swin transformer实现
时间: 2025-01-29 15:11:03 浏览: 46
### Swin Transformer 的实现方法
#### 构建基本模块
为了构建 Swin Transformer,首先需要定义一些基础组件。这些组件包括多头自注意力机制 (Multi-head Self-Attention, MSA),以及移位窗口机制。
```python
import torch.nn as nn
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
class WindowAttention(nn.Module):
"""Window based multi-head self attention (W-MSA) module with relative position bias.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
"""
def __init__(self, dim, window_size, num_heads):
super().__init__()
...
def forward(self, x, mask=None):
...
```
此部分实现了基于窗口的多头自注意机制[^3]。
#### 定义Swish Block
接着是 Swin Transformer block 的定义,该模块包含了线性变换、LayerNorm 和 MLP 层:
```python
class SwinTransformerBlock(nn.Module):
"""Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
"""
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
...
def forward(self, x):
...
```
上述代码片段展示了如何创建一个标准的 Swin Transformer block,其中包含了 W-MSA 或者 SW-MSA(取决于 `shift_size` 参数),并结合了前馈网络 FFN[^1]。
#### 组合Stage
最后一步是组合多个 blocks 形成完整的 stage 结构,并通过下采样操作连接不同 stages:
```python
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of feature channels
depth (int): Depths of this stage.
num_heads (int): Number of attention head.
window_size (int): Local window size. Default: 7.
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Defaults to PatchMerging.
"""
def __init__(self, dim, depth, num_heads, window_size=7,
downsample=None):
super().__init__()
...
def forward(self, x, H, W):
...
```
这段代码描述了一个典型的 Stage 设计模式,允许灵活调整每一阶段内的 Blocks 数量以及其他超参数配置[^4]。
整个框架遵循分层结构的设计理念,利用局部窗口内进行自我关注来减少计算复杂度,同时采用逐级降维的方式处理特征图谱,从而有效地提高了模型的表现力和效率。
阅读全文
相关推荐


















