活动介绍

C语言拆分signed short

时间: 2024-11-24 18:26:33 浏览: 69
在C语言中,如果处理的是有符号16位整型(`short`类型通常是带符号的),拆分的过程稍微有所不同,因为需要考虑符号位的影响。当你拆分`signed short`时,可能会包含最高位的符号扩展(取决于平台和编译器)。以下是如何进行拆分的一个示例: ```c #include <stdio.h> #include <stdint.h> // 引入stdint.h以获取无符号宽字符类型 typedef struct { uint8_t byte1; int8_t byte2; // 注意int8_t用于低8位,因为它可以表示有符号值 } SignedBytePair; void splitSignedShort(short s16, SignedBytePair bytes[]) { bytes[0].byte1 = (uint8_t)(s16 >> 8); // 只取8位,去掉符号位 bytes[0].byte2 = (int8_t)s16; // 保留符号,作为有符号8位值 } int main() { short s16 = -1234; SignedBytePair bytes[1]; splitSignedShort(s16, bytes); printf("Byte 1: %d\n", bytes[0].byte1); printf("Byte 2: %d\n", bytes[0].byte2); return 0; } ``` 在这个例子中,`splitSignedShort`函数会先移除符号位,然后将剩余的数值分别存储到`bytes`数组的两个成员中。
阅读全文

相关推荐

import tkinter as tk from tkinter import scrolledtext, ttk, messagebox import logging from datetime import datetime import traceback class SimpleCLexer: def __init__(self): self.tokens = [] def tokenize(self, input_str): tokens = [] pos = 0 line = 1 column = 0 length = len(input_str) # 定义C语言的关键词和类型 keywords = { 'void', 'int', 'char', 'float', 'double', 'short', 'long', 'signed', 'unsigned', 'struct', 'union', 'enum', 'typedef', 'static', 'extern', 'auto', 'register', 'const', 'volatile', 'return', 'if', 'else', 'switch', 'case', 'default', 'for', 'while', 'do', 'break', 'continue', 'goto', 'sizeof' } # 扩展类型别名识别 types = {'U1', 'U2', 'U4', 'S1', 'S2', 'S4', 'BOOL', 'BYTE', 'WORD', 'DWORD'} while pos < length: char = input_str[pos] # 跳过空白字符 if char in ' \t': pos += 1 column += 1 continue # 处理换行 if char == '\n': line += 1 column = 0 pos += 1 continue # 处理单行注释 if pos + 1 < length and input_str[pos:pos+2] == '//': end = input_str.find('\n', pos) if end == -1: end = length pos = end continue # 处理多行注释 if pos + 1 < length and input_str[pos:pos+2] == '/*': end = input_str.find('*/', pos + 2) if end == -1: end = length else: end += 2 pos = end continue # 处理标识符 if char.isalpha() or char == '_': start = pos pos += 1 while pos < length and (input_str[pos].isalnum() or input_str[pos] == '_'): pos += 1 token_text = input_str[start:pos] token_type = 'IDENTIFIER' # 检查是否为关键字或类型 if token_text in keywords: token_type = 'KEYWORD' elif token_text in types: token_type = 'TYPE' tokens.append({ 'type': token_type, 'text': token_text, 'line': line, 'column': column }) column += (pos - start) continue # 处理数字 if char.isdigit(): start = pos pos += 1 while pos < length and (input_str[pos].isdigit() or input_str[pos] in '.xXabcdefABCDEF'): pos += 1 tokens.append({ 'type': 'NUMBER', 'text': input_str[start:pos], 'line': line, 'column': column }) column += (pos - start) continue # 处理字符串 if char == '"': start = pos pos += 1 while pos < length and input_str[pos] != '"': if input_str[pos] == '\\' and pos + 1 < length: pos += 2 else: pos += 1 if pos < length and input_str[pos] == '"': pos += 1 tokens.append({ 'type': 'STRING', 'text': input_str[start:pos], 'line': line, 'column': column }) column += (pos - start) continue # 处理字符 if char == "'": start = pos pos += 1 while pos < length and input_str[pos] != "'": if input_str[pos] == '\\' and pos + 1 < length: pos += 2 else: pos += 1 if pos < length and input_str[pos] == "'": pos += 1 tokens.append({ 'type': 'CHAR', 'text': input_str[start:pos], 'line': line, 'column': column }) column += (pos - start) continue # 处理运算符和标点符号 operators = { '(', ')', '{', '}', '[', ']', ';', ',', '.', '->', '++', '--', '&', '*', '+', '-', '~', '!', '/', '%', '<<', '>>', '<', '>', '<=', '>=', '==', '!=', '^', '|', '&&', '||', '?', ':', '=', '+=', '-=', '*=', '/=', '%=', '<<=', '>>=', '&=', '^=', '|=', ',' } # 尝试匹配最长的运算符 matched = False for op_len in range(3, 0, -1): if pos + op_len <= length and input_str[pos:pos+op_len] in operators: tokens.append({ 'type': 'OPERATOR', 'text': input_str[pos:pos+op_len], 'line': line, 'column': column }) pos += op_len column += op_len matched = True break if matched: continue # 无法识别的字符 tokens.append({ 'type': 'UNKNOWN', 'text': char, 'line': line, 'column': column }) pos += 1 column += 1 return tokens class FunctionAnalyzer: def __init__(self): self.function_name = "" self.parameters = [] self.global_vars = [] self.function_calls = [] self.in_function = False self.in_function_body = False self.brace_depth = 0 self.variable_declarations = {} self.macro_definitions = set() self.storage_classes = {"static", "extern", "auto", "register"} self.local_vars = [] # 局部变量列表 self.struct_tags = set() # 存储识别的结构体标签 self.recorded_locals = set() # 新增:跟踪已记录的局部变量 self.recorded_globals = set() self.recorded_params = set() # 定义允许的类型 self.basic_types = {'void', 'int', 'char', 'float', 'double', 'short', 'long', 'signed', 'unsigned'} self.type_aliases = {"U1", "U2", "U4", "S1", "S2", "S4"} self.allowed_types = self.basic_types | self.type_aliases self.allowed_types.add('struct') # 添加结构体支持 self.debug_level = 2 # 1=基本, 2=详细 def analyze(self, tokens): self.tokens = tokens self.pos = 0 self.current_line = 0 self.brace_depth = 0 # 识别宏定义 self._identify_macros() while self.pos < len(self.tokens): token = self.tokens[self.pos] self.current_line = token['line'] # 检测结构体类型声明(只识别,不处理定义) if token['text'] == 'struct' and self.pos + 1 < len(self.tokens): next_token = self.tokens[self.pos + 1] if next_token['type'] == 'IDENTIFIER': # 仅记录结构体标签,不跳过token self.struct_tags.add(next_token['text']) self.allowed_types.add(next_token['text']) # 跟踪大括号深度 if token['text'] == '{': self.brace_depth += 1 if self.in_function and self.brace_depth == 1: self.in_function_body = True elif token['text'] == '}': self.brace_depth -= 1 if self.brace_depth == 0 and self.in_function: self.in_function = False self.in_function_body = False # 检测函数定义 if token['text'] in self.storage_classes or token['text'] in self.allowed_types: if self._is_function_definition(): self._handle_function_definition() continue # 检测变量声明 - 只在函数体内处理 if self.in_function_body and token['text'] in self.allowed_types: # 检查下一个token是否是标识符(变量名) if self.pos + 1 < len(self.tokens) and \ self.tokens[self.pos + 1]['type'] == 'IDENTIFIER': # 确保不是函数返回类型 if self.pos + 2 < len(self.tokens) and self.tokens[self.pos + 2]['text'] != '(': self._handle_variable_declaration() continue # 检测函数调用 if token['type'] == 'IDENTIFIER' and self.pos + 1 < len(self.tokens): next_token = self.tokens[self.pos + 1] if next_token['text'] == '(': self._handle_function_call() continue # 检测变量使用 if token['type'] == 'IDENTIFIER': self._handle_identifier_use(token) self.pos += 1 return self def _identify_macros(self): """识别宏定义(全大写标识符)""" for token in self.tokens: if token['type'] == 'IDENTIFIER' and token['text'].isupper(): self.macro_definitions.add(token['text']) def _is_function_definition(self): pos = self.pos storage_class = None # 检测存储类说明符 if self.tokens[pos]['text'] in self.storage_classes: storage_class = self.tokens[pos]['text'] pos += 1 # 检测返回类型 if pos >= len(self.tokens) or self.tokens[pos]['text'] not in self.allowed_types: return False return_type = self.tokens[pos]['text'] pos += 1 # 处理指针声明 if pos < len(self.tokens) and self.tokens[pos]['text'] == '*': return_type += '*' pos += 1 # 检测函数名 if pos < len(self.tokens) and self.tokens[pos]['type'] == 'IDENTIFIER': func_name = self.tokens[pos]['text'] pos += 1 else: return False # 检测参数列表开头的'(' if pos < len(self.tokens) and self.tokens[pos]['text'] == '(': pos += 1 else: return False # 检测函数体开头的'{' (允许最多5个token的间隔) found_brace = False for i in range(min(5, len(self.tokens) - pos)): if self.tokens[pos + i]['text'] == '{': found_brace = True break return found_brace def _handle_function_definition(self): start_pos = self.pos storage_class = None # 处理存储类说明符 if self.tokens[self.pos]['text'] in self.storage_classes: storage_class = self.tokens[self.pos]['text'] self.pos += 1 # 获取返回类型 return_type = self.tokens[self.pos]['text'] self.pos += 1 # 处理指针声明 if self.pos < len(self.tokens) and self.tokens[self.pos]['text'] == '*': return_type += '*' self.pos += 1 # 获取函数名 if self.pos < len(self.tokens) and self.tokens[self.pos]['type'] == 'IDENTIFIER': func_name = self.tokens[self.pos]['text'] self.pos += 1 else: self.pos = start_pos return # 记录函数名 self.function_name = func_name self.variable_declarations[func_name] = True # 跳过 '(' if self.pos < len(self.tokens) and self.tokens[self.pos]['text'] == '(': self.pos += 1 # 提取参数 params = [] current_param = [] depth = 1 param_line = self.current_line while self.pos < len(self.tokens) and depth > 0: token = self.tokens[self.pos] if token['text'] == '(': depth += 1 elif token['text'] == ')': depth -= 1 if depth == 0: break elif token['text'] == ',' and depth == 1: # 提取参数类型和名称 param_type, param_name = self._extract_param_info(current_param) if param_type and param_name: params.append({ 'type': param_type, 'name': param_name, 'line': param_line }) self.variable_declarations[param_name] = True current_param = [] param_line = token['line'] self.pos += 1 continue current_param.append(token) self.pos += 1 # 处理最后一个参数 if current_param: param_type, param_name = self._extract_param_info(current_param) if param_type and param_name: params.append({ 'type': param_type, 'name': param_name, 'line': param_line }) self.variable_declarations[param_name] = True # 记录参数 self.parameters = params # 记录参数为参数类型 for param in params: self.recorded_params.add(param['name']) self.variable_declarations[param['name']] = True # 查找函数体开头的'{' while self.pos < len(self.tokens) and self.tokens[self.pos]['text'] != '{': self.pos += 1 if self.pos < len(self.tokens) and self.tokens[self.pos]['text'] == '{': self.in_function = True self.brace_depth = 0 self.pos += 1 return [p['name'] for p in params] if params else [] def _extract_param_info(self, tokens): """从参数token列表中提取类型和名称""" param_type = [] param_name = None for token in tokens: if token['type'] in ('KEYWORD', 'TYPE') or token['text'] in self.allowed_types: param_type.append(token['text']) elif token['type'] == 'IDENTIFIER' and not token['text'].isupper(): param_name = token['text'] return ' '.join(param_type), param_name def _handle_variable_declaration(self): start_pos = self.pos current_line = self.current_line # 获取变量类型 var_type = self.tokens[self.pos]['text'] # 处理结构体声明 is_struct = False if var_type == 'struct': is_struct = True # 收集结构体类型名 struct_type = [] self.pos += 1 while self.pos < len(self.tokens) and self.tokens[self.pos]['text'] != ';': token = self.tokens[self.pos] if token['text'] == '{': # 跳过结构体定义 depth = 1 self.pos += 1 while self.pos < len(self.tokens) and depth > 0: if self.tokens[self.pos]['text'] == '{': depth += 1 elif self.tokens[self.pos]['text'] == '}': depth -= 1 self.pos += 1 continue elif token['type'] == 'IDENTIFIER': struct_type.append(token['text']) self.pos += 1 if struct_type: var_type = 'struct ' + ' '.join(struct_type) else: var_type = 'struct' else: self.pos += 1 # 处理指针声明 while self.pos < len(self.tokens) and self.tokens[self.pos]['text'] == '*': var_type += '*' self.pos += 1 var_names = [] # 处理变量名和声明 while self.pos < len(self.tokens): token = self.tokens[self.pos] # 结束声明 if token['text'] == ';': self.pos += 1 break # 标识符 - 变量名 if token['type'] == 'IDENTIFIER' and not token['text'].isupper(): var_name = token['text'] # 跳过宏定义 if var_name not in self.macro_definitions: var_names.append(var_name) self.variable_declarations[var_name] = True self.pos += 1 continue # 逗号 - 多个变量声明 elif token['text'] == ',': self.pos += 1 # 处理指针声明 if self.pos < len(self.tokens) and self.tokens[self.pos]['text'] == '*': var_type += '*' self.pos += 1 continue # 数组声明 - 跳过数组大小 elif token['text'] == '[': self.pos += 1 depth = 1 while self.pos < len(self.tokens) and depth > 0: t = self.tokens[self.pos] if t['text'] == '[': depth += 1 elif t['text'] == ']': depth -= 1 self.pos += 1 continue # 初始化 - 跳过初始化表达式 elif token['text'] == '=': self.pos += 1 depth = 0 while self.pos < len(self.tokens): t = self.tokens[self.pos] if t['text'] in {'(', '['}: depth += 1 elif t['text'] in {')', ']'}: depth -= 1 elif t['text'] in {',', ';'} and depth == 0: break self.pos += 1 continue self.pos += 1 # 添加到变量列表 for var_name in var_names: # 检查是否在参数列表中 is_param = any(param['name'] == var_name for param in self.parameters) if not is_param and var_name not in self.macro_definitions: var_info = { 'type': var_type, 'name': var_name, 'line': current_line, 'is_struct': is_struct } if self.in_function_body: # 添加到局部变量 var_info['scope'] = 'local' self.local_vars.append(var_info) self.recorded_locals.add(var_name) else: # 添加到全局变量 var_info['scope'] = 'global' self.global_vars.append(var_info) self.recorded_globals.add(var_name) self.variable_declarations[var_name] = True def _handle_identifier_use(self, token): var_name = token['text'] line = token['line'] # 跳过已处理的标识符 skip_conditions = ( var_name in self.variable_declarations, var_name in self.macro_definitions, var_name == self.function_name, var_name in self.struct_tags # 跳过结构体标签 ) if any(skip_conditions): return # 函数体内使用的标识符 if self.in_function_body: # 如果未声明,则视为全局变量 if var_name not in self.recorded_locals and var_name not in self.recorded_globals: if var_name not in self.recorded_globals: self.global_vars.append({ 'name': var_name, 'line': line, 'scope': 'global' }) self.variable_declarations[var_name] = True self.recorded_globals.add(var_name) else: # 函数体外使用的标识符 if var_name not in self.recorded_globals: self.global_vars.append({ 'name': var_name, 'line': line, 'scope': 'global' }) self.variable_declarations[var_name] = True self.recorded_globals.add(var_name) def _handle_function_call(self): # 提取函数名 func_name = self.tokens[self.pos]['text'] line = self.current_line self.pos += 2 # 跳过函数名和 '(' # 提取参数 params = [] depth = 1 current_param = [] # 保存所有参数token用于后续分析 param_tokens = [] while self.pos < len(self.tokens) and depth > 0: token = self.tokens[self.pos] if token['text'] == '(': depth += 1 elif token['text'] == ')': depth -= 1 if depth == 0: break elif token['text'] == ',' and depth == 1: params.append(''.join([t['text'] for t in current_param]).strip()) param_tokens.extend(current_param) current_param = [] self.pos += 1 continue current_param.append(token) self.pos += 1 if current_param: params.append(''.join([t['text'] for t in current_param]).strip()) param_tokens.extend(current_param) # 跳过 ')' 如果还在范围内 if self.pos < len(self.tokens) and self.tokens[self.pos]['text'] == ')': self.pos += 1 # 处理参数中的标识符 for token in param_tokens: if token['type'] == 'IDENTIFIER' and not token['text'].isupper(): self._handle_identifier_use(token) # 确定返回类型 return_type = "unknown" if func_name.startswith("vd_"): return_type = "void" elif func_name.startswith(("u1_", "u2_", "u4_", "s1_", "s2_", "s4_")): prefix = func_name.split("_")[0] return_type = prefix.upper() # 添加到函数调用列表 self.function_calls.append({ 'name': func_name, 'return_type': return_type, 'params': ", ".join(params), 'line': line }) class FunctionParserApp: def __init__(self, root): self.root = root self.root.title("C语言函数解析器") self.root.geometry("1000x800") self.root.configure(bg="#f0f0f0") self.setup_logging() # 创建样式 style = ttk.Style() style.configure("TFrame", background="#f0f0f0") style.configure("TLabelFrame", background="#f0f0f0", font=("Arial", 10, "bold")) style.configure("TButton", font=("Arial", 10), padding=5) style.configure("TCombobox", padding=5) style.configure("TProgressbar", thickness=10) # 主框架 main_frame = ttk.Frame(root) main_frame.pack(fill="both", expand=True, padx=15, pady=15) # 创建输入区域 input_frame = ttk.LabelFrame(main_frame, text="输入C语言函数体") input_frame.pack(fill="both", expand=True, padx=5, pady=5) self.input_text = scrolledtext.ScrolledText(input_frame, width=100, height=15, font=("Consolas", 11), bg="#ffffff") self.input_text.pack(fill="both", expand=True, padx=10, pady=10) # 按钮区域 btn_frame = ttk.Frame(main_frame) btn_frame.pack(fill="x", padx=5, pady=5) # 解析按钮 parse_btn = ttk.Button(btn_frame, text="解析函数", command=self.parse_function) parse_btn.pack(side="left", padx=5) # 保存日志按钮 save_log_btn = ttk.Button(btn_frame, text="保存日志", command=self.save_logs) save_log_btn.pack(side="right", padx=5) # 进度条 self.progress = ttk.Progressbar(btn_frame, orient="horizontal", length=300, mode="determinate") self.progress.pack(side="left", padx=10, fill="x", expand=True) # 调试级别控制 debug_frame = ttk.Frame(btn_frame) debug_frame.pack(side="left", padx=10) ttk.Label(debug_frame, text="调试级别:").pack(side="left") self.debug_level = tk.IntVar(value=1) ttk.Combobox(debug_frame, textvariable=self.debug_level, values=[1, 2], width=3).pack(side="left") # 示例按钮 example_btn = ttk.Button(btn_frame, text="加载示例", command=self.load_example) example_btn.pack(side="right", padx=5) # 创建输出区域 output_frame = ttk.LabelFrame(main_frame, text="解析结果") output_frame.pack(fill="both", expand=True, padx=5, pady=5) self.output_text = scrolledtext.ScrolledText(output_frame, width=100, height=15, font=("Consolas", 11), bg="#ffffff") self.output_text.pack(fill="both", expand=True, padx=10, pady=10) self.output_text.config(state=tk.DISABLED) # 日志区域 log_frame = ttk.LabelFrame(main_frame, text="日志信息") log_frame.pack(fill="both", expand=True, padx=5, pady=5) self.log_text = scrolledtext.ScrolledText(log_frame, width=100, height=6, font=("Consolas", 10), bg="#f8f8f8") self.log_text.pack(fill="both", expand=True, padx=10, pady=10) self.log_text.config(state=tk.DISABLED) # 示例函数体 self.example_code = """static void Diag21_PID_C9(U1 u1_a_num) { U1 u1_t_cmplt; U1 u1_t_cnt; struct SensorData sensor; if((U1)DIAG_CNT_ZERO == u1_t_swrstcnt) /* Determine if a software reset is in progress */ { for(u1_t_cnt = (U1)DIAG21_ZERO; u1_t_cnt < (U1)DIAG21_PIDC9_FLAG; u1_t_cnt ++) { u1_t_cmplt = u1_g_InspSoftwareVersion(u4_g_cmd, &u4_g_data, (U1)TRUE); } vd_s_Diag21_U2ToU1(u2_g_buf, u1_g_data, (U1)DIAG21_PIDC9_FLAG); } else { /* Do Nothing */ } }""" # 加载示例 self.load_example() def setup_logging(self): """配置日志系统""" self.log_filename = f"parser_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log" # 创建文件处理器 file_handler = logging.FileHandler(self.log_filename, encoding='utf-8') file_handler.setLevel(logging.INFO) file_handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")) # 配置根日志器 root_logger = logging.getLogger() root_logger.setLevel(logging.INFO) root_logger.addHandler(file_handler) def log_to_gui(self, message, level="info"): """将日志信息显示在GUI中""" try: self.log_text.config(state=tk.NORMAL) timestamp = datetime.now().strftime("%H:%M:%S") self.log_text.insert(tk.END, f"[{timestamp}] {message}\n") self.log_text.see(tk.END) self.log_text.config(state=tk.DISABLED) if level == "info": logging.info(message) elif level == "warning": logging.warning(message) elif level == "error": logging.error(message) except Exception as e: logging.error(f"GUI日志错误: {str(e)}") def save_logs(self): """保存日志到文件""" try: log_content = self.log_text.get("1.0", tk.END) filename = f"saved_log_{datetime.now().strftime('%H%M%S')}.txt" with open(filename, "w", encoding='utf-8') as f: f.write(log_content) self.log_to_gui(f"日志已保存到: {filename}", "info") messagebox.showinfo("保存成功", f"日志已保存到:\n{filename}") except Exception as e: self.log_to_gui(f"保存日志失败: {str(e)}", "error") messagebox.showerror("保存失败", f"无法保存日志:\n{str(e)}") def update_progress(self, value): """更新进度条""" self.progress['value'] = value self.root.update_idletasks() def load_example(self): """加载示例函数体""" self.input_text.delete(1.0, tk.END) self.input_text.insert(tk.END, self.example_code) self.log_to_gui("已加载示例函数体") def parse_function(self): """使用内置解析器解析C语言函数体""" try: code = self.input_text.get(1.0, tk.END) if not code.strip(): self.log_to_gui("错误: 没有输入函数体", "error") messagebox.showerror("错误", "请输入要解析的C语言函数体") return self.log_to_gui("开始解析函数体...") self.output_text.config(state=tk.NORMAL) self.output_text.delete(1.0, tk.END) self.update_progress(0) # 使用内置词法分析器 self.log_to_gui("执行词法分析...") lexer = SimpleCLexer() tokens = lexer.tokenize(code) self.update_progress(30) # 使用内置语法分析器 self.log_to_gui("执行语法分析...") analyzer = FunctionAnalyzer() analyzer.debug_level = self.debug_level.get() analyzer.analyze(tokens) # 显示结果 self.log_to_gui("生成解析报告...") self.display_results( analyzer.local_vars, analyzer.global_vars, analyzer.function_calls, analyzer.function_name, analyzer.parameters ) self.update_progress(100) self.output_text.config(state=tk.DISABLED) self.log_to_gui("解析完成!") messagebox.showinfo("完成", "函数体解析成功完成!") except Exception as e: self.log_to_gui(f"解析错误: {str(e)}", "error") self.log_to_gui(f"错误详情: {traceback.format_exc()}", "error") messagebox.showerror("解析错误", f"发生错误:\n{str(e)}") self.update_progress(0) def display_results(self, local_vars, global_vars, function_calls, func_name, func_params): """增强版结果显示,包含所有变量信息""" # 显示函数签名 self.output_text.insert(tk.END, "=== 函数签名 ===\n", "header") if func_name: self.output_text.insert(tk.END, f"函数名: {func_name}\n") if func_params: param_list = [] for param in func_params: param_list.append(f"{param['type']} {param['name']}") self.output_text.insert(tk.END, f"参数: {', '.join(param_list)}\n\n") else: self.output_text.insert(tk.END, "参数: 无\n\n") else: self.output_text.insert(tk.END, "警告: 无法识别函数签名\n\n") # 显示所有找到的变量 self.output_text.insert(tk.END, "=== 所有变量分析 ===\n", "header") self.output_text.insert(tk.END, "类型 | 名称 | 作用域 | 行号 | 类别\n", "subheader") self.output_text.insert(tk.END, "-" * 60 + "\n") # 显示参数 for param in func_params: self.output_text.insert(tk.END, f"参数 | {param['name']} | 参数 | {param['line']} | 基本类型\n") # 显示局部变量 for var in local_vars: category = "结构体" if var.get('is_struct', False) else "基本类型" self.output_text.insert(tk.END, f"变量 | {var['name']} | 局部 | {var['line']} | {category}\n") # 显示全局变量 for var in global_vars: # 检查是否是结构体变量 category = "结构体" if var.get('is_struct', False) else "基本类型" self.output_text.insert(tk.END, f"变量 | {var['name']} | 全局 | {var['line']} | {category}\n") # 显示函数调用 for func in function_calls: self.output_text.insert(tk.END, f"函数调用 | {func['name']} | 调用 | {func['line']} | 函数\n") self.output_text.insert(tk.END, "\n") # 显示局部变量 if local_vars: self.output_text.insert(tk.END, "=== 局部变量 ===\n", "header") # 基本类型局部变量 basic_locals = [v for v in local_vars if not v.get('is_struct', False)] if basic_locals: self.output_text.insert(tk.END, "基本类型变量:\n") for var in basic_locals: self.output_text.insert(tk.END, f"{var['type']} {var['name']} (行号: {var['line']})\n") # 结构体局部变量 struct_locals = [v for v in local_vars if v.get('is_struct', False)] if struct_locals: self.output_text.insert(tk.END, "\n结构体变量:\n") for var in struct_locals: self.output_text.insert(tk.END, f"{var['type']} {var['name']} (行号: {var['line']})\n") else: self.output_text.insert(tk.END, "未找到局部变量\n\n") # 显示使用的全局变量 if global_vars: self.output_text.insert(tk.END, "=== 使用的全局变量 ===\n", "header") # 基本类型全局变量 basic_globals = [v for v in global_vars if not v.get('is_struct', False)] if basic_globals: self.output_text.insert(tk.END, "基本类型变量:\n") for var in basic_globals: self.output_text.insert(tk.END, f"{var['name']} (行号: {var['line']})\n") # 结构体全局变量 struct_globals = [v for v in global_vars if v.get('is_struct', False)] if struct_globals: self.output_text.insert(tk.END, "\n结构体变量:\n") for var in struct_globals: self.output_text.insert(tk.END, f"{var['name']} (行号: {var['line']})\n") self.output_text.insert(tk.END, "\n") else: self.output_text.insert(tk.END, "未使用全局变量\n\n") # 显示函数调用 if function_calls: self.output_text.insert(tk.END, "=== 函数调用 ===\n", "header") for func in function_calls: self.output_text.insert(tk.END, f"函数名: {func['name']} (行号: {func['line']})\n") self.output_text.insert(tk.END, f"返回类型: {func['return_type']}\n") self.output_text.insert(tk.END, f"参数: {func['params']}\n") self.output_text.insert(tk.END, "-" * 50 + "\n") else: self.output_text.insert(tk.END, "未调用任何函数\n\n") # 添加变量统计 self.output_text.insert(tk.END, "=== 解析统计 ===\n", "header") self.output_text.insert(tk.END, f"参数数量: {len(func_params)}\n") self.output_text.insert(tk.END, f"局部变量数量: {len(local_vars)}\n") self.output_text.insert(tk.END, f"全局变量数量: {len(global_vars)}\n") self.output_text.insert(tk.END, f"函数调用数量: {len(function_calls)}\n") # 结构体统计 struct_locals = [v for v in local_vars if v.get('is_struct', False)] struct_globals = [v for v in global_vars if v.get('is_struct', False)] self.output_text.insert(tk.END, f"结构体变量数量: {len(struct_locals) + len(struct_globals)}\n") self.output_text.insert(tk.END, f"总变量数量: {len(func_params) + len(local_vars) + len(global_vars) + len(function_calls)}\n") # 配置标签样式 self.output_text.tag_config("header", font=("Arial", 12, "bold"), foreground="#2c3e50") self.output_text.tag_config("subheader", font=("Arial", 10, "bold"), foreground="#34495e") if __name__ == "__main__": root = tk.Tk() app = FunctionParserApp(root) root.mainloop() === 函数签名 === 函数名: Diag21_PID_C9 参数: U1 u1_a_num === 所有变量分析 === 类型 | 名称 | 作用域 | 行号 | 类别 ------------------------------------------------------------ 参数 | u1_a_num | 参数 | 1 | 基本类型 变量 | u1_t_cmplt | 全局 | 3 | 基本类型 变量 | u1_t_cnt | 全局 | 4 | 基本类型 变量 | sensor | 全局 | 5 | 基本类型 变量 | u1_t_swrstcnt | 全局 | 7 | 基本类型 变量 | u4_g_cmd | 全局 | 11 | 基本类型 变量 | u4_g_data | 全局 | 11 | 基本类型 变量 | u2_g_buf | 全局 | 13 | 基本类型 变量 | u1_g_data | 全局 | 13 | 基本类型 函数调用 | u1_g_InspSoftwareVersion | 调用 | 11 | 函数 函数调用 | vd_s_Diag21_U2ToU1 | 调用 | 13 | 函数 未找到局部变量 === 使用的全局变量 === 基本类型变量: u1_t_cmplt (行号: 3) u1_t_cnt (行号: 4) sensor (行号: 5) u1_t_swrstcnt (行号: 7) u4_g_cmd (行号: 11) u4_g_data (行号: 11) u2_g_buf (行号: 13) u1_g_data (行号: 13) === 函数调用 === 函数名: u1_g_InspSoftwareVersion (行号: 11) 返回类型: U1 参数: u4_g_cmd, &u4_g_data, (U1)TRUE -------------------------------------------------- 函数名: vd_s_Diag21_U2ToU1 (行号: 13) 返回类型: void 参数: u2_g_buf, u1_g_data, (U1)DIAG21_PIDC9_FLAG -------------------------------------------------- === 解析统计 === 参数数量: 1 局部变量数量: 0 全局变量数量: 8 函数调用数量: 2 结构体变量数量: 0 总变量数量: 11 1、去除调试级别功能 2、去除保存日志功能 3、修改局部变量识别全局变量识别结构体识别数组识别等方式,先找出所有变量全部列出来,再找到函数体内的已经声明的局部变量,剩下的没有声明的就是全局变量。结构体只会在结构体内进行声明,而不会定义。

zip

最新推荐

recommend-type

c语言中获取整数和浮点数的符号位

在C语言中,获取整数和浮点数的符号位是一个非常重要的知识点。符号位是指数值的正负符号,判断符号位是进行逻辑处理的基础。下面是获取整数和浮点数符号位的相关知识点。 首先,为什么要获取符号位?在许多情况下...
recommend-type

详解C语言中的char数据类型及其与int类型的转换

在C语言中,`char`数据类型是一种基本的整型数据类型,用于存储单个字符。根据C语言标准,`char`类型的数据占据一个字节,即8位。然而,这个字节是作为有符号(`signed char`)还是无符号(`unsigned char`)来解释...
recommend-type

c语言printf输出格式汇总

C语言printf输出格式汇总 C语言中,printf函数是格式输出函数,用于按用户指定的格式,把指定的数据显示到显示器屏幕上。...* signed int:-2147483648~+2147483648 * unsigned int:0~4294967295
recommend-type

langchain4j-anthropic-spring-boot-starter-0.31.0.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

Visual C++.NET编程技术实战指南

根据提供的文件信息,可以生成以下知识点: ### Visual C++.NET编程技术体验 #### 第2章 定制窗口 - **设置窗口风格**:介绍了如何通过编程自定义窗口的外观和行为。包括改变窗口的标题栏、边框样式、大小和位置等。这通常涉及到Windows API中的`SetWindowLong`和`SetClassLong`函数。 - **创建六边形窗口**:展示了如何创建一个具有特殊形状边界的窗口,这类窗口不遵循标准的矩形形状。它需要使用`SetWindowRgn`函数设置窗口的区域。 - **创建异形窗口**:扩展了定制窗口的内容,提供了创建非标准形状窗口的方法。这可能需要创建一个不规则的窗口区域,并将其应用到窗口上。 #### 第3章 菜单和控制条高级应用 - **菜单编程**:讲解了如何创建和修改菜单项,处理用户与菜单的交互事件,以及动态地添加或删除菜单项。 - **工具栏编程**:阐述了如何使用工具栏,包括如何创建工具栏按钮、分配事件处理函数,并实现工具栏按钮的响应逻辑。 - **状态栏编程**:介绍了状态栏的创建、添加不同类型的指示器(如文本、进度条等)以及状态信息的显示更新。 - **为工具栏添加皮肤**:展示了如何为工具栏提供更加丰富的视觉效果,通常涉及到第三方的控件库或是自定义的绘图代码。 #### 第5章 系统编程 - **操作注册表**:解释了Windows注册表的结构和如何通过程序对其进行读写操作,这对于配置软件和管理软件设置非常关键。 - **系统托盘编程**:讲解了如何在系统托盘区域创建图标,并实现最小化到托盘、从托盘恢复窗口的功能。 - **鼠标钩子程序**:介绍了钩子(Hook)技术,特别是鼠标钩子,如何拦截和处理系统中的鼠标事件。 - **文件分割器**:提供了如何将文件分割成多个部分,并且能够重新组合文件的技术示例。 #### 第6章 多文档/多视图编程 - **单文档多视**:展示了如何在同一个文档中创建多个视图,这在文档编辑软件中非常常见。 #### 第7章 对话框高级应用 - **实现无模式对话框**:介绍了无模式对话框的概念及其应用场景,以及如何实现和管理无模式对话框。 - **使用模式属性表及向导属性表**:讲解了属性表的创建和使用方法,以及如何通过向导性质的对话框引导用户完成多步骤的任务。 - **鼠标敏感文字**:提供了如何实现点击文字触发特定事件的功能,这在阅读器和编辑器应用中很有用。 #### 第8章 GDI+图形编程 - **图像浏览器**:通过图像浏览器示例,展示了GDI+在图像处理和展示中的应用,包括图像的加载、显示以及基本的图像操作。 #### 第9章 多线程编程 - **使用全局变量通信**:介绍了在多线程环境下使用全局变量进行线程间通信的方法和注意事项。 - **使用Windows消息通信**:讲解了通过消息队列在不同线程间传递信息的技术,包括发送消息和处理消息。 - **使用CriticalSection对象**:阐述了如何使用临界区(CriticalSection)对象防止多个线程同时访问同一资源。 - **使用Mutex对象**:介绍了互斥锁(Mutex)的使用,用以同步线程对共享资源的访问,保证资源的安全。 - **使用Semaphore对象**:解释了信号量(Semaphore)对象的使用,它允许一个资源由指定数量的线程同时访问。 #### 第10章 DLL编程 - **创建和使用Win32 DLL**:介绍了如何创建和链接Win32动态链接库(DLL),以及如何在其他程序中使用这些DLL。 - **创建和使用MFC DLL**:详细说明了如何创建和使用基于MFC的动态链接库,适用于需要使用MFC类库的场景。 #### 第11章 ATL编程 - **简单的非属性化ATL项目**:讲解了ATL(Active Template Library)的基础使用方法,创建一个不使用属性化组件的简单项目。 - **使用ATL开发COM组件**:详细阐述了使用ATL开发COM组件的步骤,包括创建接口、实现类以及注册组件。 #### 第12章 STL编程 - **list编程**:介绍了STL(标准模板库)中的list容器的使用,讲解了如何使用list实现复杂数据结构的管理。 #### 第13章 网络编程 - **网上聊天应用程序**:提供了实现基本聊天功能的示例代码,包括客户端和服务器的通信逻辑。 - **简单的网页浏览器**:演示了如何创建一个简单的Web浏览器程序,涉及到网络通信和HTML解析。 - **ISAPI服务器扩展编程**:介绍了如何开发ISAPI(Internet Server API)服务器扩展来扩展IIS(Internet Information Services)的功能。 #### 第14章 数据库编程 - **ODBC数据库编程**:解释了ODBC(开放数据库互联)的概念,并提供了使用ODBC API进行数据库访问的示例。 - **ADO编程**:介绍了ADO(ActiveX Data Objects)技术,讲解了如何使用ADO进行数据库的增删改查等操作。 #### 第15章 HTML帮助系统编程 - **创建HTML帮助文件**:讲解了如何创建HTML帮助文件(.chm),这是微软帮助系统的一种形式。 - **区分上下文帮助**:提供了在应用程序中实现上下文敏感帮助的技术示例。 #### 第16章 安装和部署项目 - **用安装程序向导创建安装项目**:介绍了如何使用Visual Studio中的安装和部署项目向导,快速创建安装程序。 - **部署应用程序**:阐述了部署应用程序到目标系统的过程,以及如何确保应用程序的正确安装和运行。 以上内容涵盖了Visual C++.NET编程技术体验一书中涉及的各个技术点,并对每个章节中的示例做了详细的说明。这些知识点对于理解和掌握Visual C++.NET编程非常重要,并能够帮助读者在实际项目开发中应用这些技术。
recommend-type

HarmonyOS内核深度探秘:优化自由行旅游系统的策略

# 1. HarmonyOS内核概述与旅游系统需求分析 ## 1.1 HarmonyOS内核概述 HarmonyOS(鸿蒙操作系统)是由华为开发的一个分布式操作系统,旨在提供跨多种设备的无缝体验。其内核设计理念强调高效、安全和模块化,以微内核架构和分布式能力
recommend-type

tkinter模块所有控件

<think>好的,我现在需要回答用户关于Tkinter模块中所有控件列表的问题。首先,我需要回忆Tkinter的基础知识,确保自己了解各个控件的名称和用途。用户希望得到所有支持的控件列表,所以必须全面覆盖,不能遗漏。 首先,我应该从Tkinter的标准控件开始。常见的控件包括Label、Button、Entry这些基础部件。然后是Frame,用于布局,还有Canvas用于绘图。接下来是Checkbutton、Radiobutton,这些属于选择类控件。Listbox和Scrollbar通常一起使用,处理滚动内容。还有Scale(滑块)、Spinbox、Menu、Menubutton这些可能
recommend-type

局域网五子棋游戏:娱乐与聊天的完美结合

标题“网络五子棋”和描述“适合于局域网之间娱乐和聊天!”以及标签“五子棋 网络”所涉及的知识点主要围绕着五子棋游戏的网络版本及其在局域网中的应用。以下是详细的知识点: 1. 五子棋游戏概述: 五子棋是一种两人对弈的纯策略型棋类游戏,又称为连珠、五子连线等。游戏的目标是在一个15x15的棋盘上,通过先后放置黑白棋子,使得任意一方先形成连续五个同色棋子的一方获胜。五子棋的规则简单,但策略丰富,适合各年龄段的玩家。 2. 网络五子棋的意义: 网络五子棋是指可以在互联网或局域网中连接进行对弈的五子棋游戏版本。通过网络版本,玩家不必在同一地点即可进行游戏,突破了空间限制,满足了现代人们快节奏生活的需求,同时也为玩家们提供了与不同对手切磋交流的机会。 3. 局域网通信原理: 局域网(Local Area Network,LAN)是一种覆盖较小范围如家庭、学校、实验室或单一建筑内的计算机网络。它通过有线或无线的方式连接网络内的设备,允许用户共享资源如打印机和文件,以及进行游戏和通信。局域网内的计算机之间可以通过网络协议进行通信。 4. 网络五子棋的工作方式: 在局域网中玩五子棋,通常需要一个客户端程序(如五子棋.exe)和一个服务器程序。客户端负责显示游戏界面、接受用户输入、发送落子请求给服务器,而服务器负责维护游戏状态、处理玩家的游戏逻辑和落子请求。当一方玩家落子时,客户端将该信息发送到服务器,服务器确认无误后将更新后的棋盘状态传回给所有客户端,更新显示。 5. 五子棋.exe程序: 五子棋.exe是一个可执行程序,它使得用户可以在个人计算机上安装并运行五子棋游戏。该程序可能包含了游戏的图形界面、人工智能算法(如果支持单机对战AI的话)、网络通信模块以及游戏规则的实现。 6. put.wav文件: put.wav是一个声音文件,很可能用于在游戏进行时提供声音反馈,比如落子声。在网络环境中,声音文件可能被用于提升玩家的游戏体验,尤其是在局域网多人游戏场景中。当玩家落子时,系统会播放.wav文件中的声音,为游戏增添互动性和趣味性。 7. 网络五子棋的技术要求: 为了确保多人在线游戏的顺利进行,网络五子棋需要具备一些基本的技术要求,包括但不限于稳定的网络连接、高效的数据传输协议(如TCP/IP)、以及安全的数据加密措施(如果需要的话)。此外,还需要有一个良好的用户界面设计来提供直观和舒适的用户体验。 8. 社交与娱乐: 网络五子棋除了是一个娱乐游戏外,它还具有社交功能。玩家可以通过游戏内的聊天系统进行交流,分享经验和策略,甚至通过网络寻找新的朋友。这使得网络五子棋不仅是一个个人娱乐工具,同时也是一种社交活动。 总结来说,网络五子棋结合了五子棋游戏的传统魅力和现代网络技术,使得不同地区的玩家能够在局域网内进行娱乐和聊天,既丰富了人们的娱乐生活,又加强了人际交流。而实现这一切的基础在于客户端程序的设计、服务器端的稳定运行、局域网的高效通信,以及音效文件增强的游戏体验。
recommend-type

自由行旅游新篇章:HarmonyOS技术融合与系统架构深度解析

# 1. HarmonyOS技术概述 ## 1.1 HarmonyOS的起源与发展 HarmonyOS(鸿蒙操作系统)由华为公司开发,旨在构建全场景分布式OS,以应对不同设备间的互联问题。自从2019年首次发布以来,HarmonyOS迅速成长,并迅速应用于智能手机、平板、智能穿戴、车载设备等多种平台。该系
recommend-type

足底支撑相到达73%是什么问题

<think>好的,我现在要处理用户的问题:“足底支撑相达到73%可能的原因及影响”。首先,需要理解用户提到的“足底支撑相73%”具体指什么。足底支撑相通常指步态周期中脚与地面接触的时间占比,正常范围大约在60%-62%左右。如果达到73%,明显超出正常范围,可能意味着步态异常。 接下来,需要确定可能的原因。可能的原因包括生物力学异常,比如足弓异常(扁平足或高弓足)、踝关节活动度受限,或者肌肉力量不足,特别是小腿和足部肌肉。另外,神经系统疾病如脑卒中或帕金森病可能影响步态控制。骨骼关节问题如关节炎、髋膝关节病变也可能导致支撑时间延长。还有代偿性步态,比如因疼痛或受伤而改变步态模式。 然后是