onTempChange)(u8 temp_threshold); // 高温的响应操作 } Dht11Struct; void dht11_init(void); extern Dht11Struct dht11; #endif #ifndef _usart_H #define _usart_H #include "main.h" #define USART1_REC_LEN 200 //定义最大接收字节数 200 extern u8 USART1_RX_BUF[USART1_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 extern u16 USART1_RX_STA; //接收状态标记 void usart1_init(u32 baud); #endif #ifndef __TIM_H #define __TIM_H #include "main.h" //#include "stm32f10x.h" void tim4_init(u16 per,u16 psc); #endif #ifndef __DISPLAY_H #define __DISPLAY_H #include "main.h" #define DSP_DIGIT 4 // 4位数码管 typedef enum{LIGHT, TEMP, HUMI} DSP_Interface; // 数码管界面 typedef struct { u16 digit[DSP_DIGIT]; // 数码管的4位数字 u8 currDigit; // 当前显示位(1~4) u8 dotDigit; // 小数点位置(0~4,0代表不显示小数点) DSP_Interface interface; // 界面显示哪个测量值 void(*SegDisplay)(void); }DisplayStruct; void display_init(void); void segDisplay(void); //void setValue(DisplayStruct *dsp, u8 value[4], u8 dotBit); void setLightValue(DisplayStruct *dsp, u8 dotBit); void setTempValue(DisplayStruct *dsp, u8 dotBit); void setHumiValue(DisplayStruct *dsp, u8 dotBit); extern DisplayStruct dsp; #endif 在已有代码上完善该任务,STM32F103C8t6,用标准库

最新推荐

recommend-type

DHT11温湿度传感器应用及感受

DHT11是一款常见的温湿度传感器,主要用于监测环境中的温度和湿度变化。这款传感器的特点是其简单的接口设计和较低的价格,使其成为初学者和DIY爱好者进行项目开发的理想选择。DHT11采用单总线(Single-Wire)通信...
recommend-type

基于STM32 嵌入式实验DHT11温湿度传感器测量湿度

在实验中,我们使用了 STM32F103ZET6 微控制器,TFTLCD 显示屏,矩阵键盘,DHT11 温湿度传感器等模块。通过实验,我们可以了解 DHT11 传感器的工作原理和使用方法,并掌握了 STM32 微控制器的编程技术和应用。 知识...
recommend-type

51单片机与DHT11实现温湿度采集

DHT11温湿度传感器负责采集温湿度数据,51单片机负责处理数据和控制显示,12864液晶显示屏幕负责显示温湿度数据。 二、系统设计 系统设计主要考虑了温湿度数据的采集、处理和显示。DHT11温湿度传感器通过数字信号...
recommend-type

AM2302(又称DHT22)温湿度传感器的使用及Proteus仿真(附源码)

AM2302(又称DHT22)就是这样一款在家庭、工业以及科研领域都备受青睐的数字温湿度传感器。它不仅可以提供高精度的温湿度数据,而且还具备极强的抗干扰能力和高性价比,使其在多变的应用场景中都能稳定工作。 AM...
recommend-type

C51_温湿度传感器DHT11驱动_LCD1602显示程序_硬件通过_含电路图和实际测试效果图

本程序使用了DHT11温湿度传感器和LCD1602液晶显示器,通过C51单片机来读取温湿度数据并显示在LCD1602液晶显示器上。 首先介绍DHT11温湿度传感器的基本原理和使用方法。DHT11是一种低成本、低功耗的数字温湿度传感器...
recommend-type

精选Java案例开发技巧集锦

从提供的文件信息中,我们可以看出,这是一份关于Java案例开发的集合。虽然没有具体的文件名称列表内容,但根据标题和描述,我们可以推断出这是一份包含了多个Java编程案例的开发集锦。下面我将详细说明与Java案例开发相关的一些知识点。 首先,Java案例开发涉及的知识点相当广泛,它不仅包括了Java语言的基础知识,还包括了面向对象编程思想、数据结构、算法、软件工程原理、设计模式以及特定的开发工具和环境等。 ### Java基础知识 - **Java语言特性**:Java是一种面向对象、解释执行、健壮性、安全性、平台无关性的高级编程语言。 - **数据类型**:Java中的数据类型包括基本数据类型(int、short、long、byte、float、double、boolean、char)和引用数据类型(类、接口、数组)。 - **控制结构**:包括if、else、switch、for、while、do-while等条件和循环控制结构。 - **数组和字符串**:Java数组的定义、初始化和多维数组的使用;字符串的创建、处理和String类的常用方法。 - **异常处理**:try、catch、finally以及throw和throws的使用,用以处理程序中的异常情况。 - **类和对象**:类的定义、对象的创建和使用,以及对象之间的交互。 - **继承和多态**:通过extends关键字实现类的继承,以及通过抽象类和接口实现多态。 ### 面向对象编程 - **封装、继承、多态**:是面向对象编程(OOP)的三大特征,也是Java编程中实现代码复用和模块化的主要手段。 - **抽象类和接口**:抽象类和接口的定义和使用,以及它们在实现多态中的不同应用场景。 ### Java高级特性 - **集合框架**:List、Set、Map等集合类的使用,以及迭代器和比较器的使用。 - **泛型编程**:泛型类、接口和方法的定义和使用,以及类型擦除和通配符的应用。 - **多线程和并发**:创建和管理线程的方法,synchronized和volatile关键字的使用,以及并发包中的类如Executor和ConcurrentMap的应用。 - **I/O流**:文件I/O、字节流、字符流、缓冲流、对象序列化的使用和原理。 - **网络编程**:基于Socket编程,使用java.net包下的类进行网络通信。 - **Java内存模型**:理解堆、栈、方法区等内存区域的作用以及垃圾回收机制。 ### Java开发工具和环境 - **集成开发环境(IDE)**:如Eclipse、IntelliJ IDEA等,它们提供了代码编辑、编译、调试等功能。 - **构建工具**:如Maven和Gradle,它们用于项目构建、依赖管理以及自动化构建过程。 - **版本控制工具**:如Git和SVN,用于代码的版本控制和团队协作。 ### 设计模式和软件工程原理 - **设计模式**:如单例、工厂、策略、观察者、装饰者等设计模式,在Java开发中如何应用这些模式来提高代码的可维护性和可扩展性。 - **软件工程原理**:包括软件开发流程、项目管理、代码审查、单元测试等。 ### 实际案例开发 - **项目结构和构建**:了解如何组织Java项目文件,合理使用包和模块化结构。 - **需求分析和设计**:明确项目需求,进行系统设计,如数据库设计、系统架构设计等。 - **代码编写和实现**:根据设计编写符合要求的代码,实现系统的各个模块功能。 - **测试和维护**:进行单元测试、集成测试,确保代码质量,对项目进行维护和升级。 ### 其他相关知识点 - **Java虚拟机(JVM)**:了解JVM的基本工作原理,包括类加载机制、内存管理、垃圾回收算法等。 - **常用Java框架**:比如Spring、Hibernate、MyBatis等,在实际开发中常常与Java基础结合使用,提高开发效率。 以上知识点可以作为学习Java案例开发的基础框架。在实际的开发实践中,开发者需要结合具体的项目需求,对这些知识点进行灵活运用。通过反复的案例实践,可以加深对Java编程的理解,并逐步提升开发技能。这份集锦可能包含的案例可能涉及上述知识点的具体应用,能够帮助学习者更好地理解理论与实践的结合,从而快速提升个人的Java开发能力。
recommend-type

【VASP报错深度解析】:5大技巧识别并永久解决离子距离太近警告

# 1. VASP软件简介及离子距离太近问题概述 ## 1.1 VASP软件简介 **VASP(Vienna Ab initio Simulation Package)** 是一款广泛应用于计算材料科学的软件,它基于密度泛函理论(DFT)计算固体、表面和分子的电子结构和性质。
recommend-type

npm error A complete log of this run can be found in: D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log

<think>好的,我需要帮助用户找到npm的错误调试日志位置,并解决他们遇到的npm错误。首先,用户已经提供了一个具体的日志路径:'D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log',但看起来这个路径可能有问题,因为日期是2025年,这可能是一个示例或输入错误。我需要确认正确的日志路径生成方式。 根据npm的默认配置,日志文件通常位于npm的缓存目录下的_logs文件夹中。默认情况下,Windows系统中npm的缓存路径是%AppData%\npm-cache,而日志文件会以当前日期和
recommend-type

深入理解内存技术文档详解

由于文件内容无法查看,仅能根据文件的标题、描述、标签以及文件名称列表来构建相关知识点。以下是对“内存详解”这一主题的详细知识点梳理。 内存,作为计算机硬件的重要组成部分,负责临时存放CPU处理的数据和指令。理解内存的工作原理、类型、性能参数等对优化计算机系统性能至关重要。本知识点将从以下几个方面来详细介绍内存: 1. 内存基础概念 内存(Random Access Memory,RAM)是易失性存储器,这意味着一旦断电,存储在其中的数据将会丢失。内存允许计算机临时存储正在执行的程序和数据,以便CPU可以快速访问这些信息。 2. 内存类型 - 动态随机存取存储器(DRAM):目前最常见的RAM类型,用于大多数个人电脑和服务器。 - 静态随机存取存储器(SRAM):速度较快,通常用作CPU缓存。 - 同步动态随机存取存储器(SDRAM):在时钟信号的同步下工作的DRAM。 - 双倍数据速率同步动态随机存取存储器(DDR SDRAM):在时钟周期的上升沿和下降沿传输数据,大幅提升了内存的传输速率。 3. 内存组成结构 - 存储单元:由存储位构成的最小数据存储单位。 - 地址总线:用于选择内存中的存储单元。 - 数据总线:用于传输数据。 - 控制总线:用于传输控制信号。 4. 内存性能参数 - 存储容量:通常用MB(兆字节)或GB(吉字节)表示,指的是内存能够存储多少数据。 - 内存时序:指的是内存从接受到请求到开始读取数据之间的时间间隔。 - 内存频率:通常以MHz或GHz为单位,是内存传输数据的速度。 - 内存带宽:数据传输速率,通常以字节/秒为单位,直接关联到内存频率和数据位宽。 5. 内存工作原理 内存基于电容器和晶体管的工作原理,电容器存储电荷来表示1或0的状态,晶体管则用于读取或写入数据。为了保持数据不丢失,动态内存需要定期刷新。 6. 内存插槽与安装 - 计算机主板上有专用的内存插槽,常见的有DDR2、DDR3、DDR4和DDR5等不同类型。 - 安装内存时需确保兼容性,并按照正确的方向插入内存条,避免物理损坏。 7. 内存测试与优化 - 测试:可以使用如MemTest86等工具测试内存的稳定性和故障。 - 优化:通过超频来提高内存频率,但必须确保稳定性,否则会导致数据损坏或系统崩溃。 8. 内存兼容性问题 不同内存条可能由于制造商、工作频率、时序、电压等参数的不匹配而产生兼容性问题。在升级或更换内存时,必须检查其与主板和现有系统的兼容性。 9. 内存条的常见品牌与型号 诸如金士顿(Kingston)、海盗船(Corsair)、三星(Samsung)和芝奇(G.Skill)等知名品牌提供多种型号的内存条,针对不同需求的用户。 由于“内存详解.doc”是文件标题指定的文件内容,我们可以预期在该文档中将详细涵盖以上知识点,并有可能包含更多的实践案例、故障排查方法以及内存技术的最新发展等高级内容。在实际工作中,理解并应用这些内存相关的知识点对于提高计算机性能、解决计算机故障有着不可估量的价值。
recommend-type

【机械特性分析进阶秘籍】:频域与时域对比的全面研究

# 1. 机械特性分析的频域与时域概述 ## 1.1 频域与时域分析的基本概念 机械特性分析是通