活动介绍

## Problem 5: Remainder Generator Like functions, generators can also be higher-order. For this problem, we will be writing `remainders_generator`, which yields a series of generator objects. `remainders_generator` takes in an integer `m`, and yields `m

时间: 2024-01-27 21:03:57 浏览: 74
-1` generator objects. Each generator object should generate the remainders of consecutive integers modulo `m`. Here's an example: ```python >>> gen = remainders_generator(3) >>> next(gen[0]) 0 >>> next(gen[0]) 1 >>> next(gen[0]) 2 >>> next(gen[0]) 0 >>> next(gen[1]) 0 >>> next(gen[1]) 1 >>> next(gen[1]) 2 >>> next(gen[1]) 0 >>> next(gen[0]) 1 ``` In the example above, `remainders_generator(3)` yields 2 generator objects, which can be accessed using `gen[0]` and `gen[1]`. The first generator (`gen[0]`) produces the sequence `0, 1, 2, 0, 1, 2, 0, ...` and the second generator (`gen[1]`) produces the same sequence. Note: Your implementation should not store any of the remainders in memory. Instead, it should generate them on the fly using the `yield` keyword.
阅读全文

相关推荐

class KeyWordSpotter(torch.nn.Module): def __init__( self, ckpt_path, config_path, token_path, lexicon_path, threshold, min_frames=5, max_frames=250, interval_frames=50, score_beam=3, path_beam=20, gpu=-1, is_jit_model=False, ): super().__init__() os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu) with open(config_path, 'r') as fin: configs = yaml.load(fin, Loader=yaml.FullLoader) dataset_conf = configs['dataset_conf'] # feature related self.sample_rate = 16000 self.wave_remained = np.array([]) self.num_mel_bins = dataset_conf['feature_extraction_conf'][ 'num_mel_bins'] self.frame_length = dataset_conf['feature_extraction_conf'][ 'frame_length'] # in ms self.frame_shift = dataset_conf['feature_extraction_conf'][ 'frame_shift'] # in ms self.downsampling = dataset_conf.get('frame_skip', 1) self.resolution = self.frame_shift / 1000 # in second # fsmn splice operation self.context_expansion = dataset_conf.get('context_expansion', False) self.left_context = 0 self.right_context = 0 if self.context_expansion: self.left_context = dataset_conf['context_expansion_conf']['left'] self.right_context = dataset_conf['context_expansion_conf'][ 'right'] self.feature_remained = None self.feats_ctx_offset = 0 # after downsample, offset exist. # model related if is_jit_model: model = torch.jit.load(ckpt_path) # For script model, only cpu is supported. device = torch.device('cpu') else: # Init model from configs model = init_model(configs['model']) load_checkpoint(model, ckpt_path) use_cuda = gpu >= 0 and torch.cuda.is_available() device = torch.device('cuda' if use_cuda else 'cpu') self.device = device self.model = model.to(device) self.model.eval() logging.info(f'model {ckpt_path} loaded.') self.token_table = read_token(token_path) logging.info(f'tokens {token_path} with ' f'{len(self.token_table)} units loaded.') self.lexicon_table = read_lexicon(lexicon_path) logging.info(f'lexicons {lexicon_path} with ' f'{len(self.lexicon_table)} units loaded.') self.in_cache = torch.zeros(0, 0, 0, dtype=torch.float) # decoding and detection related self.score_beam = score_beam self.path_beam = path_beam self.threshold = threshold self.min_frames = min_frames self.max_frames = max_frames self.interval_frames = interval_frames self.cur_hyps = [(tuple(), (1.0, 0.0, []))] self.hit_score = 1.0 self.hit_keyword = None self.activated = False self.total_frames = 0 # frame offset, for absolute time self.last_active_pos = -1 # the last frame of being activated self.result = {} def set_keywords(self, keywords): # 4. parse keywords tokens assert keywords is not None, \ 'at least one keyword is needed, ' \ 'multiple keywords should be splitted with comma(,)' keywords_str = keywords keywords_list = keywords_str.strip().replace(' ', '').split(',') keywords_token = {} keywords_idxset = {0} keywords_strset = {'<blk>'} keywords_tokenmap = {'<blk>': 0} for keyword in keywords_list: strs, indexes = query_token_set(keyword, self.token_table, self.lexicon_table) keywords_token[keyword] = {} keywords_token[keyword]['token_id'] = indexes keywords_token[keyword]['token_str'] = ''.join('%s ' % str(i) for i in indexes) [keywords_strset.add(i) for i in strs] [keywords_idxset.add(i) for i in indexes] for txt, idx in zip(strs, indexes): if keywords_tokenmap.get(txt, None) is None: keywords_tokenmap[txt] = idx token_print = '' for txt, idx in keywords_tokenmap.items(): token_print += f'{txt}({idx}) ' logging.info(f'Token set is: {token_print}') self.keywords_idxset = keywords_idxset self.keywords_token = keywords_token def accept_wave(self, wave): assert isinstance(wave, bytes), \ "please make sure the input format is bytes(raw PCM)" # convert bytes into float32 data = [] for i in range(0, len(wave), 2): value = struct.unpack('<h', wave[i:i + 2])[0] data.append(value) # here we don't divide 32768.0, # because kaldi.fbank accept original input wave = np.array(data) wave = np.append(self.wave_remained, wave) if wave.size < (self.frame_length * self.sample_rate / 1000) \ * self.right_context : self.wave_remained = wave return None wave_tensor = torch.from_numpy(wave).float().to(self.device) wave_tensor = wave_tensor.unsqueeze(0) # add a channel dimension feats = kaldi.fbank(wave_tensor, num_mel_bins=self.num_mel_bins, frame_length=self.frame_length, frame_shift=self.frame_shift, dither=0, energy_floor=0.0, sample_frequency=self.sample_rate) # update wave remained feat_len = len(feats) frame_shift = int(self.frame_shift / 1000 * self.sample_rate) self.wave_remained = wave[feat_len * frame_shift:] if self.context_expansion: assert feat_len > self.right_context, \ "make sure each chunk feat length is large than right context." # pad feats with remained feature from last chunk if self.feature_remained is None: # first chunk # pad first frame at the beginning, # replicate just support last dimension, so we do transpose. feats_pad = F.pad(feats.T, (self.left_context, 0), mode='replicate').T else: feats_pad = torch.cat((self.feature_remained, feats)) ctx_frm = feats_pad.shape[0] - (self.right_context + self.right_context) ctx_win = (self.left_context + self.right_context + 1) ctx_dim = feats.shape[1] * ctx_win feats_ctx = torch.zeros(ctx_frm, ctx_dim, dtype=torch.float32) for i in range(ctx_frm): feats_ctx[i] = torch.cat(tuple( feats_pad[i:i + ctx_win])).unsqueeze(0) # update feature remained, and feats self.feature_remained = \ feats[-(self.left_context + self.right_context):] feats = feats_ctx.to(self.device) if self.downsampling > 1: last_remainder = 0 if self.feats_ctx_offset == 0 \ else self.downsampling - self.feats_ctx_offset remainder = (feats.size(0) + last_remainder) % self.downsampling feats = feats[self.feats_ctx_offset::self.downsampling, :] self.feats_ctx_offset = remainder \ if remainder == 0 else self.downsampling - remainder return feats def decode_keywords(self, t, probs): absolute_time = t + self.total_frames # search next_hyps depend on current probs and hyps. next_hyps = ctc_prefix_beam_search(absolute_time, probs, self.cur_hyps, self.keywords_idxset, self.score_beam) # update cur_hyps. note: the hyps is sort by path score(pnb+pb), # not the keywords' probabilities. cur_hyps = next_hyps[:self.path_beam] self.cur_hyps = cur_hyps def execute_detection(self, t): absolute_time = t + self.total_frames hit_keyword = None start = 0 end = 0 # hyps for detection hyps = [(y[0], y[1][0] + y[1][1], y[1][2]) for y in self.cur_hyps] # detect keywords in decoding paths. for one_hyp in hyps: prefix_ids = one_hyp[0] # path_score = one_hyp[1] prefix_nodes = one_hyp[2] assert len(prefix_ids) == len(prefix_nodes) for word in self.keywords_token.keys(): lab = self.keywords_token[word]['token_id'] offset = is_sublist(prefix_ids, lab) if offset != -1: hit_keyword = word start = prefix_nodes[offset]['frame'] end = prefix_nodes[offset + len(lab) - 1]['frame'] for idx in range(offset, offset + len(lab)): self.hit_score *= prefix_nodes[idx]['prob'] break if hit_keyword is not None: self.hit_score = math.sqrt(self.hit_score) break duration = end - start if hit_keyword is not None: if self.hit_score >= self.threshold and \ self.min_frames <= duration <= self.max_frames \ and (self.last_active_pos == -1 or end - self.last_active_pos >= self.interval_frames): self.activated = True self.last_active_pos = end logging.info( f"Frame {absolute_time} detect {hit_keyword} " f"from {start} to {end} frame. " f"duration {duration}, score {self.hit_score}, Activated.") elif self.last_active_pos > 0 and \ end - self.last_active_pos < self.interval_frames: logging.info( f"Frame {absolute_time} detect {hit_keyword} " f"from {start} to {end} frame. " f"but interval {end-self.last_active_pos} " f"is lower than {self.interval_frames}, Deactivated. ") elif self.hit_score < self.threshold: logging.info(f"Frame {absolute_time} detect {hit_keyword} " f"from {start} to {end} frame. " f"but {self.hit_score} " f"is lower than {self.threshold}, Deactivated. ") elif self.min_frames > duration or duration > self.max_frames: logging.info( f"Frame {absolute_time} detect {hit_keyword} " f"from {start} to {end} frame. " f"but {duration} beyond range" f"({self.min_frames}~{self.max_frames}), Deactivated. ") self.result = { "state": 1 if self.activated else 0, "keyword": hit_keyword if self.activated else None, "start": start * self.resolution if self.activated else None, "end": end * self.resolution if self.activated else None, "score": self.hit_score if self.activated else None } def forward(self, wave_chunk): feature = self.accept_wave(wave_chunk) if feature is None or feature.size(0) < 1: return {} # # the feature is not enough to get result. feature = feature.unsqueeze(0) # add a batch dimension logits, self.in_cache = self.model(feature, self.in_cache) probs = logits.softmax(2) # (batch_size, maxlen, vocab_size) probs = probs[0].cpu() # remove batch dimension for (t, prob) in enumerate(probs): t *= self.downsampling self.decode_keywords(t, prob) self.execute_detection(t) if self.activated: self.reset() # since a chunk include about 30 frames, # once activated, we can jump the latter frames. # TODO: there should give another method to update result, # avoiding self.result being cleared. break # update frame offset self.total_frames += len(probs) * self.downsampling # For streaming kws, the cur_hyps should be reset if the time of # a possible keyword last over the max_frames value you set. # see this issue:https://github.com/duj12/kws_demo/issues/2 if len(self.cur_hyps) > 0 and len(self.cur_hyps[0][0]) > 0: keyword_may_start = int(self.cur_hyps[0][1][2][0]['frame']) if (self.total_frames - keyword_may_start) > self.max_frames: self.reset() return self.result def reset(self): self.cur_hyps = [(tuple(), (1.0, 0.0, []))] self.activated = False self.hit_score = 1.0 def reset_all(self): self.reset() self.wave_remained = np.array([]) self.feature_remained = None self.feats_ctx_offset = 0 # after downsample, offset exist. self.in_cache = torch.zeros(0, 0, 0, dtype=torch.float) self.total_frames = 0 # frame offset, for absolute time self.last_active_pos = -1 # the last frame of being activated self.result = {}请帮我缕清整个脉络

不需要accept_wave函数伪代码,只需要逐行解释: def accept_wave(self, wave): assert isinstance(wave, bytes), \ "please make sure the input format is bytes(raw PCM)" # convert bytes into float32 data = [] for i in range(0, len(wave), 2): value = struct.unpack('<h', wave[i:i + 2])[0] data.append(value) # here we don't divide 32768.0, # because kaldi.fbank accept original input wave = np.array(data) wave = np.append(self.wave_remained, wave) if wave.size < (self.frame_length * self.sample_rate / 1000) \ * self.right_context : self.wave_remained = wave return None wave_tensor = torch.from_numpy(wave).float().to(self.device) wave_tensor = wave_tensor.unsqueeze(0) # add a channel dimension feats = kaldi.fbank(wave_tensor, num_mel_bins=self.num_mel_bins, frame_length=self.frame_length, frame_shift=self.frame_shift, dither=0, energy_floor=0.0, sample_frequency=self.sample_rate) # update wave remained feat_len = len(feats) frame_shift = int(self.frame_shift / 1000 * self.sample_rate) self.wave_remained = wave[feat_len * frame_shift:] if self.context_expansion: assert feat_len > self.right_context, \ "make sure each chunk feat length is large than right context." # pad feats with remained feature from last chunk if self.feature_remained is None: # first chunk # pad first frame at the beginning, # replicate just support last dimension, so we do transpose. feats_pad = F.pad(feats.T, (self.left_context, 0), mode='replicate').T else: feats_pad = torch.cat((self.feature_remained, feats)) ctx_frm = feats_pad.shape[0] - (self.right_context + self.right_context) ctx_win = (self.left_context + self.right_context + 1) ctx_dim = feats.shape[1] * ctx_win feats_ctx = torch.zeros(ctx_frm, ctx_dim, dtype=torch.float32) for i in range(ctx_frm): feats_ctx[i] = torch.cat(tuple( feats_pad[i:i + ctx_win])).unsqueeze(0) # update feature remained, and feats self.feature_remained = \ feats[-(self.left_context + self.right_context):] feats = feats_ctx.to(self.device) if self.downsampling > 1: last_remainder = 0 if self.feats_ctx_offset == 0 \ else self.downsampling - self.feats_ctx_offset remainder = (feats.size(0) + last_remainder) % self.downsampling feats = feats[self.feats_ctx_offset::self.downsampling, :] self.feats_ctx_offset = remainder \ if remainder == 0 else self.downsampling - remainder return feats

/* stdlib.h: ANSI draft (X3J11 May 88) library header, section 4.10 */ /* Copyright (C) Codemist Ltd., 1988-1993. */ /* Copyright 1991-1998,2014 ARM Limited. All rights reserved. */ /* * RCS $Revision$ * Checkin $Date$ * Revising $Author: agrant $ */ /* * stdlib.h declares four types, several general purpose functions, * and defines several macros. */ #ifndef __stdlib_h #define __stdlib_h #define __ARMCLIB_VERSION 5060034 #if defined(__clang__) || (defined(__ARMCC_VERSION) && !defined(__STRICT_ANSI__)) /* armclang and non-strict armcc allow 'long long' in system headers */ #define __LONGLONG long long #else /* strict armcc has '__int64' */ #define __LONGLONG __int64 #endif #define _ARMABI __declspec(__nothrow) #define _ARMABI_PURE __declspec(__nothrow) __attribute__((const)) #define _ARMABI_NORETURN __declspec(__nothrow) __declspec(__noreturn) #define _ARMABI_THROW #ifndef __STDLIB_DECLS #define __STDLIB_DECLS /* * Some of these declarations are new in C99. To access them in C++ * you can use -D__USE_C99_STDLIB (or -D__USE_C99ALL). */ #ifndef __USE_C99_STDLIB #if defined(__USE_C99_ALL) || (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__) || (defined(__cplusplus) && 201103L <= __cplusplus) #define __USE_C99_STDLIB 1 #endif #endif #undef __CLIBNS #ifdef __cplusplus namespace std { #define __CLIBNS ::std:: extern "C" { #else #define __CLIBNS #endif /* __cplusplus */ #if defined(__cplusplus) || !defined(__STRICT_ANSI__) /* unconditional in C++ and non-strict C for consistency of debug info */ #if __sizeof_ptr == 8 typedef unsigned long size_t; /* see <stddef.h> */ #else typedef unsigned int size_t; /* see <stddef.h> */ #endif #elif !defined(__size_t) #define __size_t 1 #if __sizeof_ptr == 8 typedef unsigned long size_t; /* see <stddef.h> */ #else typedef unsigned int size_t; /* see <stddef.h> */ #endif #endif #undef NULL #define NULL 0 /* see <stddef.h> */ #ifndef __cplusplus /* wchar_t is a builtin type for C++ */ #if !defined(__STRICT_ANSI__) /* unconditional in non-strict C for consistency of debug info */ #if defined(__WCHAR32) || (defined(__ARM_SIZEOF_WCHAR_T) && __ARM_SIZEOF_WCHAR_T == 4) typedef unsigned int wchar_t; /* see <stddef.h> */ #else typedef unsigned short wchar_t; /* see <stddef.h> */ #endif #elif !defined(__wchar_t) #define __wchar_t 1 #if defined(__WCHAR32) || (defined(__ARM_SIZEOF_WCHAR_T) && __ARM_SIZEOF_WCHAR_T == 4) typedef unsigned int wchar_t; /* see <stddef.h> */ #else typedef unsigned short wchar_t; /* see <stddef.h> */ #endif #endif #endif typedef struct div_t { int quot, rem; } div_t; /* type of the value returned by the div function. */ typedef struct ldiv_t { long int quot, rem; } ldiv_t; /* type of the value returned by the ldiv function. */ #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB typedef struct lldiv_t { __LONGLONG quot, rem; } lldiv_t; /* type of the value returned by the lldiv function. */ #endif #ifdef __EXIT_FAILURE # define EXIT_FAILURE __EXIT_FAILURE /* * an integral expression which may be used as an argument to the exit * function to return unsuccessful termination status to the host * environment. */ #else # define EXIT_FAILURE 1 /* unixoid */ #endif #define EXIT_SUCCESS 0 /* * an integral expression which may be used as an argument to the exit * function to return successful termination status to the host * environment. */ /* * Defining __USE_ANSI_EXAMPLE_RAND at compile time switches to * the example implementation of rand() and srand() provided in * the ANSI C standard. This implementation is very poor, but is * provided for completeness. */ #ifdef __USE_ANSI_EXAMPLE_RAND #define srand _ANSI_srand #define rand _ANSI_rand #define RAND_MAX 0x7fff #else #define RAND_MAX 0x7fffffff #endif /* * RAND_MAX: an integral constant expression, the value of which * is the maximum value returned by the rand function. */ extern _ARMABI int __aeabi_MB_CUR_MAX(void); #define MB_CUR_MAX ( __aeabi_MB_CUR_MAX() ) /* * a positive integer expression whose value is the maximum number of bytes * in a multibyte character for the extended character set specified by the * current locale (category LC_CTYPE), and whose value is never greater * than MB_LEN_MAX. */ /* * If the compiler supports signalling nans as per N965 then it * will define __SUPPORT_SNAN__, in which case a user may define * _WANT_SNAN in order to obtain a compliant version of the strtod * family of functions. */ #if defined(__SUPPORT_SNAN__) && defined(_WANT_SNAN) #pragma import(__use_snan) #endif extern _ARMABI double atof(const char * /*nptr*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to double * representation. * Returns: the converted value. */ extern _ARMABI int atoi(const char * /*nptr*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to int * representation. * Returns: the converted value. */ extern _ARMABI long int atol(const char * /*nptr*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to long int * representation. * Returns: the converted value. */ #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB extern _ARMABI __LONGLONG atoll(const char * /*nptr*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to * long long int representation. * Returns: the converted value. */ #endif extern _ARMABI double strtod(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to double * representation. First it decomposes the input string into three parts: * an initial, possibly empty, sequence of white-space characters (as * specified by the isspace function), a subject sequence resembling a * floating point constant; and a final string of one or more unrecognised * characters, including the terminating null character of the input string. * Then it attempts to convert the subject sequence to a floating point * number, and returns the result. A pointer to the final string is stored * in the object pointed to by endptr, provided that endptr is not a null * pointer. * Returns: the converted value if any. If no conversion could be performed, * zero is returned. If the correct value is outside the range of * representable values, plus or minus HUGE_VAL is returned * (according to the sign of the value), and the value of the macro * ERANGE is stored in errno. If the correct value would cause * underflow, zero is returned and the value of the macro ERANGE is * stored in errno. */ #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB extern _ARMABI float strtof(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/) __attribute__((__nonnull__(1))); extern _ARMABI long double strtold(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/) __attribute__((__nonnull__(1))); /* * same as strtod, but return float and long double respectively. */ #endif extern _ARMABI long int strtol(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/, int /*base*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to long int * representation. First it decomposes the input string into three parts: * an initial, possibly empty, sequence of white-space characters (as * specified by the isspace function), a subject sequence resembling an * integer represented in some radix determined by the value of base, and a * final string of one or more unrecognised characters, including the * terminating null character of the input string. Then it attempts to * convert the subject sequence to an integer, and returns the result. * If the value of base is 0, the expected form of the subject sequence is * that of an integer constant (described in ANSI Draft, section 3.1.3.2), * optionally preceded by a '+' or '-' sign, but not including an integer * suffix. If the value of base is between 2 and 36, the expected form of * the subject sequence is a sequence of letters and digits representing an * integer with the radix specified by base, optionally preceded by a plus * or minus sign, but not including an integer suffix. The letters from a * (or A) through z (or Z) are ascribed the values 10 to 35; only letters * whose ascribed values are less than that of the base are permitted. If * the value of base is 16, the characters 0x or 0X may optionally precede * the sequence of letters and digits following the sign if present. * A pointer to the final string is stored in the object * pointed to by endptr, provided that endptr is not a null pointer. * Returns: the converted value if any. If no conversion could be performed, * zero is returned and nptr is stored in *endptr. * If the correct value is outside the range of * representable values, LONG_MAX or LONG_MIN is returned * (according to the sign of the value), and the value of the * macro ERANGE is stored in errno. */ extern _ARMABI unsigned long int strtoul(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/, int /*base*/) __attribute__((__nonnull__(1))); /* * converts the initial part of the string pointed to by nptr to unsigned * long int representation. First it decomposes the input string into three * parts: an initial, possibly empty, sequence of white-space characters (as * determined by the isspace function), a subject sequence resembling an * unsigned integer represented in some radix determined by the value of * base, and a final string of one or more unrecognised characters, * including the terminating null character of the input string. Then it * attempts to convert the subject sequence to an unsigned integer, and * returns the result. If the value of base is zero, the expected form of * the subject sequence is that of an integer constant (described in ANSI * Draft, section 3.1.3.2), optionally preceded by a '+' or '-' sign, but * not including an integer suffix. If the value of base is between 2 and * 36, the expected form of the subject sequence is a sequence of letters * and digits representing an integer with the radix specified by base, * optionally preceded by a '+' or '-' sign, but not including an integer * suffix. The letters from a (or A) through z (or Z) stand for the values * 10 to 35; only letters whose ascribed values are less than that of the * base are permitted. If the value of base is 16, the characters 0x or 0X * may optionally precede the sequence of letters and digits following the * sign, if present. A pointer to the final string is stored in the object * pointed to by endptr, provided that endptr is not a null pointer. * Returns: the converted value if any. If no conversion could be performed, * zero is returned and nptr is stored in *endptr. * If the correct value is outside the range of * representable values, ULONG_MAX is returned, and the value of * the macro ERANGE is stored in errno. */ /* C90 reserves all names beginning with 'str' */ extern _ARMABI __LONGLONG strtoll(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/, int /*base*/) __attribute__((__nonnull__(1))); /* * as strtol but returns a long long int value. If the correct value is * outside the range of representable values, LLONG_MAX or LLONG_MIN is * returned (according to the sign of the value), and the value of the * macro ERANGE is stored in errno. */ extern _ARMABI unsigned __LONGLONG strtoull(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/, int /*base*/) __attribute__((__nonnull__(1))); /* * as strtoul but returns an unsigned long long int value. If the correct * value is outside the range of representable values, ULLONG_MAX is returned, * and the value of the macro ERANGE is stored in errno. */ extern _ARMABI int rand(void); /* * Computes a sequence of pseudo-random integers in the range 0 to RAND_MAX. * Uses an additive generator (Mitchell & Moore) of the form: * Xn = (X[n-24] + X[n-55]) MOD 2^31 * This is described in section 3.2.2 of Knuth, vol 2. It's period is * in excess of 2^55 and its randomness properties, though unproven, are * conjectured to be good. Empirical testing since 1958 has shown no flaws. * Returns: a pseudo-random integer. */ extern _ARMABI void srand(unsigned int /*seed*/); /* * uses its argument as a seed for a new sequence of pseudo-random numbers * to be returned by subsequent calls to rand. If srand is then called with * the same seed value, the sequence of pseudo-random numbers is repeated. * If rand is called before any calls to srand have been made, the same * sequence is generated as when srand is first called with a seed value * of 1. */ struct _rand_state { int __x[57]; }; extern _ARMABI int _rand_r(struct _rand_state *); extern _ARMABI void _srand_r(struct _rand_state *, unsigned int); struct _ANSI_rand_state { int __x[1]; }; extern _ARMABI int _ANSI_rand_r(struct _ANSI_rand_state *); extern _ARMABI void _ANSI_srand_r(struct _ANSI_rand_state *, unsigned int); /* * Re-entrant variants of both flavours of rand, which operate on * an explicitly supplied state buffer. */ extern _ARMABI void *calloc(size_t /*nmemb*/, size_t /*size*/); /* * allocates space for an array of nmemb objects, each of whose size is * 'size'. The space is initialised to all bits zero. * Returns: either a null pointer or a pointer to the allocated space. */ extern _ARMABI void free(void * /*ptr*/); /* * causes the space pointed to by ptr to be deallocated (i.e., made * available for further allocation). If ptr is a null pointer, no action * occurs. Otherwise, if ptr does not match a pointer earlier returned by * calloc, malloc or realloc or if the space has been deallocated by a call * to free or realloc, the behaviour is undefined. */ extern _ARMABI void *malloc(size_t /*size*/); /* * allocates space for an object whose size is specified by 'size' and whose * value is indeterminate. * Returns: either a null pointer or a pointer to the allocated space. */ extern _ARMABI void *realloc(void * /*ptr*/, size_t /*size*/); /* * changes the size of the object pointed to by ptr to the size specified by * size. The contents of the object shall be unchanged up to the lesser of * the new and old sizes. If the new size is larger, the value of the newly * allocated portion of the object is indeterminate. If ptr is a null * pointer, the realloc function behaves like a call to malloc for the * specified size. Otherwise, if ptr does not match a pointer earlier * returned by calloc, malloc or realloc, or if the space has been * deallocated by a call to free or realloc, the behaviour is undefined. * If the space cannot be allocated, the object pointed to by ptr is * unchanged. If size is zero and ptr is not a null pointer, the object it * points to is freed. * Returns: either a null pointer or a pointer to the possibly moved * allocated space. */ #if !defined(__STRICT_ANSI__) extern _ARMABI int posix_memalign(void ** /*ret*/, size_t /*alignment*/, size_t /*size*/); /* * allocates space for an object of size 'size', aligned to a * multiple of 'alignment' (which must be a power of two and at * least 4). * * On success, a pointer to the allocated object is stored in * *ret, and zero is returned. On failure, the return value is * either ENOMEM (allocation failed because no suitable piece of * memory was available) or EINVAL (the 'alignment' parameter was * invalid). */ #endif typedef int (*__heapprt)(void *, char const *, ...); extern _ARMABI void __heapstats(int (* /*dprint*/)(void * /*param*/, char const * /*format*/, ...), void * /*param*/) __attribute__((__nonnull__(1))); /* * reports current heap statistics (eg. number of free blocks in * the free-list). Output is as implementation-defined free-form * text, provided via the dprint function. param' gives an * extra data word to pass to dprint. You can call * __heapstats(fprintf,stdout) by casting fprintf to the above * function type; the typedef __heapprt' is provided for this * purpose. * * dprint' will not be called while the heap is being examined, * so it can allocate memory itself without trouble. */ extern _ARMABI int __heapvalid(int (* /*dprint*/)(void * /*param*/, char const * /*format*/, ...), void * /*param*/, int /*verbose*/) __attribute__((__nonnull__(1))); /* * performs a consistency check on the heap. Errors are reported * through dprint, like __heapstats. If verbose' is nonzero, * full diagnostic information on the heap state is printed out. * * This routine probably won't work if the heap isn't a * contiguous chunk (for example, if __user_heap_extend has been * overridden). * * dprint' may be called while the heap is being examined or * even in an invalid state, so it must perform no memory * allocation. In particular, if dprint' calls (or is) a stdio * function, the stream it outputs to must already have either * been written to or been setvbuf'ed, or else the system will * allocate buffer space for it on the first call to dprint. */ extern _ARMABI_NORETURN void abort(void); /* * causes abnormal program termination to occur, unless the signal SIGABRT * is being caught and the signal handler does not return. Whether open * output streams are flushed or open streams are closed or temporary * files removed is implementation-defined. * An implementation-defined form of the status 'unsuccessful termination' * is returned to the host environment by means of a call to * raise(SIGABRT). */ extern _ARMABI int atexit(void (* /*func*/)(void)) __attribute__((__nonnull__(1))); /* * registers the function pointed to by func, to be called without its * arguments at normal program termination. It is possible to register at * least 32 functions. * Returns: zero if the registration succeeds, nonzero if it fails. */ #if defined(__EDG__) && !defined(__GNUC__) #define __LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE #endif #if defined(__cplusplus) && defined(__LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE) /* atexit that takes a ptr to a function with C++ linkage * but not in GNU mode */ typedef void (* __C_exitfuncptr)(); extern "C++" inline int atexit(void (* __func)()) { return atexit((__C_exitfuncptr)__func); } #endif extern _ARMABI_NORETURN void exit(int /*status*/); /* * causes normal program termination to occur. If more than one call to the * exit function is executed by a program, the behaviour is undefined. * First, all functions registered by the atexit function are called, in the * reverse order of their registration. * Next, all open output streams are flushed, all open streams are closed, * and all files created by the tmpfile function are removed. * Finally, control is returned to the host environment. If the value of * status is zero or EXIT_SUCCESS, an implementation-defined form of the * status 'successful termination' is returned. If the value of status is * EXIT_FAILURE, an implementation-defined form of the status * 'unsuccessful termination' is returned. Otherwise the status returned * is implementation-defined. */ extern _ARMABI_NORETURN void _Exit(int /*status*/); /* * causes normal program termination to occur. No functions registered * by the atexit function are called. * In this implementation, all open output streams are flushed, all * open streams are closed, and all files created by the tmpfile function * are removed. * Control is returned to the host environment. The status returned to * the host environment is determined in the same way as for 'exit'. */ extern _ARMABI char *getenv(const char * /*name*/) __attribute__((__nonnull__(1))); /* * searches the environment list, provided by the host environment, for a * string that matches the string pointed to by name. The set of environment * names and the method for altering the environment list are * implementation-defined. * Returns: a pointer to a string associated with the matched list member. * The array pointed to shall not be modified by the program, but * may be overwritten by a subsequent call to the getenv function. * If the specified name cannot be found, a null pointer is * returned. */ extern _ARMABI int system(const char * /*string*/); /* * passes the string pointed to by string to the host environment to be * executed by a command processor in an implementation-defined manner. * A null pointer may be used for string, to inquire whether a command * processor exists. * * Returns: If the argument is a null pointer, the system function returns * non-zero only if a command processor is available. If the * argument is not a null pointer, the system function returns an * implementation-defined value. */ extern _ARMABI_THROW void *bsearch(const void * /*key*/, const void * /*base*/, size_t /*nmemb*/, size_t /*size*/, int (* /*compar*/)(const void *, const void *)) __attribute__((__nonnull__(1,2,5))); /* * searches an array of nmemb objects, the initial member of which is * pointed to by base, for a member that matches the object pointed to by * key. The size of each member of the array is specified by size. * The contents of the array shall be in ascending sorted order according to * a comparison function pointed to by compar, which is called with two * arguments that point to the key object and to an array member, in that * order. The function shall return an integer less than, equal to, or * greater than zero if the key object is considered, respectively, to be * less than, to match, or to be greater than the array member. * Returns: a pointer to a matching member of the array, or a null pointer * if no match is found. If two members compare as equal, which * member is matched is unspecified. */ #if defined(__cplusplus) && defined(__LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE) /* bsearch that takes a ptr to a function with C++ linkage * but not in GNU mode */ typedef int (* __C_compareprocptr)(const void *, const void *); extern "C++" void *bsearch(const void * __key, const void * __base, size_t __nmemb, size_t __size, int (* __compar)(const void *, const void *)) __attribute__((__nonnull__(1,2,5))); extern "C++" inline void *bsearch(const void * __key, const void * __base, size_t __nmemb, size_t __size, int (* __compar)(const void *, const void *)) { return bsearch(__key, __base, __nmemb, __size, (__C_compareprocptr)__compar); } #endif extern _ARMABI_THROW void qsort(void * /*base*/, size_t /*nmemb*/, size_t /*size*/, int (* /*compar*/)(const void *, const void *)) __attribute__((__nonnull__(1,4))); /* * sorts an array of nmemb objects, the initial member of which is pointed * to by base. The size of each object is specified by size. * The contents of the array shall be in ascending order according to a * comparison function pointed to by compar, which is called with two * arguments that point to the objects being compared. The function shall * return an integer less than, equal to, or greater than zero if the first * argument is considered to be respectively less than, equal to, or greater * than the second. If two members compare as equal, their order in the * sorted array is unspecified. */ #if defined(__cplusplus) && defined(__LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE) /* qsort that takes a ptr to a function with C++ linkage * but not in GNU mode */ extern "C++" void qsort(void * __base, size_t __nmemb, size_t __size, int (* __compar)(const void *, const void *)) __attribute__((__nonnull__(1,4))); extern "C++" inline void qsort(void * __base, size_t __nmemb, size_t __size, int (* __compar)(const void *, const void *)) { qsort(__base, __nmemb, __size, (__C_compareprocptr)__compar); } #endif extern _ARMABI_PURE int abs(int /*j*/); /* * computes the absolute value of an integer j. If the result cannot be * represented, the behaviour is undefined. * Returns: the absolute value. */ extern _ARMABI_PURE div_t div(int /*numer*/, int /*denom*/); /* * computes the quotient and remainder of the division of the numerator * numer by the denominator denom. If the division is inexact, the resulting * quotient is the integer of lesser magnitude that is the nearest to the * algebraic quotient. If the result cannot be represented, the behaviour is * undefined; otherwise, quot * denom + rem shall equal numer. * Returns: a structure of type div_t, comprising both the quotient and the * remainder. the structure shall contain the following members, * in either order. * int quot; int rem; */ extern _ARMABI_PURE long int labs(long int /*j*/); /* * computes the absolute value of an long integer j. If the result cannot be * represented, the behaviour is undefined. * Returns: the absolute value. */ #ifdef __cplusplus extern "C++" inline _ARMABI_PURE long abs(long int x) { return labs(x); } #endif extern _ARMABI_PURE ldiv_t ldiv(long int /*numer*/, long int /*denom*/); /* * computes the quotient and remainder of the division of the numerator * numer by the denominator denom. If the division is inexact, the sign of * the resulting quotient is that of the algebraic quotient, and the * magnitude of the resulting quotient is the largest integer less than the * magnitude of the algebraic quotient. If the result cannot be represented, * the behaviour is undefined; otherwise, quot * denom + rem shall equal * numer. * Returns: a structure of type ldiv_t, comprising both the quotient and the * remainder. the structure shall contain the following members, * in either order. * long int quot; long int rem; */ #ifdef __cplusplus extern "C++" inline _ARMABI_PURE ldiv_t div(long int __numer, long int __denom) { return ldiv(__numer, __denom); } #endif #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB extern _ARMABI_PURE __LONGLONG llabs(__LONGLONG /*j*/); /* * computes the absolute value of a long long integer j. If the * result cannot be represented, the behaviour is undefined. * Returns: the absolute value. */ #ifdef __cplusplus extern "C++" inline _ARMABI_PURE __LONGLONG abs(__LONGLONG x) { return llabs(x); } #endif extern _ARMABI_PURE lldiv_t lldiv(__LONGLONG /*numer*/, __LONGLONG /*denom*/); /* * computes the quotient and remainder of the division of the numerator * numer by the denominator denom. If the division is inexact, the sign of * the resulting quotient is that of the algebraic quotient, and the * magnitude of the resulting quotient is the largest integer less than the * magnitude of the algebraic quotient. If the result cannot be represented, * the behaviour is undefined; otherwise, quot * denom + rem shall equal * numer. * Returns: a structure of type lldiv_t, comprising both the quotient and the * remainder. the structure shall contain the following members, * in either order. * long long quot; long long rem; */ #ifdef __cplusplus extern "C++" inline _ARMABI_PURE lldiv_t div(__LONGLONG __numer, __LONGLONG __denom) { return lldiv(__numer, __denom); } #endif #endif #if !(__ARM_NO_DEPRECATED_FUNCTIONS) /* * ARM real-time divide functions for guaranteed performance */ typedef struct __sdiv32by16 { int quot, rem; } __sdiv32by16; typedef struct __udiv32by16 { unsigned int quot, rem; } __udiv32by16; /* used int so that values return in separate regs, although 16-bit */ typedef struct __sdiv64by32 { int rem, quot; } __sdiv64by32; __value_in_regs extern _ARMABI_PURE __sdiv32by16 __rt_sdiv32by16( int /*numer*/, short int /*denom*/); /* * Signed divide: (16-bit quot), (16-bit rem) = (32-bit) / (16-bit) */ __value_in_regs extern _ARMABI_PURE __udiv32by16 __rt_udiv32by16( unsigned int /*numer*/, unsigned short /*denom*/); /* * Unsigned divide: (16-bit quot), (16-bit rem) = (32-bit) / (16-bit) */ __value_in_regs extern _ARMABI_PURE __sdiv64by32 __rt_sdiv64by32( int /*numer_h*/, unsigned int /*numer_l*/, int /*denom*/); /* * Signed divide: (32-bit quot), (32-bit rem) = (64-bit) / (32-bit) */ #endif /* * ARM floating-point mask/status function (for both hardfp and softfp) */ extern _ARMABI unsigned int __fp_status(unsigned int /*mask*/, unsigned int /*flags*/); /* * mask and flags are bit-fields which correspond directly to the * floating point status register in the FPE/FPA and fplib. * __fp_status returns the current value of the status register, * and also sets the writable bits of the word * (the exception control and flag bytes) to: * * new = (old & ~mask) ^ flags; */ #define __fpsr_IXE 0x100000 #define __fpsr_UFE 0x80000 #define __fpsr_OFE 0x40000 #define __fpsr_DZE 0x20000 #define __fpsr_IOE 0x10000 #define __fpsr_IXC 0x10 #define __fpsr_UFC 0x8 #define __fpsr_OFC 0x4 #define __fpsr_DZC 0x2 #define __fpsr_IOC 0x1 /* * Multibyte Character Functions. * The behaviour of the multibyte character functions is affected by the * LC_CTYPE category of the current locale. For a state-dependent encoding, * each function is placed into its initial state by a call for which its * character pointer argument, s, is a null pointer. Subsequent calls with s * as other than a null pointer cause the internal state of the function to be * altered as necessary. A call with s as a null pointer causes these functions * to return a nonzero value if encodings have state dependency, and a zero * otherwise. After the LC_CTYPE category is changed, the shift state of these * functions is indeterminate. */ extern _ARMABI int mblen(const char * /*s*/, size_t /*n*/); /* * If s is not a null pointer, the mblen function determines the number of * bytes compromising the multibyte character pointed to by s. Except that * the shift state of the mbtowc function is not affected, it is equivalent * to mbtowc((wchar_t *)0, s, n); * Returns: If s is a null pointer, the mblen function returns a nonzero or * zero value, if multibyte character encodings, respectively, do * or do not have state-dependent encodings. If s is not a null * pointer, the mblen function either returns a 0 (if s points to a * null character), or returns the number of bytes that compromise * the multibyte character (if the next n of fewer bytes form a * valid multibyte character), or returns -1 (they do not form a * valid multibyte character). */ extern _ARMABI int mbtowc(wchar_t * __restrict /*pwc*/, const char * __restrict /*s*/, size_t /*n*/); /* * If s is not a null pointer, the mbtowc function determines the number of * bytes that compromise the multibyte character pointed to by s. It then * determines the code for value of type wchar_t that corresponds to that * multibyte character. (The value of the code corresponding to the null * character is zero). If the multibyte character is valid and pwc is not a * null pointer, the mbtowc function stores the code in the object pointed * to by pwc. At most n bytes of the array pointed to by s will be examined. * Returns: If s is a null pointer, the mbtowc function returns a nonzero or * zero value, if multibyte character encodings, respectively, do * or do not have state-dependent encodings. If s is not a null * pointer, the mbtowc function either returns a 0 (if s points to * a null character), or returns the number of bytes that * compromise the converted multibyte character (if the next n of * fewer bytes form a valid multibyte character), or returns -1 * (they do not form a valid multibyte character). */ extern _ARMABI int wctomb(char * /*s*/, wchar_t /*wchar*/); /* * determines the number of bytes need to represent the multibyte character * corresponding to the code whose value is wchar (including any change in * shift state). It stores the multibyte character representation in the * array object pointed to by s (if s is not a null pointer). At most * MB_CUR_MAX characters are stored. If the value of wchar is zero, the * wctomb function is left in the initial shift state). * Returns: If s is a null pointer, the wctomb function returns a nonzero or * zero value, if multibyte character encodings, respectively, do * or do not have state-dependent encodings. If s is not a null * pointer, the wctomb function returns a -1 if the value of wchar * does not correspond to a valid multibyte character, or returns * the number of bytes that compromise the multibyte character * corresponding to the value of wchar. */ /* * Multibyte String Functions. * The behaviour of the multibyte string functions is affected by the LC_CTYPE * category of the current locale. */ extern _ARMABI size_t mbstowcs(wchar_t * __restrict /*pwcs*/, const char * __restrict /*s*/, size_t /*n*/) __attribute__((__nonnull__(2))); /* * converts a sequence of multibyte character that begins in the initial * shift state from the array pointed to by s into a sequence of * corresponding codes and stores not more than n codes into the array * pointed to by pwcs. No multibyte character that follow a null character * (which is converted into a code with value zero) will be examined or * converted. Each multibyte character is converted as if by a call to * mbtowc function, except that the shift state of the mbtowc function is * not affected. No more than n elements will be modified in the array * pointed to by pwcs. If copying takes place between objects that overlap, * the behaviour is undefined. * Returns: If an invalid multibyte character is encountered, the mbstowcs * function returns (size_t)-1. Otherwise, the mbstowcs function * returns the number of array elements modified, not including * a terminating zero code, if any. */ extern _ARMABI size_t wcstombs(char * __restrict /*s*/, const wchar_t * __restrict /*pwcs*/, size_t /*n*/) __attribute__((__nonnull__(2))); /* * converts a sequence of codes that correspond to multibyte characters * from the array pointed to by pwcs into a sequence of multibyte * characters that begins in the initial shift state and stores these * multibyte characters into the array pointed to by s, stopping if a * multibyte character would exceed the limit of n total bytes or if a * null character is stored. Each code is converted as if by a call to the * wctomb function, except that the shift state of the wctomb function is * not affected. No more than n elements will be modified in the array * pointed to by s. If copying takes place between objects that overlap, * the behaviour is undefined. * Returns: If a code is encountered that does not correspond to a valid * multibyte character, the wcstombs function returns (size_t)-1. * Otherwise, the wcstombs function returns the number of bytes * modified, not including a terminating null character, if any. */ extern _ARMABI void __use_realtime_heap(void); extern _ARMABI void __use_realtime_division(void); extern _ARMABI void __use_two_region_memory(void); extern _ARMABI void __use_no_heap(void); extern _ARMABI void __use_no_heap_region(void); extern _ARMABI char const *__C_library_version_string(void); extern _ARMABI int __C_library_version_number(void); #ifdef __cplusplus } /* extern "C" */ } /* namespace std */ #endif /* __cplusplus */ #endif /* __STDLIB_DECLS */ #if _AEABI_PORTABILITY_LEVEL != 0 && !defined _AEABI_PORTABLE #define _AEABI_PORTABLE #endif #ifdef __cplusplus #ifndef __STDLIB_NO_EXPORTS #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB using ::std::atoll; using ::std::lldiv_t; #endif /* !defined(__STRICT_ANSI__) || __USE_C99_STDLIB */ using ::std::div_t; using ::std::ldiv_t; using ::std::atof; using ::std::atoi; using ::std::atol; using ::std::strtod; #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB using ::std::strtof; using ::std::strtold; #endif using ::std::strtol; using ::std::strtoul; using ::std::strtoll; using ::std::strtoull; using ::std::rand; using ::std::srand; using ::std::_rand_state; using ::std::_rand_r; using ::std::_srand_r; using ::std::_ANSI_rand_state; using ::std::_ANSI_rand_r; using ::std::_ANSI_srand_r; using ::std::calloc; using ::std::free; using ::std::malloc; using ::std::realloc; #if !defined(__STRICT_ANSI__) using ::std::posix_memalign; #endif using ::std::__heapprt; using ::std::__heapstats; using ::std::__heapvalid; using ::std::abort; using ::std::atexit; using ::std::exit; using ::std::_Exit; using ::std::getenv; using ::std::system; using ::std::bsearch; using ::std::qsort; using ::std::abs; using ::std::div; using ::std::labs; using ::std::ldiv; #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB using ::std::llabs; using ::std::lldiv; #endif /* !defined(__STRICT_ANSI__) || __USE_C99_STDLIB */ #if !(__ARM_NO_DEPRECATED_FUNCTIONS) using ::std::__sdiv32by16; using ::std::__udiv32by16; using ::std::__sdiv64by32; using ::std::__rt_sdiv32by16; using ::std::__rt_udiv32by16; using ::std::__rt_sdiv64by32; #endif using ::std::__fp_status; using ::std::mblen; using ::std::mbtowc; using ::std::wctomb; using ::std::mbstowcs; using ::std::wcstombs; using ::std::__use_realtime_heap; using ::std::__use_realtime_division; using ::std::__use_two_region_memory; using ::std::__use_no_heap; using ::std::__use_no_heap_region; using ::std::__C_library_version_string; using ::std::__C_library_version_number; using ::std::size_t; using ::std::__aeabi_MB_CUR_MAX; #endif /* __STDLIB_NO_EXPORTS */ #endif /* __cplusplus */ #undef __LONGLONG #endif /* __stdlib_h */ /* end of stdlib.h */ 这是啥

D:\anaconda\lib\site-packages\sklearn\model_selection\_validation.py:372: FitFailedWarning: 540 fits failed out of a total of 540. The score on these train-test partitions for these parameters will be set to nan. If these failures are not expected, you can try to debug them by setting error_score='raise'. Below are more details about the failures: -------------------------------------------------------------------------------- 108 fits failed with the following error: Traceback (most recent call last): File "D:\anaconda\lib\site-packages\sklearn\model_selection\_validation.py", line 680, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "D:\anaconda\lib\site-packages\sklearn\ensemble\_forest.py", line 327, in fit X, y = self._validate_data( File "D:\anaconda\lib\site-packages\sklearn\base.py", line 581, in _validate_data X, y = check_X_y(X, y, **check_params) File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 964, in check_X_y X = check_array( File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 746, in check_array array = np.asarray(array, order=order, dtype=dtype) File "D:\anaconda\lib\site-packages\pandas\core\generic.py", line 2064, in __array__ return np.asarray(self._values, dtype=dtype) ValueError: could not convert string to float: 'L' -------------------------------------------------------------------------------- 432 fits failed with the following error: Traceback (most recent call last): File "D:\anaconda\lib\site-packages\sklearn\model_selection\_validation.py", line 680, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "D:\anaconda\lib\site-packages\sklearn\ensemble\_forest.py", line 327, in fit X, y = self._validate_data( File "D:\anaconda\lib\site-packages\sklearn\base.py", line 581, in _validate_data X, y = check_X_y(X, y, **check_params) File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 964, in check_X_y X = check_array( File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 746, in check_array array = np.asarray(array, order=order, dtype=dtype) File "D:\anaconda\lib\site-packages\pandas\core\generic.py", line 2064, in __array__ return np.asarray(self._values, dtype=dtype) ValueError: could not convert string to float: 'M' warnings.warn(some_fits_failed_message, FitFailedWarning) D:\anaconda\lib\site-packages\sklearn\model_selection\_search.py:969: UserWarning: One or more of the test scores are non-finite: [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan] warnings.warn( --------------------------------------------------------------------------- ValueError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_9852\3302585992.py in <module> 35 scoring='neg_mean_squared_error' 36 ) ---> 37 grid_search.fit(X_train, y_train) 38 39 # 输出最佳参数 D:\anaconda\lib\site-packages\sklearn\model_selection\_search.py in fit(self, X, y, groups, **fit_params) 924 refit_start_time = time.time() 925 if y is not None: --> 926 self.best_estimator_.fit(X, y, **fit_params) 927 else: 928 self.best_estimator_.fit(X, **fit_params) D:\anaconda\lib\site-packages\sklearn\ensemble\_forest.py in fit(self, X, y, sample_weight) 325 if issparse(y): 326 raise ValueError("sparse multilabel-indicator for y is not supported.") --> 327 X, y = self._validate_data( 328 X, y, multi_output=True, accept_sparse="csc", dtype=DTYPE 329 ) D:\anaconda\lib\site-packages\sklearn\base.py in _validate_data(self, X, y, reset, validate_separately, **check_params) 579 y = check_array(y, **check_y_params) 580 else: --> 581 X, y = check_X_y(X, y, **check_params) 582 out = X, y 583 D:\anaconda\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator) 962 raise ValueError("y cannot be None") 963 --> 964 X = check_array( 965 X, 966 accept_sparse=accept_sparse, D:\anaconda\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator) 744 array = array.astype(dtype, casting="unsafe", copy=False) 745 else: --> 746 array = np.asarray(array, order=order, dtype=dtype) 747 except ComplexWarning as complex_warning: 748 raise ValueError( D:\anaconda\lib\site-packages\pandas\core\generic.py in __array__(self, dtype) 2062 2063 def __array__(self, dtype: npt.DTypeLike | None = None) -> np.ndarray: -> 2064 return np.asarray(self._values, dtype=dtype) 2065 2066 def __array_wrap__( ValueError: could not convert string to float: 'M' ​

大家在看

recommend-type

华为OLT MA5680T工具.zip

华为OLT管理器 MA5680T MA5608T全自动注册光猫,其他我的也不知道,我自己不用这玩意; 某宝上卖500大洋的货。需要的下载。 附后某宝链接: https://item.taobao.com/item.htm?spm=a230r.1.14.149.2d8548e4oynrAP&id=592880631233&ns=1&abbucket=12#detail 证明寡人没有吹牛B
recommend-type

STP-RSTP-MSTP配置实验指导书 ISSUE 1.3

STP-RSTP-MSTP配置实验指导书 ISSUE 1.3
recommend-type

基于FPGA的AD9910控制设计

为了满足目前对数据处理速度的需求,设计了一种基于FPGA+DDS的控制系统。根据AD9910的特点设计了控制系统的硬件部分,详细阐述了电源、地和滤波器的设计。设计了FPGA的软件控制流程,给出了流程图和关键部分的例程,并对DDSAD9910各个控制寄存器的设置与时序进行详细说明,最后给出了实验结果。实验结果证明输出波形质量高、效果好。对于频率源的设计与实现具有工程实践意义。
recommend-type

Android全景视频播放器 源代码

Android全景视频播放器 源代码
recommend-type

pytorch-book:《神经网络和PyTorch的应用》一书的源代码

神经网络与PyTorch实战 世界上第一本 PyTorch 1 纸质教程书籍 本书讲解神经网络设计与 PyTorch 应用。 全书分为三个部分。 第 1 章和第 2 章:厘清神经网络的概念关联,利用 PyTorch 搭建迷你 AlphaGo,使你初步了解神经网络和 PyTorch。 第 3~9 章:讲解基于 PyTorch 的科学计算和神经网络搭建,涵盖几乎所有 PyTorch 基础知识,涉及所有神经网络的常用结构,并通过 8 个例子使你完全掌握神经网络的原理和应用。 第 10 章和第 11 章:介绍生成对抗网络和增强学习,使你了解更多神经网络的实际用法。 在线阅读: 勘误列表: 本书中介绍的PyTorch的安装方法已过时。PyTorch安装方法(2020年12月更新): Application of Neural Network and PyTorch The First Hard-co

最新推荐

recommend-type

造纸机变频分布传动与Modbus RTU通讯技术的应用及其实现

造纸机变频分布传动与Modbus RTU通讯技术的应用及其优势。首先,文中解释了变频分布传动系统的组成和功能,包括采用PLC(如S7-200SMART)、变频器(如英威腾、汇川、ABB)和触摸屏(如昆仑通泰)。其次,重点阐述了Modbus RTU通讯协议的作用,它不仅提高了系统的可靠性和抗干扰能力,还能实现对造纸机各个生产环节的精确监控和调节。最后,强调了该技术在提高造纸机运行效率、稳定性和产品质量方面的显著效果,适用于多种类型的造纸机,如圆网造纸机、长网多缸造纸机和叠网多缸造纸机。 适合人群:从事造纸机械制造、自动化控制领域的工程师和技术人员。 使用场景及目标:① 提升造纸机的自动化水平;② 实现对造纸机的精确控制,确保纸张质量和生产效率;③ 改善工业现场的数据传输和监控功能。 其他说明:文中提到的具体品牌和技术细节有助于实际操作和维护,同时也展示了该技术在不同纸厂的成功应用案例。
recommend-type

langchain4j-neo4j-0.29.1.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

Visual C++.NET编程技术实战指南

根据提供的文件信息,可以生成以下知识点: ### Visual C++.NET编程技术体验 #### 第2章 定制窗口 - **设置窗口风格**:介绍了如何通过编程自定义窗口的外观和行为。包括改变窗口的标题栏、边框样式、大小和位置等。这通常涉及到Windows API中的`SetWindowLong`和`SetClassLong`函数。 - **创建六边形窗口**:展示了如何创建一个具有特殊形状边界的窗口,这类窗口不遵循标准的矩形形状。它需要使用`SetWindowRgn`函数设置窗口的区域。 - **创建异形窗口**:扩展了定制窗口的内容,提供了创建非标准形状窗口的方法。这可能需要创建一个不规则的窗口区域,并将其应用到窗口上。 #### 第3章 菜单和控制条高级应用 - **菜单编程**:讲解了如何创建和修改菜单项,处理用户与菜单的交互事件,以及动态地添加或删除菜单项。 - **工具栏编程**:阐述了如何使用工具栏,包括如何创建工具栏按钮、分配事件处理函数,并实现工具栏按钮的响应逻辑。 - **状态栏编程**:介绍了状态栏的创建、添加不同类型的指示器(如文本、进度条等)以及状态信息的显示更新。 - **为工具栏添加皮肤**:展示了如何为工具栏提供更加丰富的视觉效果,通常涉及到第三方的控件库或是自定义的绘图代码。 #### 第5章 系统编程 - **操作注册表**:解释了Windows注册表的结构和如何通过程序对其进行读写操作,这对于配置软件和管理软件设置非常关键。 - **系统托盘编程**:讲解了如何在系统托盘区域创建图标,并实现最小化到托盘、从托盘恢复窗口的功能。 - **鼠标钩子程序**:介绍了钩子(Hook)技术,特别是鼠标钩子,如何拦截和处理系统中的鼠标事件。 - **文件分割器**:提供了如何将文件分割成多个部分,并且能够重新组合文件的技术示例。 #### 第6章 多文档/多视图编程 - **单文档多视**:展示了如何在同一个文档中创建多个视图,这在文档编辑软件中非常常见。 #### 第7章 对话框高级应用 - **实现无模式对话框**:介绍了无模式对话框的概念及其应用场景,以及如何实现和管理无模式对话框。 - **使用模式属性表及向导属性表**:讲解了属性表的创建和使用方法,以及如何通过向导性质的对话框引导用户完成多步骤的任务。 - **鼠标敏感文字**:提供了如何实现点击文字触发特定事件的功能,这在阅读器和编辑器应用中很有用。 #### 第8章 GDI+图形编程 - **图像浏览器**:通过图像浏览器示例,展示了GDI+在图像处理和展示中的应用,包括图像的加载、显示以及基本的图像操作。 #### 第9章 多线程编程 - **使用全局变量通信**:介绍了在多线程环境下使用全局变量进行线程间通信的方法和注意事项。 - **使用Windows消息通信**:讲解了通过消息队列在不同线程间传递信息的技术,包括发送消息和处理消息。 - **使用CriticalSection对象**:阐述了如何使用临界区(CriticalSection)对象防止多个线程同时访问同一资源。 - **使用Mutex对象**:介绍了互斥锁(Mutex)的使用,用以同步线程对共享资源的访问,保证资源的安全。 - **使用Semaphore对象**:解释了信号量(Semaphore)对象的使用,它允许一个资源由指定数量的线程同时访问。 #### 第10章 DLL编程 - **创建和使用Win32 DLL**:介绍了如何创建和链接Win32动态链接库(DLL),以及如何在其他程序中使用这些DLL。 - **创建和使用MFC DLL**:详细说明了如何创建和使用基于MFC的动态链接库,适用于需要使用MFC类库的场景。 #### 第11章 ATL编程 - **简单的非属性化ATL项目**:讲解了ATL(Active Template Library)的基础使用方法,创建一个不使用属性化组件的简单项目。 - **使用ATL开发COM组件**:详细阐述了使用ATL开发COM组件的步骤,包括创建接口、实现类以及注册组件。 #### 第12章 STL编程 - **list编程**:介绍了STL(标准模板库)中的list容器的使用,讲解了如何使用list实现复杂数据结构的管理。 #### 第13章 网络编程 - **网上聊天应用程序**:提供了实现基本聊天功能的示例代码,包括客户端和服务器的通信逻辑。 - **简单的网页浏览器**:演示了如何创建一个简单的Web浏览器程序,涉及到网络通信和HTML解析。 - **ISAPI服务器扩展编程**:介绍了如何开发ISAPI(Internet Server API)服务器扩展来扩展IIS(Internet Information Services)的功能。 #### 第14章 数据库编程 - **ODBC数据库编程**:解释了ODBC(开放数据库互联)的概念,并提供了使用ODBC API进行数据库访问的示例。 - **ADO编程**:介绍了ADO(ActiveX Data Objects)技术,讲解了如何使用ADO进行数据库的增删改查等操作。 #### 第15章 HTML帮助系统编程 - **创建HTML帮助文件**:讲解了如何创建HTML帮助文件(.chm),这是微软帮助系统的一种形式。 - **区分上下文帮助**:提供了在应用程序中实现上下文敏感帮助的技术示例。 #### 第16章 安装和部署项目 - **用安装程序向导创建安装项目**:介绍了如何使用Visual Studio中的安装和部署项目向导,快速创建安装程序。 - **部署应用程序**:阐述了部署应用程序到目标系统的过程,以及如何确保应用程序的正确安装和运行。 以上内容涵盖了Visual C++.NET编程技术体验一书中涉及的各个技术点,并对每个章节中的示例做了详细的说明。这些知识点对于理解和掌握Visual C++.NET编程非常重要,并能够帮助读者在实际项目开发中应用这些技术。
recommend-type

HarmonyOS内核深度探秘:优化自由行旅游系统的策略

# 1. HarmonyOS内核概述与旅游系统需求分析 ## 1.1 HarmonyOS内核概述 HarmonyOS(鸿蒙操作系统)是由华为开发的一个分布式操作系统,旨在提供跨多种设备的无缝体验。其内核设计理念强调高效、安全和模块化,以微内核架构和分布式能力
recommend-type

tkinter模块所有控件

<think>好的,我现在需要回答用户关于Tkinter模块中所有控件列表的问题。首先,我需要回忆Tkinter的基础知识,确保自己了解各个控件的名称和用途。用户希望得到所有支持的控件列表,所以必须全面覆盖,不能遗漏。 首先,我应该从Tkinter的标准控件开始。常见的控件包括Label、Button、Entry这些基础部件。然后是Frame,用于布局,还有Canvas用于绘图。接下来是Checkbutton、Radiobutton,这些属于选择类控件。Listbox和Scrollbar通常一起使用,处理滚动内容。还有Scale(滑块)、Spinbox、Menu、Menubutton这些可能
recommend-type

局域网五子棋游戏:娱乐与聊天的完美结合

标题“网络五子棋”和描述“适合于局域网之间娱乐和聊天!”以及标签“五子棋 网络”所涉及的知识点主要围绕着五子棋游戏的网络版本及其在局域网中的应用。以下是详细的知识点: 1. 五子棋游戏概述: 五子棋是一种两人对弈的纯策略型棋类游戏,又称为连珠、五子连线等。游戏的目标是在一个15x15的棋盘上,通过先后放置黑白棋子,使得任意一方先形成连续五个同色棋子的一方获胜。五子棋的规则简单,但策略丰富,适合各年龄段的玩家。 2. 网络五子棋的意义: 网络五子棋是指可以在互联网或局域网中连接进行对弈的五子棋游戏版本。通过网络版本,玩家不必在同一地点即可进行游戏,突破了空间限制,满足了现代人们快节奏生活的需求,同时也为玩家们提供了与不同对手切磋交流的机会。 3. 局域网通信原理: 局域网(Local Area Network,LAN)是一种覆盖较小范围如家庭、学校、实验室或单一建筑内的计算机网络。它通过有线或无线的方式连接网络内的设备,允许用户共享资源如打印机和文件,以及进行游戏和通信。局域网内的计算机之间可以通过网络协议进行通信。 4. 网络五子棋的工作方式: 在局域网中玩五子棋,通常需要一个客户端程序(如五子棋.exe)和一个服务器程序。客户端负责显示游戏界面、接受用户输入、发送落子请求给服务器,而服务器负责维护游戏状态、处理玩家的游戏逻辑和落子请求。当一方玩家落子时,客户端将该信息发送到服务器,服务器确认无误后将更新后的棋盘状态传回给所有客户端,更新显示。 5. 五子棋.exe程序: 五子棋.exe是一个可执行程序,它使得用户可以在个人计算机上安装并运行五子棋游戏。该程序可能包含了游戏的图形界面、人工智能算法(如果支持单机对战AI的话)、网络通信模块以及游戏规则的实现。 6. put.wav文件: put.wav是一个声音文件,很可能用于在游戏进行时提供声音反馈,比如落子声。在网络环境中,声音文件可能被用于提升玩家的游戏体验,尤其是在局域网多人游戏场景中。当玩家落子时,系统会播放.wav文件中的声音,为游戏增添互动性和趣味性。 7. 网络五子棋的技术要求: 为了确保多人在线游戏的顺利进行,网络五子棋需要具备一些基本的技术要求,包括但不限于稳定的网络连接、高效的数据传输协议(如TCP/IP)、以及安全的数据加密措施(如果需要的话)。此外,还需要有一个良好的用户界面设计来提供直观和舒适的用户体验。 8. 社交与娱乐: 网络五子棋除了是一个娱乐游戏外,它还具有社交功能。玩家可以通过游戏内的聊天系统进行交流,分享经验和策略,甚至通过网络寻找新的朋友。这使得网络五子棋不仅是一个个人娱乐工具,同时也是一种社交活动。 总结来说,网络五子棋结合了五子棋游戏的传统魅力和现代网络技术,使得不同地区的玩家能够在局域网内进行娱乐和聊天,既丰富了人们的娱乐生活,又加强了人际交流。而实现这一切的基础在于客户端程序的设计、服务器端的稳定运行、局域网的高效通信,以及音效文件增强的游戏体验。
recommend-type

自由行旅游新篇章:HarmonyOS技术融合与系统架构深度解析

# 1. HarmonyOS技术概述 ## 1.1 HarmonyOS的起源与发展 HarmonyOS(鸿蒙操作系统)由华为公司开发,旨在构建全场景分布式OS,以应对不同设备间的互联问题。自从2019年首次发布以来,HarmonyOS迅速成长,并迅速应用于智能手机、平板、智能穿戴、车载设备等多种平台。该系
recommend-type

足底支撑相到达73%是什么问题

<think>好的,我现在要处理用户的问题:“足底支撑相达到73%可能的原因及影响”。首先,需要理解用户提到的“足底支撑相73%”具体指什么。足底支撑相通常指步态周期中脚与地面接触的时间占比,正常范围大约在60%-62%左右。如果达到73%,明显超出正常范围,可能意味着步态异常。 接下来,需要确定可能的原因。可能的原因包括生物力学异常,比如足弓异常(扁平足或高弓足)、踝关节活动度受限,或者肌肉力量不足,特别是小腿和足部肌肉。另外,神经系统疾病如脑卒中或帕金森病可能影响步态控制。骨骼关节问题如关节炎、髋膝关节病变也可能导致支撑时间延长。还有代偿性步态,比如因疼痛或受伤而改变步态模式。 然后是
recommend-type

宾馆预约系统开发与优化建议

宾馆预约系统是一个典型的在线服务应用,它允许用户通过互联网平台预定宾馆房间。这种系统通常包含多个模块,比如用户界面、房态管理、预订处理、支付处理和客户评价等。从技术层面来看,构建一个宾馆预约系统涉及到众多的IT知识和技术细节,下面将详细说明。 ### 标题知识点 - 宾馆预约系统 #### 1. 系统架构设计 宾馆预约系统作为一个完整的应用,首先需要进行系统架构设计,决定其采用的软件架构模式,如B/S架构或C/S架构。此外,系统设计还需要考虑扩展性、可用性、安全性和维护性。一般会采用三层架构,包括表示层、业务逻辑层和数据访问层。 #### 2. 前端开发 前端开发主要负责用户界面的设计与实现,包括用户注册、登录、房间搜索、预订流程、支付确认、用户反馈等功能的页面展示和交互设计。常用的前端技术栈有HTML, CSS, JavaScript, 以及各种前端框架如React, Vue.js或Angular。 #### 3. 后端开发 后端开发主要负责处理业务逻辑,包括用户管理、房间状态管理、订单处理等。后端技术包括但不限于Java (使用Spring Boot框架), Python (使用Django或Flask框架), PHP (使用Laravel框架)等。 #### 4. 数据库设计 数据库设计对系统的性能和可扩展性至关重要。宾馆预约系统可能需要设计的数据库表包括用户信息表、房间信息表、预订记录表、支付信息表等。常用的数据库系统有MySQL, PostgreSQL, MongoDB等。 #### 5. 网络安全 网络安全是宾馆预约系统的重要考虑因素,包括数据加密、用户认证授权、防止SQL注入、XSS攻击、CSRF攻击等。系统需要实现安全的认证机制,比如OAuth或JWT。 #### 6. 云服务和服务器部署 现代的宾馆预约系统可能部署在云平台上,如AWS, Azure, 腾讯云或阿里云。在云平台上,系统可以按需分配资源,提高系统的稳定性和弹性。 #### 7. 付款接口集成 支付模块需要集成第三方支付接口,如支付宝、微信支付、PayPal等,需要处理支付请求、支付状态确认、退款等业务。 #### 8. 接口设计与微服务 系统可能采用RESTful API或GraphQL等接口设计方式,提供服务的微服务化,以支持不同设备和服务的接入。 ### 描述知识点 - 这是我个人自己做的 请大家帮忙修改哦 #### 个人项目经验与团队合作 描述中的这句话暗示了该宾馆预约系统可能是由一个个人开发者创建的。个人开发和团队合作在软件开发流程中有着显著的不同。个人开发者需要关注的方面包括项目管理、需求分析、代码质量保证、测试和部署等。而在团队合作中,每个成员会承担不同的职责,需要有效的沟通和协作。 #### 用户反馈与迭代 描述还暗示了该系统目前处于需要外部反馈和修改的阶段。这表明系统可能还处于开发或测试阶段,需要通过用户的实际使用反馈来不断迭代改进。 ### 标签知识点 - 200 #### 未提供信息 “200”这个标签可能指的是HTTP状态码中表示请求成功(OK)的200状态码。但是,由于没有提供更多的上下文信息,无法进一步分析其在本例中的具体含义。 ### 压缩包子文件的文件名称列表知识点 - 1111 #### 文件命名与管理 “1111”这个文件名称可能是一个版本号、日期标记或者是一个简单的标识符。文件命名应当遵循一定的规则,以确保文件的可追溯性和管理的便利性。在软件开发过程中,合理组织文件和版本控制(如使用Git)是必不可少的。 综上所述,宾馆预约系统的开发是一项复杂的工程,它涉及前后端的开发、数据库设计、系统安全、接口设计等多个方面。开发者在开发过程中需要不断学习和应用各类IT知识,以确保系统能够安全、高效、稳定地运行。而对于个人开发项目,如何合理利用有限资源、高效地管理和优化项目过程也是至关重要的。
recommend-type

HarmonyOS在旅游领域的创新:揭秘最前沿应用实践

# 1. HarmonyOS旅游应用的市场前景分析 随着数字化转型的不断深入,旅游行业正面临着前所未有的变革。在这样的背景下,HarmonyOS作为一种新兴的操作系统,带来了全新的市场前景和机遇。本章将深入分析HarmonyOS在旅游应用领域的市场潜力、用户需求、以及技术创新对旅游体验的改善。 ## 1.1 市场需求与用户画像分析 旅游市场的需求持续增