tensorrt加速推理yolo
时间: 2025-04-24 10:07:40 浏览: 39
### 使用 TensorRT 加速 YOLO 模型推理的最佳实践
#### 选择合适的编程语言
对于较小的YOLO模型(如YOLOV5-s),C++版本的TensorRT实现相比Python版本能够提供显著的速度提升,大约可以达到三倍的加速效果[^1]。因此,在追求高性能的情况下,建议优先考虑使用C++来部署YOLO模型。
#### 准备工作
为了利用TensorRT对YOLO模型进行优化并生成高效的执行引擎,首先需要安装NVIDIA提供的TensorRT库以及相应的依赖项[^2]。这通常涉及到配置CUDA环境,并确保系统支持所需的硬件特性。
#### 转换模型格式
将训练好的YOLO模型转换成适合TensorRT处理的形式是一个重要的步骤。一般而言,这意味着要先将其导出为ONNX格式文件,然后再通过`trtexec`工具或者API接口加载该文件创建对应的TensorRT引擎。
```bash
python -m onnxruntime.tools.convert_onnx_models_to_trt --input_model yolov5s.onnx --output_model yolov5s.trt
```
这段命令展示了如何借助onnxruntime中的内置功能快速完成从ONNX到TRT Engine的转变过程。
#### 编写推理代码
编写具体的推理程序时,无论是采用Python还是C++ API,都需要初始化TensorRT运行时对象、解析已保存下来的序列化形式engine数据流、分配输入/输出缓冲区空间等操作。下面给出了一段简单的基于PyTorch和paddledetector封装后的伪代码片段用于演示目的:
```python
import tensorrt as trt
from pycuda import driver, compiler, gpuarray
import numpy as np
def load_engine(engine_file_path):
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
with open(engine_file_path, 'rb') as f, \
trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
class HostDeviceMem(object):
def __init__(self, host_mem, device_mem):
self.host = host_mem
self.device = device_mem
def __str__(self):
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
def __repr__(self):
return self.__str__()
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers.
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to appropriate list based on whether this is an input or output.
if engine.binding_is_input(binding):
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
if __name__ == '__main__':
ENGINE_PATH = './yolov5s.trt'
INPUT_IMAGE_PATH = './test.jpg'
image = cv2.imread(INPUT_IMAGE_PATH).astype(np.float32)[np.newaxis,...]
with load_engine(ENGINE_PATH) as engine,\
engine.create_execution_context() as context:
inputs, outputs, bindings, stream = allocate_buffers(engine)
# Transfer data from CPU to GPU memory.
[np.copyto(i.host, d.reshape(-1)) for i,d in zip(inputs,[image])]
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
# Run inference.
context.execute_async_v2(bindings=bindings,
stream_handle=stream.handle)
# Transfer predictions back from GPU.
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
stream.synchronize()
results = [out.host for out in outputs]
print(results)
```
上述脚本实现了基本的数据预处理、内存管理及异步调用机制等功能模块,使得整个流程更加高效流畅。
#### 测试与验证
最后一步是对经过TensorRT优化之后的新版YOLO检测器进行全面测试,包括但不限于精度评估、性能测量等方面的工作。只有当确认新方案能够在保持原有识别能力的同时带来预期之外的时间消耗减少时才算真正成功完成了此次迁移改造任务。
阅读全文
相关推荐


















