OLS Regression Results Dep. Variable: count R-squared: 0.156 Model: OLS Adj. R-squared: 0.156 Method: Least Squares F-statistic: 2006. Date: Sat, 03 Jun 2023 Prob (F-statistic): 0.00 Time: 13:53:24 Log-Likelihood: -71125. No. Observations: 10886 AIC: 1.423e+05 Df Residuals: 10884 BIC: 1.423e+05 Df Model: 1 Covariance Type: nonrobust coef std err t P>|t| [0.025 0.975] const 6.0462 4.439 1.362 0.173 -2.656 14.748 temp 9.1705 0.205 44.783 0.000 8.769 9.572 Omnibus: 1871.687 Durbin-Watson: 0.369 Prob(Omnibus): 0.000 Jarque-Bera (JB): 3221.966 Skew: 1.123 Prob(JB): 0.00 Kurtosis: 4.434 Cond. No. 60.4请告诉我这个列表对模型的总体详细解释
时间: 2024-02-10 13:08:53 浏览: 146
这个列表为一元线性回归模型的回归结果。其中,Dep. Variable表示因变量为count,R-squared为R平方值,表示模型可以解释因变量变异性的百分比,本模型的R平方值为0.156,说明模型可以解释15.6%的count变异性。Adj. R-squared为调整后的R平方值,考虑了模型自由度和样本量的影响,本模型的Adj. R平方值为0.156,与R平方值相同。Method为最小二乘法,F-statistic表示F值,用于检验模型的整体显著性,P值为0.00,表示模型整体显著。Log-Likelihood为对数似然值,AIC为赤池信息准则,BIC为贝叶斯信息准则,用于模型比较,Df Residuals为残差自由度,Df Model为模型自由度,Covariance Type为协方差类型,本模型为非鲁棒性回归模型。coef为系数,std err为标准误差,t为t值,P>|t|为P值,[0.025 0.975]为置信区间,const为常数项,temp为自变量。通过该回归结果,可以得到count与temp之间存在显著正相关关系,每增加1个单位的temp,count平均增加9.1705个单位。
相关问题
Model: VAR Method: OLS Date: Wed, 24, May, 2023 Time: 19:28:31 -------------------------------------------------------------------- No. of Equations: 2.00000 BIC: -9.63306 Nobs: 9.00000 HQIC: -10.3251 Log likelihood: 28.7940 FPE: 6.98686e-05 AIC: -9.85220 Det(Omega_mle): 2.88742e-05 -------------------------------------------------------------------- Results for equation ZCI ========================================================================= coefficient std. error t-stat prob ------------------------------------------------------------------------- const 0.174017 0.480853 0.362 0.717 L1.ZCI 0.477885 1.584794 0.302 0.763 L1.I 0.320973 1.446070 0.222 0.824 L2.ZCI -0.150377 1.012572 -0.149 0.882 L2.I 0.079515 1.252241 0.063 0.949 ========================================================================= Results for equation I ========================================================================= coefficient std. error t-stat prob ------------------------------------------------------------------------- const 0.157631 0.493199 0.320 0.749 L1.ZCI 0.373067 1.625484 0.230 0.818 L1.I 0.923620 1.483198 0.623 0.533 L2.ZCI -0.650472 1.038570 -0.626 0.531 L2.I 0.253139 1.284392 0.197 0.844 ========================================================================= Correlation matrix of residuals ZCI I ZCI 1.000000 0.981405 I 0.981405 1.000000解释一下
这是一个使用VAR(向量自回归)模型,采用OLS(普通最小二乘)方法进行拟合的结果。该模型包含两个方程,一个是ZCI,另一个是I。BIC、HQIC和AIC是模型选择的标准,FPE是估计误差方差的指标。Log likelihood是对数似然函数值。Det(Omega_mle)是估计的协方差矩阵的行列式。每个方程的结果包括常数项和滞后项的系数、标准误、t值和p值。最后给出了残差之间的相关矩阵。
regress total_revenue time intervention post intervention2 post2 intervention3 post3 Source | SS df MS Number of obs = 92 -------------+---------------------------------- F(7, 84) = 56.73 Model | 1.1913e+09 7 170187361 Prob > F = 0.0000 Residual | 251999700 84 2999996.43 R-squared = 0.8254 -------------+---------------------------------- Adj R-squared = 0.8109 Total | 1.4433e+09 91 15860563 Root MSE = 1732 ------------------------------------------------------------------------------- total_revenue | Coefficient Std. err. t P>|t| [95% conf. interval] --------------+---------------------------------------------------------------- time | 13.68935 45.29105 0.30 0.763 -76.37688 103.7556 intervention | -1200.838 1042.914 -1.15 0.253 -3274.786 873.1107 post | 384.8661 89.59558 4.30 0.000 206.6955 563.0368 intervention2 | -786.9447 1925.099 -0.41 0.684 -4615.215 3041.325 post2 | -2083.242 1890.292 -1.10 0.274 -5842.295 1675.81 intervention3 | -59.33553 924.8979 -0.06 0.949 -1898.596 1779.925 post3 | -307.4387 80.61474 -3.81 0.000 -467.75 -147.1275 _cons | 1190.531 660.2249 1.80 0.075 -122.3988 2503.46 ------------------------------------------------------------------------------- . . tsset monthnumber Time variable: monthnumber, 1 to 92 Delta: 1 unit . . estat dwatson Durbin–Watson d-statistic( 8, 92) = 1.466475 . . estat bgodfrey, lag(1/3) Breusch–Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 6.212 1 0.0127 2 | 6.216 2 0.0447 3 | 12.260 3 0.0065 --------------------------------------------------------------------------- H0: no serial correlation . . predict e, r variable e already defined r(110); . . wntestq e, lag(1) Portmanteau test for white noise --------------------------------------- Portmanteau (Q) statistic = 6.2386 Prob > chi2(1) = 0.0125 . . actest, lags(92) Cumby-Huizinga test for autocorrelation (Breusch-Godfrey) H0: variable is MA process up to order q HA: serial correlation present at specified lags >q ----------------------------------------------------------------------------- H0: q=0 (serially uncorrelated) | H0: q=specified lag-1 HA: s.c. present at range specified | HA: s.c. present at lag specified -----------------------------------------+----------------------------------- lags | chi2 df p-val | lag | chi2 df p-val -----------+-----------------------------+-----+----------------------------- 1 - 1 | 6.212 1 0.0127 | 1 | 6.212 1 0.0127 1 - 2 | 6.216 2 0.0447 | 2 | 0.397 1 0.5285 1 - 3 | 12.260 3 0.0065 | 3 | 5.738 1 0.0166 1 - 4 | 12.313 4 0.0152 | 4 | 0.684 1 0.4082 1 - 5 | 12.785 5 0.0255 | 5 | 0.369 1 0.5436 1 - 6 | 13.695 6 0.0332 | 6 | 0.012 1 0.9137 1 - 7 | 13.709 7 0.0566 | 7 | 0.118 1 0.7315 1 - 8 | 15.952 8 0.0431 | 8 | 1.691 1 0.1934 1 - 9 | 16.599 9 0.0554 | 9 | 2.700 1 0.1003 1 - 10 | 26.773 10 0.0028 | 10 | 10.045 1 0.0015 1 - 11 | 26.777 11 0.0050 | 11 | 1.933 1 0.1645 1 - 12 | 32.096 12 0.0013 | 12 | 2.667 1 0.1024 1 - 13 | 41.132 13 0.0001 | 13 | 8.395 1 0.0038 1 - 14 | 42.300 14 0.0001 | 14 | 7.043 1 0.0080 1 - 15 | 43.214 15 0.0001 | 15 | 0.179 1 0.6722 1 - 16 | 43.224 16 0.0003 | 16 | 1.571 1 0.2100 1 - 17 | 43.377 17 0.0004 | 17 | 0.400 1* 0.5270 1 - 18 | 43.389 18 0.0007 | 18 | 0.000 1* 0.9965 1 - 19 | 43.404 19 0.0011 | 19 | 0.016 1* 0.9004 1 - 20 | 43.805 20 0.0016 | 20 | 0.030 1* 0.8622 1 - 21 | 43.823 21 0.0025 | 21 | 0.140 1* 0.7086 1 - 22 | 44.540 22 0.0030 | 22 | 0.530 1* 0.4665 1 - 23 | 45.524 23 0.0034 | 23 | 2.256 1* 0.1331 1 - 24 | 57.494 24 0.0001 | 24 | 0.292 1* 0.5888 1 - 25 | 57.530 25 0.0002 | 25 | 5.324 1* 0.0210 1 - 26 | 57.778 26 0.0003 | 26 | 0.710 1* 0.3993 1 - 27 | 63.979 27 0.0001 | 27 | 0.651 1* 0.4199 1 - 28 | 64.073 28 0.0001 | 28 | 0.655 1* 0.4182 1 - 29 | 64.746 29 0.0002 | 29 | 0.052 1* 0.8200 1 - 30 | 66.005 30 0.0002 | 30 | 0.184 1* 0.6679 1 - 31 | 67.208 31 0.0002 | 31 | 0.417 1* 0.5183 1 - 32 | 67.667 32 0.0002 | 32 | 0.397 1* 0.5288 1 - 33 | 67.667 33 0.0004 | 33 | 4.958 1* 0.0260 1 - 34 | 69.636 34 0.0003 | 34 | 1.180 1* 0.2774 1 - 35 | 69.886 35 0.0004 | 35 | 12.184 1* 0.0005 1 - 36 | 70.300 36 0.0005 | 36 | 1.640 1 0.2003 1 - 37 | 72.178 37 0.0005 | 37 | 0.050 1 0.8232 1 - 38 | 72.397 38 0.0006 | 38 | 4.127 1 0.0422 1 - 39 | 73.398 39 0.0007 | 39 | 0.006 1 0.9395 1 - 40 | 73.441 40 0.0010 | 40 | 0.061 1 0.8056 1 - 41 | 73.456 41 0.0014 | 41 | 0.016 1 0.8986 1 - 42 | 73.777 42 0.0018 | 42 | 0.337 1 0.5616 1 - 43 | 77.179 43 0.0011 | 43 | 1.222 1 0.2689 1 - 44 | 78.615 44 0.0010 | 44 | 2.095 1 0.1478 1 - 45 | 79.395 45 0.0012 | 45 | 1.213 1 0.2708 1 - 46 | 82.801 46 0.0007 | 46 | 9.541 1 0.0020 1 - 47 | 84.728 47 0.0006 | 47 | 4.054 1 0.0441 1 - 48 | 84.974 48 0.0008 | 48 | 3.043 1 0.0811 1 - 49 | 85.513 49 0.0010 | 49 | 3.186 1* 0.0743 1 - 50 | 85.526 50 0.0013 | 50 | 0.087 1* 0.7677 1 - 51 | 85.539 51 0.0017 | 51 | 0.018 1* 0.8937 1 - 52 | 86.014 52 0.0021 | 52 | 0.583 1* 0.4453 1 - 53 | 86.853 53 0.0023 | 53 | 0.774 1* 0.3790 1 - 54 | 88.402 54 0.0022 | 54 | 2.711 1* 0.0996 1 - 55 | 89.730 55 0.0022 | 55 | 2.815 1* 0.0934 1 - 56 | 89.731 56 0.0028 | 56 | 4.506 1 0.0338 1 - 57 | 89.755 57 0.0037 | 57 | 3.154 1 0.0757 1 - 58 | 90.496 58 0.0041 | 58 | 0.002 1 0.9611 1 - 59 | 90.802 59 0.0049 | 59 | 0.025 1 0.8737 1 - 60 | 90.932 60 0.0061 | 60 | 2.576 1 0.1085 1 - 61 | 90.981 61 0.0077 | 61 | 0.777 1 0.3779 1 - 62 | 91.002 62 0.0096 | 62 | 4.994 1 0.0254 1 - 63 | 91.037 63 0.0120 | 63 | 2.119 1 0.1455 1 - 64 | 91.102 64 0.0147 | 64 | 0.292 1 0.5889 1 - 65 | 91.241 65 0.0176 | 65 | 1.505 1 0.2199 1 - 66 | 91.541 66 0.0205 | 66 | 0.036 1 0.8487 1 - 67 | 91.541 67 0.0249 | 67 | 1.027 1 0.3110 1 - 68 | 91.853 68 0.0286 | 68 | 0.011 1 0.9176 1 - 69 | 91.885 69 0.0342 | 69 | 1.922 1 0.1657 1 - 70 | 91.904 70 0.0407 | 70 | 0.260 1 0.6103 1 - 71 | 91.909 71 0.0483 | 71 | 0.634 1 0.4258 1 - 72 | 91.921 72 0.0568 | 72 | 8.680 1 0.0032 1 - 73 | 91.923 73 0.0665 | 73 | 0.741 1 0.3893 1 - 74 | 91.935 74 0.0773 | 74 | 1.741 1 0.1870 1 - 75 | 91.949 75 0.0893 | 75 | 1.341 1 0.2468 1 - 76 | 91.958 76 0.1026 | 76 | 0.444 1 0.5054 1 - 77 | 91.962 77 0.1174 | 77 | 1.811 1 0.1784 1 - 78 | 91.984 78 0.1332 | 78 | 1.111 1 0.2920 1 - 79 | 91.981 79 0.1507 | 79 | 0.105 1 0.7464 1 - 80 | 91.983 80 0.1696 | 80 | 1.611 1 0.2043 1 - 81 | 91.984 81 0.1898 | 81 | 0.004 1 0.9489 1 - 82 | 91.983 82 0.2114 | 82 | 0.256 1 0.6129 1 - 83 | 91.983 83 0.2343 | 83 | 2.378 1 0.1230 1 - 84 | 91.985 84 0.2583 | 84 | 2.199 1 0.1381 1 - 85 | 91.984 85 0.2835 | 85 | 0.584 1 0.4449 1 - 86 | 91.984 86 0.3097 | 86 | 2.121 1 0.1453 1 - 87 | 91.984 87 0.3368 | 87 | 0.280 1 0.5966 1 - 88 | 91.984 88 0.3647 | 88 | 0.696 1 0.4043 1 - 89 | 91.984 89 0.3932 | 89 | 0.187 1 0.6654 1 - 90 | 91.984 90 0.4221 | 90 | 1.533 1 0.2156 1 - 91 | 91.984 91 0.4514 | 91 | 1.980 1 0.1594 1 - 92 | 91.984 92 0.4808 | 92 | 0.000 1 1.0000 ----------------------------------------------------------------------------- Test allows predetermined regressors/instruments Test requires conditional homoskedasticity * Eigenvalues adjusted to make matrix positive semidefinite . . itsa total_revenue, single trperiod(27;45;52) lag(4) replace figure Time variable: monthnumber, 1 to 92 Delta: 1 unit Iteration 0: log likelihood = -810.9219 Generalized linear models Number of obs = 92 Optimization : ML Residual df = 84 Scale parameter = 2904674 Deviance = 243992583 (1/df) Deviance = 2904674 Pearson = 243992583 (1/df) Pearson = 2904674 Variance function: V(u) = 1 [Gaussian] Link function : g(u) = u [Identity] HAC kernel (lags): Newey–West (4) AIC = 17.80265 Log likelihood = -810.9218962 BIC = 2.44e+08 -------------------------------------------------------------------------------- | HAC _total_revenue | Coefficient std. err. z P>|z| [95% conf. interval] ---------------+---------------------------------------------------------------- _t | 13.68935 2.93475 4.66 0.000 7.937344 19.44135 _x27 | -1405.277 692.9926 -2.03 0.043 -2763.517 -47.03648 _x_t27 | 408.9178 55.60065 7.35 0.000 299.9425 517.8931 _x45 | -882.9179 618.7542 -1.43 0.154 -2095.654 329.818 _x_t45 | -663.4364 85.57417 -7.75 0.000 -831.1587 -495.7141 _x52 | 2200.597 694.1669 3.17 0.002 840.0553 3561.139 _x_t52 | 331.946 70.97444 4.68 0.000 192.8387 471.0533 _cons | 1190.531 42.39444 28.08 0.000 1107.439 1273.622 --------------------------------------------------------------------------------
<think>我们正在处理时间序列回归分析中的自相关问题诊断。用户提到了Durbin-Watson检验和Breusch-Godfrey检验。自相关(序列相关)是指时间序列数据中不同时期的误差项之间存在相关关系,这违反了经典线性回归模型的假设,可能导致估计无效。我们将按步骤进行:1.建立时间序列回归模型(例如:总收益模型)2.进行自相关诊断:使用Durbin-Watson检验(适用于一阶自相关)和Breusch-Godfrey检验(适用于高阶自相关)3.解释检验结果并讨论应对措施(如果存在自相关)注意:在时间序列回归中,我们通常使用最小二乘法(OLS)进行估计,但自相关会使得标准误估计有偏,因此需要诊断。步骤1:建立回归模型假设我们有一个时间序列回归模型:$$total\_revenue_t =\beta_0+ \beta_1 x_{1t}+ \beta_2 x_{2t}+ \cdots +\beta_k x_{kt} +u_t$$其中$t$表示时间。步骤2:自相关诊断a) Durbin-Watson检验(DW检验):-原假设$H_0$:不存在一阶自相关(即$\rho=0$)-备择假设$H_1$:存在一阶自相关($\rho\neq0$)-检验统计量:$$d =\frac{\sum_{t=2}^T(e_t -e_{t-1})^2}{\sum_{t=1}^Te_t^2} $$其中$e_t$是回归的残差。- d的取值在0到4之间:* d≈2:无自相关* d<2:可能存在正自相关* d>2:可能存在负自相关-注意:DW检验只能检验一阶自相关,并且要求回归模型包含截距项,且数据无缺失。b)Breusch-Godfrey检验(BG检验,也称LM检验):-可以检验高阶自相关(如p阶)-步骤:(1)估计原回归模型,得到残差$e_t$。(2)将$e_t$对原模型的所有解释变量以及$e_{t-1},e_{t-2},\dots, e_{t-p}$进行回归(即辅助回归)。(3)计算辅助回归的$R^2$,构造统计量$LM= (n-p)R^2 \sim \chi^2(p)$(在原假设下,当n较大时)。(4)原假设$H_0$:不存在p阶自相关(即辅助回归中所有滞后残差的系数均为0)。(5)如果$LM> \chi^2_{\alpha}(p)$,则拒绝原假设,存在自相关。步骤3:应对自相关-如果存在自相关,我们可以考虑:*使用Newey-West标准误(异方差和自相关一致的标准误)来修正标准误,这样即使存在自相关,我们仍然可以得到有效的推断(但系数估计仍是OLS估计,只是标准误被修正了)。*重新设定模型:可能遗漏了重要变量或存在函数形式误设。*使用广义最小二乘法(GLS)或可行广义最小二乘法(FGLS)进行估计,例如Cochrane-Orcutt迭代法。现在,我们使用Python示例来展示如何进行自相关诊断(假设我们已有数据,这里使用模拟数据演示):注意:实际中,用户应使用自己的时间序列数据。我们将使用statsmodels库来实现。</think>### 时间序列回归的自相关诊断分析
在时间序列回归分析中,自相关(序列相关)指残差项之间存在相关性,违背了经典线性回归的独立误差假设,可能导致参数估计无效和标准误低估。以下是系统诊断流程:
#### 1. **建立回归模型**
先构建时间序列回归模型:
$$ \text{total\_revenue}_t = \beta_0 + \beta_1 X_{1t} + \cdots + \beta_k X_{kt} + \varepsilon_t $$
其中$t$为时间索引。使用OLS估计后,提取残差序列$e_t$。
#### 2. **自相关诊断方法**
**(1) Durbin-Watson 检验**
- **适用场景**:检测一阶自相关(AR(1))
- **检验统计量**:
$$ d = \frac{\sum_{t=2}^T (e_t - e_{t-1})^2}{\sum_{t=1}^T e_t^2} $$
- **判断标准**:
- $d \approx 2$:无自相关($H_0: \rho=0$)
- $d < 1.5$:存在正自相关
- $d > 2.5$:存在负自相关[^1]
- **局限**:仅适用于一阶滞后,且要求模型包含截距项。
**(2) Breusch-Godfrey 检验**
- **适用场景**:检测高阶自相关(AR(p))
- **检验步骤**:
1. 估计辅助回归:
$$ e_t = \alpha_0 + \sum_{i=1}^p \rho_i e_{t-i} + \sum_{j=1}^k \gamma_j X_{jt} + u_t $$
2. 计算$LM$统计量:$LM = (n-p) R^2_{aux} \sim \chi^2(p)$
3. 若$LM > \chi^2_{\alpha}(p)$,则拒绝无自相关的原假设[^2]
- **优势**:允许滞后阶数$p>1$,且适用于包含滞后因变量的模型。
#### 3. **Python实现示例**
```python
import statsmodels.api as sm
from statsmodels.stats.stattools import durbin_watson
from statsmodels.stats.diagnostic import acorr_breusch_godfrey
# 构建回归模型(示例)
model = sm.OLS(y, X) # y=total_revenue, X=解释变量矩阵
results = model.fit()
# Durbin-Watson检验
dw_stat = durbin_watson(results.resid)
print(f"Durbin-Watson统计量: {dw_stat:.4f}")
# Breusch-Godfrey检验(检验3阶自相关)
bg_test = acorr_breusch_godfrey(results, nlags=3)
print(f"BG检验统计量: {bg_test[0]:.4f}, p值: {bg_test[1]:.4f}")
```
#### 4. **结果解读与处理**
- **存在自相关时**:
- 使用Newey-West标准误修正推断
- 引入ARIMA误差结构
- 添加滞后因变量或时间趋势项
- **模型改进**:
$$ \Delta \text{revenue}_t = \beta_0 + \beta_1 \Delta X_t + \rho e_{t-1} + u_t $$
其中$\Delta$为差分算子,可消除趋势导致的伪相关。
#### 5. **注意事项**
- 检查平稳性:非平稳数据易产生伪自相关
- 结合残差图分析:绘制$e_t$ vs $e_{t-1}$散点图
- 信息准则辅助:通过AIC/BIC确定最优滞后阶数$p$
> 自相关诊断是时间序列建模的核心环节,需结合统计检验与经济理论综合判断[^3]。
阅读全文
相关推荐

















