LSTM实现股票预测pytorch
时间: 2023-10-28 08:07:07 浏览: 195
要使用LSTM实现股票预测,可以按照以下步骤进行:
1. 数据准备:收集股票历史数据,进行数据清洗和预处理,包括数据归一化、划分训练集和测试集等。
2. 模型搭建:使用PyTorch搭建LSTM模型,包括定义模型结构、设置超参数、选择损失函数和优化器等。
3. 模型训练:将训练集输入模型进行训练,得到模型参数。
4. 模型预测:将测试集输入模型进行预测,得到预测结果。
5. 结果评估:使用评价指标(如均方根误差RMSE)对预测结果进行评估。
以下是一个简单的LSTM股票预测代码示例:
```python
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# 数据准备
data = pd.read_csv('stock_data.csv')
data = data['Close'].values.reshape(-1, 1)
scaler = MinMaxScaler()
data = scaler.fit_transform(data)
train_size = int(len(data) * 0.7)
train_data = data[:train_size]
test_data = data[train_size:]
# 模型搭建
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTM, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
out, _ = self.lstm(x)
out = self.fc(out[:, -1, :])
return out
input_size = 1
hidden_size = 32
output_size = 1
lr = 0.001
num_epochs = 100
model = LSTM(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
# 模型训练
for epoch in range(num_epochs):
inputs = torch.from_numpy(train_data[:-1]).float().unsqueeze(0)
labels = torch.from_numpy(train_data[1:]).float().unsqueeze(0)
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# 模型预测
model.eval()
with torch.no_grad():
inputs = torch.from_numpy(test_data[:-1]).float().unsqueeze(0)
labels = torch.from_numpy(test_data[1:]).float().unsqueeze(0)
outputs = model(inputs)
test_loss = criterion(outputs, labels)
print('Test Loss: {:.4f}'.format(test_loss.item()))
predicted = scaler.inverse_transform(outputs.numpy())
actual = scaler.inverse_transform(labels.numpy())
print('Predicted:', predicted.flatten())
print('Actual:', actual.flatten())
# 结果评估
from sklearn.metrics import mean_squared_error
rmse = np.sqrt(mean_squared_error(actual, predicted))
print('RMSE:', rmse)
```
阅读全文
相关推荐


















