基于 PyTorch 原生实现,有转换权重的教程吗
时间: 2025-07-23 17:00:51 浏览: 3
<think>我们正在处理一个关于转换Hugging Face模型权重到PyTorch原生实现的问题。用户已经提供了Hugging Face模型名称(google/vit-huge-patch14-224-in21k),并希望将其权重转换为PyTorch原生实现的格式。
根据引用[1]和[3],我们知道ViT的PyTorch原生实现通常包括以下关键组件:
- PatchEmbedding:将图像分割成patch并嵌入
- Transformer Encoder:包含多个Transformer Block
- 分类头:使用[CLS] token进行分类
用户已经通过Hugging Face下载了权重(pytorch_model.bin和config.json),现在需要将这些权重转换为与原生PyTorch实现兼容的格式。
步骤:
1. 理解Hugging Face的ViT权重结构
2. 编写原生PyTorch的ViT-Huge模型定义(与Hugging Face的配置匹配)
3. 将Hugging Face的权重映射到原生PyTorch模型的权重
4. 加载并验证
详细步骤:
### 1. 理解Hugging Face的ViT权重结构
Hugging Face的ViT模型权重以字典形式存储,键名遵循其模型定义。例如:
- `vit.embeddings.patch_embeddings.weight`:对应patch embedding层的权重
- `vit.encoder.layer.0.attention.attention.query.weight`:第一个transformer层的query权重
### 2. 编写原生PyTorch的ViT-Huge模型
根据引用[1]和[3],我们可以构建以下组件(以huge配置):
- PatchEmbedding: 使用卷积实现patch分割
- Transformer Block: 包含多头自注意力(MSA)和MLP
- ViT整体结构:包含embedding、多个transformer block和分类头
注意:我们需要根据`config.json`中的参数来设置模型,特别是:
- hidden_size: 1280 (vit-huge)
- num_hidden_layers: 32
- num_attention_heads: 16
- intermediate_size: 5120 (hidden_size*4,但vit-huge是1280*4=5120)
### 3. 权重映射
我们需要创建一个字典,将Hugging Face的权重键名映射到原生PyTorch模型的权重键名。
例如:
- Hugging Face的`vit.embeddings.patch_embeddings.weight` -> 原生模型的`patch_embed.proj.weight`
- Hugging Face的`vit.embeddings.position_embeddings` -> 原生模型的`pos_embed`
- 注意:Hugging Face的[CLS] token在embeddings中为`vit.embeddings.cls_token`,而原生实现通常使用`cls_token`
### 4. 转换代码示例
以下是一个转换权重的示例代码:
```python
import torch
from transformers import ViTModel
# 步骤1:加载Hugging Face模型和权重
hf_model = ViTModel.from_pretrained("google/vit-huge-patch14-224-in21k")
hf_state_dict = hf_model.state_dict()
# 步骤2:定义原生PyTorch ViT模型(此处仅示意关键结构,需完整实现)
class ViT(torch.nn.Module):
def __init__(self, config):
super().__init__()
# 根据config初始化
self.patch_embed = ... # 卷积层,kernel=14, stride=14, out_chans=1280
self.cls_token = ... # 可学习参数
self.pos_embed = ... # 位置嵌入
self.blocks = ... # 32个Transformer Block
self.norm = ... # LayerNorm
# 注意:分类头通常单独处理,这里只考虑主干
# 步骤3:创建权重映射字典
mapping = {
# 嵌入层
"vit.embeddings.patch_embeddings.weight": "patch_embed.proj.weight",
"vit.embeddings.patch_embeddings.bias": "patch_embed.proj.bias",
"vit.embeddings.cls_token": "cls_token",
"vit.embeddings.position_embeddings": "pos_embed",
# Transformer Blocks
# 注意:每个block有多个层
# 例如:第i个block的注意力层
"vit.encoder.layer.{}.attention.attention.query.weight": "blocks.{}.attn.qkv.weight", # 注意:原生实现通常将qkv合并
# ... 需要详细列出所有映射
}
# 步骤4:转换权重
native_state_dict = {}
for hf_key, hf_value in hf_state_dict.items():
# 处理可映射的键
found = False
for pattern, native_pattern in mapping.items():
if pattern in hf_key:
# 处理带索引的层(如transformer blocks)
if "{}" in pattern:
# 提取索引,例如:vit.encoder.layer.0.attention... -> 0
index = hf_key.split('.')[3] # 根据实际位置调整
native_key = native_pattern.format(index)
else:
native_key = native_pattern
native_state_dict[native_key] = hf_value
found = True
break
if not found:
print(f"Warning: {hf_key} not mapped!")
# 步骤5:保存转换后的权重
torch.save(native_state_dict, "vit_huge_pytorch.pth")
```
### 注意事项
1. **合并QKV权重**:Hugging Face的ViT将query, key, value分开存储,而很多原生实现将三者合并为一个矩阵。因此,需要将三个权重拼接起来。
- 例如:将`query.weight`, `key.weight`, `value.weight`按行拼接(维度0)得到`attn.qkv.weight`
2. **位置编码**:Hugging Face的位置编码形状为`(1, num_patches+1, hidden_size)`,而原生实现可能为`(1, num_patches+1, hidden_size)`,注意形状匹配。
3. **分类头**:用户可能需要单独处理分类头,因为Hugging Face的模型可能没有分类头(预训练模型通常是主干)。
### 完整映射表示例(部分)
由于ViT-Huge的层数多,映射表很长,这里给出关键部分的映射:
| Hugging Face 键名 | 原生PyTorch键名 | 备注 |
|-------------------|----------------|------|
| vit.embeddings.patch_embeddings.weight | patch_embed.proj.weight | |
| vit.embeddings.patch_embeddings.bias | patch_embed.proj.bias | |
| vit.embeddings.cls_token | cls_token | 注意:Hugging Face的cls_token形状为(1,1,hidden_size),需调整 |
| vit.embeddings.position_embeddings | pos_embed | |
| vit.embeddings.dropout | 无 | 通常原生实现不单独保存dropout权重 |
| vit.encoder.layer.0.attention.attention.query.weight | blocks.0.attn.q_proj.weight | 如果原生实现分开则为q_proj,合并则为qkv的一部分 |
| ... | ... | ... |
### 重要提醒
由于原生实现的代码结构可能不同,上述映射需要根据实际编写的模型代码进行调整。建议用户先编写好原生ViT模型,然后根据模型中的参数名称设计映射。
### 验证转换
转换后,使用相同输入分别通过Hugging Face模型和原生模型,比较输出是否一致(允许微小误差)。
### 相关问题
§§相关问题§§
1. 如何解决ViT-Huge权重转换中的QKV矩阵合并问题?
2. ViT-Huge位置编码在转换时需要注意什么?
3. 转换后的模型推理结果不一致如何排查?</think>### PyTorch 原生实现 ViT-Huge 权重转换教程
以下是基于 PyTorch 原生实现将 Hugging Face `google/vit-huge-patch14-224-in21k` 模型权重转换为原生格式的完整流程:
---
### 一、核心步骤
#### 1. **下载原始权重**
```python
from transformers import ViTModel
# 下载 Hugging Face 格式权重
model_hf = ViTModel.from_pretrained("google/vit-huge-patch14-224-in21k")
torch.save(model_hf.state_dict(), "vit_hf_weights.pth")
```
#### 2. **定义 PyTorch 原生模型结构**
```python
import torch
import torch.nn as nn
class PatchEmbedding(nn.Module):
"""图像分块嵌入层[^1]"""
def __init__(self, img_size=224, patch_size=14, in_chans=3, embed_dim=1280):
super().__init__()
self.proj = nn.Conv2d(in_chans, embed_dim,
kernel_size=patch_size,
stride=patch_size)
num_patches = (img_size // patch_size) ** 2
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
def forward(self, x):
x = self.proj(x) # [B, C, H, W] -> [B, E, H/P, W/P]
x = x.flatten(2).transpose(1, 2) # [B, E, N] -> [B, N, E]
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
return x
class TransformerBlock(nn.Module):
"""ViT 编码器块[^3]"""
def __init__(self, dim=1280, num_heads=16, mlp_ratio=4):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn = nn.MultiheadAttention(dim, num_heads)
self.norm2 = nn.LayerNorm(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, dim * mlp_ratio),
nn.GELU(),
nn.Linear(dim * mlp_ratio, dim)
)
def forward(self, x):
x = x + self.attn(self.norm1(x), self.norm1(x))[0]
x = x + self.mlp(self.norm2(x))
return x
class ViT(nn.Module):
"""原生 ViT-Huge 模型[^1][^3]"""
def __init__(self, num_layers=32, num_classes=21843):
super().__init__()
self.patch_embed = PatchEmbedding(embed_dim=1280)
self.blocks = nn.Sequential(*[
TransformerBlock() for _ in range(num_layers)
])
self.norm = nn.LayerNorm(1280)
self.head = nn.Linear(1280, num_classes)
def forward(self, x):
x = self.patch_embed(x)
x = self.blocks(x)
x = self.norm(x[:, 0]) # 提取 [CLS] token[^1]
return self.head(x)
```
#### 3. **权重转换关键映射**
```python
def convert_weights(hf_weights):
"""转换 Hugging Face 权重到原生格式"""
native_weights = {}
# 1. 嵌入层转换
native_weights['patch_embed.proj.weight'] = hf_weights['vit.embeddings.patch_embeddings.weight']
native_weights['patch_embed.proj.bias'] = hf_weights['vit.embeddings.patch_embeddings.bias']
native_weights['patch_embed.cls_token'] = hf_weights['vit.embeddings.cls_token']
native_weights['patch_embed.pos_embed'] = hf_weights['vit.embeddings.position_embeddings']
# 2. Transformer 层转换
for i in range(32): # ViT-Huge 有 32 层[^1]
prefix = f'vit.encoder.layer.{i}'
native_prefix = f'blocks.{i}'
# 注意力层
native_weights[f'{native_prefix}.norm1.weight'] = hf_weights[f'{prefix}.layernorm_before.weight']
native_weights[f'{native_prefix}.norm1.bias'] = hf_weights[f'{prefix}.layernorm_before.bias']
# QKV 权重合并 (Hugging Face 使用分离存储)
q_weight = hf_weights[f'{prefix}.attention.attention.query.weight']
k_weight = hf_weights[f'{prefix}.attention.attention.key.weight']
v_weight = hf_weights[f'{prefix}.attention.attention.value.weight']
native_weights[f'{native_prefix}.attn.in_proj_weight'] = torch.cat([q_weight, k_weight, v_weight])
# 线性投影层
native_weights[f'{native_prefix}.attn.out_proj.weight'] = hf_weights[f'{prefix}.attention.output.dense.weight']
# MLP 层
native_weights[f'{native_prefix}.norm2.weight'] = hf_weights[f'{prefix}.layernorm_after.weight']
native_weights[f'{native_prefix}.mlp.0.weight'] = hf_weights[f'{prefix}.intermediate.dense.weight']
native_weights[f'{native_prefix}.mlp.2.weight'] = hf_weights[f'{prefix}.output.dense.weight']
# 3. 输出层
native_weights['norm.weight'] = hf_weights['vit.layernorm.weight']
native_weights['head.weight'] = hf_weights['classifier.weight']
return native_weights
```
#### 4. **完整转换流程**
```python
# 加载 Hugging Face 权重
hf_weights = torch.load("vit_hf_weights.pth")
# 转换权重
native_weights = convert_weights(hf_weights)
# 创建原生模型并加载权重
model_native = ViT(num_layers=32)
model_native.load_state_dict(native_weights)
# 保存转换后的权重
torch.save(model_native.state_dict(), "vit_native_weights.pth")
```
---
### 二、关键注意事项
1. **维度对齐**:
- Hugging Face 的 Q/K/V 权重是分离的,需合并为 `in_proj_weight` (形状 `[3*dim, dim]`)
- 位置编码形状需匹配:`[1, num_patches+1, 1280]`
2. **层归一化差异**:
- Hugging Face 使用 `LayerNorm` 在注意力前后,需映射到 `norm1/norm2`
3. **分类头处理**:
- ImageNet-21k 预训练分类头有 21,843 类,微调时需替换[^2]
4. **验证转换正确性**:
```python
# 验证输出一致性
input = torch.randn(1, 3, 224, 224)
with torch.no_grad():
out_hf = model_hf(input).last_hidden_state
out_native = model_native(input)
# 比较 [CLS] token 输出差异
diff = torch.abs(out_hf[:, 0] - out_native).max()
print(f"最大输出差异: {diff.item():.6f}") # 应 < 1e-5
```
---
### 三、性能优化建议
1. **混合精度训练**:
```python
model_native = model_native.half() # FP16 减少显存占用
```
2. **层冻结策略**(微调时):
```python
# 冻结前 24 层[^2]
for param in model_native.blocks[:24].parameters():
param.requires_grad = False
```
3. **梯度检查点**(大 batch 时):
```python
from torch.utils.checkpoint import checkpoint
def custom_forward(module, x):
return checkpoint(module, x)
# 在训练循环中使用
output = custom_forward(model_native.blocks, x)
```
---
阅读全文
相关推荐


















