活动介绍

(torch) E:\2-三维点云课程\PersFormer_3DLane-main (1)\PersFormer_3DLane-main\models\ops>python setup.py build_ext --inplace running build_ext D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py:380: UserWarning: Error checking compiler version for cl: [WinError 2] 系统找不到指定的文件。 warnings.warn(f'Error checking compiler version for {compiler}: {error}') building 'MultiScaleDeformableAttention' extension creating E:\2-三维点云课程\PersFormer_3DLane-main (1)\PersFormer_3DLane-main\models\ops\build\temp.win-amd64-cpython-38\Release\2-三维点云课程\PersFormer_3DLane-main (1)\PersFormer_3DLane-main\models\ops\src\cpu creating E:\2-三维点云课程\PersFormer_3DLane-main (1)\PersFormer_3DLane-main\models\ops\build\temp.win-amd64-cpython-38\Release\2-三维点云课程\PersFormer_3DLane-main (1)\PersFormer_3DLane-main\models\ops\src\cuda D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py:1965: UserWarning: TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation. If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST']. warnings.warn( Emitting ninja build file E:\2-三维点云课程\PersFormer_3DLane-main (1)\PersFormer_3DLane-main\models\ops\build\temp.win-amd64-cpython-38\Release\build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) ninja: error: 'E:/2-三维点云课程/PersFormer_3DLane-main (1)/PersFormer_3DLane-main/models/ops/src/cpu/ms_deform_attn_cpu.cpp', needed by 'E:/2-三维点云课程/PersFormer_3DLane-main (1)/PersFormer_3DLane-main/models/ops/build/temp.win-amd64-cpython-38/Release/2-三维点云课程/PersFormer_3DLane-main (1)/PersFormer_3DLane-main/models/ops/src/cpu/ms_deform_attn_cpu.obj', missing and no known rule to make it Traceback (most recent call last): File "D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py", line 2105, in _run_ninja_build subprocess.run( File "D:\anaconda3\envs\torch\lib\subprocess.py", line 516, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "setup.py", line 79, in <module> setup( File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\core.py", line 183, in setup return run_commands(dist) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\core.py", line 199, in run_commands dist.run_commands() File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\dist.py", line 954, in run_commands self.run_command(cmd) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\dist.py", line 950, in run_command super().run_command(command) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\dist.py", line 973, in run_command cmd_obj.run() File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\command\build_ext.py", line 98, in run _build_ext.run(self) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 359, in run self.build_extensions() File "D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py", line 866, in build_extensions build_ext.build_extensions(self) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 476, in build_extensions self._build_extensions_serial() File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 502, in _build_extensions_serial self.build_extension(ext) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\command\build_ext.py", line 263, in build_extension _build_ext.build_extension(self, ext) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 557, in build_extension objects = self.compiler.compile( File "D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py", line 838, in win_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py", line 1785, in _write_ninja_file_and_compile_objects _run_ninja_build( File "D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py", line 2121, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension (torch) E:\2-三维点云课程\PersFormer_3DLane-main (1)\PersFormer_3DLane-main\models\ops>python setup.py build_ext --inplace running build_ext D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py:380: UserWarning: Error checking compiler version for cl: [WinError 2] 系统找不到指定的文件。 warnings.warn(f'Error checking compiler version for {compiler}: {error}') building 'MultiScaleDeformableAttention' extension D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py:1965: UserWarning: TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation. If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST']. warnings.warn( Emitting ninja build file E:\2-三维点云课程\PersFormer_3DLane-main (1)\PersFormer_3DLane-main\models\ops\build\temp.win-amd64-cpython-38\Release\build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) ninja: error: 'E:/2-三维点云课程/PersFormer_3DLane-main (1)/PersFormer_3DLane-main/models/ops/src/cpu/ms_deform_attn_cpu.cpp', needed by 'E:/2-三维点云课程/PersFormer_3DLane-main (1)/PersFormer_3DLane-main/models/ops/build/temp.win-amd64-cpython-38/Release/2-三维点云课程/PersFormer_3DLane-main (1)/PersFormer_3DLane-main/models/ops/src/cpu/ms_deform_attn_cpu.obj', missing and no known rule to make it Traceback (most recent call last): File "D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py", line 2105, in _run_ninja_build subprocess.run( File "D:\anaconda3\envs\torch\lib\subprocess.py", line 516, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "setup.py", line 79, in <module> setup( File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\core.py", line 183, in setup return run_commands(dist) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\core.py", line 199, in run_commands dist.run_commands() File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\dist.py", line 954, in run_commands self.run_command(cmd) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\dist.py", line 950, in run_command super().run_command(command) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\dist.py", line 973, in run_command cmd_obj.run() File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\command\build_ext.py", line 98, in run _build_ext.run(self) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 359, in run self.build_extensions() File "D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py", line 866, in build_extensions build_ext.build_extensions(self) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 476, in build_extensions self._build_extensions_serial() File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 502, in _build_extensions_serial self.build_extension(ext) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\command\build_ext.py", line 263, in build_extension _build_ext.build_extension(self, ext) File "D:\anaconda3\envs\torch\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 557, in build_extension objects = self.compiler.compile( File "D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py", line 838, in win_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py", line 1785, in _write_ninja_file_and_compile_objects _run_ninja_build( File "D:\anaconda3\envs\torch\lib\site-packages\torch\utils\cpp_extension.py", line 2121, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension

时间: 2025-07-26 22:33:32 浏览: 13
<think>我们遇到了一个编译错误,主要问题是ninja在尝试编译 MultiScaleDeformableAttention扩展时找不到源文件。错误信息:`ninja:error:'E:/2-三维点云课程/PersFormer_3DLane-main (1)/PersFormer_3DLane-main/models/ops/src/cpu/ms_deform_attn_cpu.cpp',needed by... missingand noknown ruleto makeit`原因分析:1.路径问题:路径中包含空格和括号,可能导致ninja或编译工具解析路径时出错。特别是路径中的括号`(1)`和空格。2.文件确实不存在:可能是文件被移动或删除,或者原始代码库中该文件缺失。解决方案:1.尝试将整个项目目录移动到没有空格和特殊字符(如括号)的路径中。例如,将 `E:\2-三维点云课程\PersFormer_3DLane-main(1)`改为一个简单的路径,如`E:\project\PersFormer_3DLane`。2.检查`src/cpu/`目录下是否存在 `ms_deform_attn_cpu.cpp`文件。如果不存在,可能需要从原始仓库重新获取该文件。另外,错误中还有关于编译器 cl找不到的警告(WinError2),这表明系统可能没有安装 VisualStudio的 C++编译器。在Windows上编译PyTorch C++扩展需要安装Visual Studio(建议2019版)并选择“使用C++的桌面开发”工作负载。步骤:1.安装 VisualStudio2019并确保安装了C++构建工具。2.将项目移动到简单路径(无空格和特殊字符)。3.如果问题仍然存在,尝试设置环境变量TORCH_CUDA_ARCH_LIST为当前 GPU的计算能力(如8.6对应RTX30系列),或者根据错误提示设置环境变量以避免编译所有架构。例如:`setTORCH_CUDA_ARCH_LIST=8.6`(在命令提示符中执行,或者通过系统环境变量设置)4.确保 ninja已安装(通常通过 pip安装PyTorch时会自动安装)。如果上述方法无效,可以尝试手动指定编译器路径或检查环境变量 PATH是否包含 VisualStudio的 cl.exe所在目录(通常在`VC\Tools\MSVC\版本号\bin\Hostx64\x64`下)。注意:在Anaconda环境中,有时需要激活环境并设置环境变量,例如:call"C:\Program Files(x86)\Microsoft VisualStudio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"然后再运行编译命令。但是,由于错误直接指向文件缺失,首先解决路径问题。根据错误信息,我们也可以看到路径被拆分了,可能是因为路径中的空格和括号导致构建系统无法正确识别。因此,最直接的建议是:将项目移动到不含空格和特殊字符的路径,例如:`E:\Projects\PersFormer_3DLane`。如果移动后仍然报错,请检查源文件是否确实存在于新路径的对应位置。如果问题仍然存在,可能需要检查setup.py文件中的路径配置是否正确。由于用户提供了两次相同的错误,我们假设用户已经尝试了两次,所以重点解决路径问题。回答将按照要求,先给出解决方案,然后提出相关问题。</think>根据错误日志分析,您在Windows系统上编译PyTorch自定义算子(MultiScaleDeformableAttention)时遇到两个关键问题: ### 主要错误原因 1. **编译器路径问题** `Error checking compiler version for cl: [WinError 2] 系统找不到指定的文件` → 缺少Visual Studio C++编译环境(MSVC) 2. **文件路径解析失败** `ninja: error: 'E:/2-三维点云课程/.../ms_deform_attn_cpu.cpp' ... missing` → 路径包含**中文目录名**和**特殊字符(括号)**导致ninja编译系统解析失败 ### 解决方案 #### 第一步:安装编译环境 1. 安装 **Visual Studio 2019/2022** 勾选工作负载: - `使用C++的桌面开发` - `Windows 10/11 SDK` - 确保安装 **MSVC v142** 编译器 2. 验证编译器(CMD执行): ```bash where cl # 应返回类似:C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.36.32532\bin\Hostx64\x64\cl.exe ``` #### 第二步:修正项目路径 1. **移除路径中的中文和特殊字符** 将项目移动到纯英文路径,例如: `E:\Projects\PersFormer_3DLane` (原路径`E:\2-三维点云课程\PersFormer_3DLane-main (1)\`含中文和括号) 2. **缩短路径层级** 避免过深目录嵌套(建议不超过3级) #### 第三步:设置环境变量 ```bash # 设置CUDA架构(根据你的GPU) set TORCH_CUDA_ARCH_LIST=8.6 # RTX 30系列设为8.6 # 激活VS编译环境 call "C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvars64.bat" ``` #### 第四步:重新编译 ```bash # 清除旧编译文件 python setup.py clean # 重新编译 python setup.py build_ext --inplace ``` ### 注意事项 - 确保`src/cpu/ms_deform_attn_cpu.cpp`文件实际存在 - 检查PyTorch与CUDA版本匹配性(`torch.__version__`和`nvcc -V`) - 中文Windows用户需确认系统区域设置未限制文件路径(控制面板 → 区域 → 管理 → 非Unicode程序语言 → 更改为"中文(简体)")
阅读全文

相关推荐

模型初始化成功 加载并转换预训练权重: checkpoints/M3FD.ckpt 找到 1 个需要转换的权重层 转换权重: first_stage_model.encoder.conv_in.weight 原始形状: torch.Size([128, 3, 3, 3]) 转换后形状: torch.Size([128, 1, 3, 3]) 权重加载完成: 成功加载 1830/1830 层 VAE输入层形状: torch.Size([128, 1, 3, 3]) 加载预训练权重: checkpoints/M3FD.ckpt 找到需要转换的层: ['first_stage_model.encoder.conv_in.weight'] 转换权重: first_stage_model.encoder.conv_in.weight 原始形状: torch.Size([128, 3, 3, 3]) 转换后形状: torch.Size([128, 1, 3, 3]) 权重加载完成: 缺失层 1, 不匹配层 0 缺失层: ['cond_stage_model.transformer.text_model.embeddings.position_ids'] 使用基础学习率: 1.00e-04 警告: 使用仅含权重的检查点,训练状态将重置: D:\work\AI\DiffV2IR\checkpoints\M3FD.ckpt 预处理检查点文件: D:\work\AI\DiffV2IR\checkpoints\M3FD.ckpt 已重置训练状态: epoch=0, global_step=0 警告: 检查点缺少 'cond_stage_model.transformer.text_model.embeddings.position_ids' 键 已添加 position_ids 到检查点 修复后的完整检查点已保存到: logs\experiment_20250703_181326\checkpoints\fixed_checkpoint.ckpt TensorBoard日志保存在: logs\experiment_20250703_181326\tensorboard 训练批次数: 8 最终训练器配置: default_root_dir: logs\experiment_20250703_181326 max_epochs: 200 gpus: 1 distributed_backend: None plugins: None precision: 16 accumulate_grad_batches: 1 callbacks: [, , <__main__.EnhancedImageLogger object at 0x000001F79D63F130>, <__main__.TQDMProgressBar object at 0x000001F79D63F040>, <__main__.PerformanceMonitor object at 0x000001F79D63F010>] logger: <__main__.TensorBoardLogger object at 0x000001F79BA61480> resume_from_checkpoint: logs\experiment_20250703_181326\checkpoints\fixed_checkpoint.ckpt fast_dev_run: False limit_val_batches: 1.0 num_sanity_val_steps: 0 log_every_n_steps: 10 check_val_every_n_epoch: 1 Using native 16bit precision. GPU available: True, used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs 开始训练... Restoring states from the checkpoint file at logs\experiment_20250703_181326\checkpoints\fixed_checkpoint.ckpt 训练出错: Error(s) in loading state_dict for CustomLatentDiffusion: size mismatch for first_stage_model.encoder.conv_in.weight: copying a param with shape torch.Size([128, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 1, 3, 3]).

import os import sys import argparse import datetime import logging import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from tqdm import tqdm from pathlib import Path import numpy as np from sklearn.metrics import accuracy_score, balanced_accuracy_score # 添加项目根目录到系统路径 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = BASE_DIR sys.path.append(ROOT_DIR) # 导入自定义模块 from data_utils import get_scanobjectnn_dataloader from model import PointEfficientNetForClassification # 使用分类模型 from utils import PointNetSetAbstraction # 用于模型 def parse_args(): parser = argparse.ArgumentParser('Point-EfficientNet Training for ScanObjectNN') parser.add_argument('--batch_size', type=int, default=32, help='Batch size during training') parser.add_argument('--epoch', type=int, default=300, help='Number of epochs to run') parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate') parser.add_argument('--gpu', type=str, default='0', help='Specify GPU devices') parser.add_argument('--optimizer', type=str, default='Adam', choices=['Adam', 'SGD'], help='Optimizer') parser.add_argument('--log_dir', type=str, default=None, help='Log directory path') parser.add_argument('--decay_rate', type=float, default=0.0001, help='Weight decay rate') parser.add_argument('--npoint', type=int, default=2048, help='Number of points per point cloud') parser.add_argument('--normal', action='store_true', default=False, help='Use normal vectors') parser.add_argument('--step_size', type=int, default=20, help='Learning rate decay step') parser.add_argument('--lr_decay', type=float, default=0.5, help='Learning rate decay rate') parser.add_argument('--num_workers', type=int, default=8, help='Number of data loading workers') parser.add_argument('--root', type=str, default='/Users/zhaoboyang/Model_Introduction/Classification/PENet_cls/data', help='ScanObjectNN dataset root directory') return parser.parse_args() def main(): args = parse_args() # 设置GPU设备 os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 创建日志目录 timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M')) if args.log_dir is None: experiment_dir = Path(f'./log/scanobjectnn/point_efficientnet_{timestr}') else: experiment_dir = Path(f'./log/scanobjectnn/{args.log_dir}') experiment_dir.mkdir(parents=True, exist_ok=True) checkpoints_dir = experiment_dir / 'checkpoints' checkpoints_dir.mkdir(exist_ok=True) log_dir = experiment_dir / 'logs' log_dir.mkdir(exist_ok=True) # 配置日志 logger = logging.getLogger("PointEfficientNet") logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') file_handler = logging.FileHandler(str(log_dir / 'train.log')) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) def log_string(message): logger.info(message) print(message) log_string(f'Using device: {device}') log_string('PARAMETERS:') log_string(str(args)) # 创建数据加载器 log_string('Loading ScanObjectNN dataset...') train_loader = get_scanobjectnn_dataloader( root=args.root, batch_size=args.batch_size, npoints=args.npoint, split='train', normal_channel=args.normal, num_workers=args.num_workers, augment=True ) test_loader = get_scanobjectnn_dataloader( root=args.root, batch_size=args.batch_size, npoints=args.npoint, split='test', normal_channel=args.normal, num_workers=args.num_workers, augment=False, shuffle=False ) log_string(f"Number of training samples: {len(train_loader.dataset)}") log_string(f"Number of test samples: {len(test_loader.dataset)}") # 创建模型 num_classes = 15 # ScanObjectNN有15个类别 model = PointEfficientNetForClassification( num_classes=num_classes, normal_channel=args.normal ).to(device) # 初始化权重 model.init_weights() # 损失函数 criterion = nn.CrossEntropyLoss().to(device) # 优化器 if args.optimizer == 'Adam': optimizer = optim.Adam( model.parameters(), lr=args.learning_rate, weight_decay=args.decay_rate ) else: # SGD optimizer = optim.SGD( model.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=args.decay_rate ) # 学习率调度器 scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=args.step_size, gamma=args.lr_decay ) # 训练状态变量 best_test_acc = 0.0 best_test_acc_avg = 0.0 start_epoch = 0 # 尝试加载检查点 checkpoint_path = checkpoints_dir / 'best_model.pth' if checkpoint_path.exists(): log_string('Loading checkpoint...') checkpoint = torch.load(str(checkpoint_path)) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) scheduler.load_state_dict(checkpoint['scheduler_state_dict']) start_epoch = checkpoint['epoch'] + 1 best_test_acc = checkpoint['best_test_acc'] best_test_acc_avg = checkpoint['best_test_acc_avg'] log_string(f'Resuming training from epoch {start_epoch}') # 训练循环 for epoch in range(start_epoch, args.epoch): log_string(f'Epoch {epoch + 1}/{args.epoch}') model.train() train_loss = 0.0 correct = 0 total = 0 # 训练一个epoch for i, (points, labels) in enumerate(tqdm(train_loader, desc='Training')): points = points.float().to(device) labels = labels.long().to(device) # 前向传播 outputs = model(points) # 计算损失 loss = criterion(outputs, labels) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() # 统计指标 train_loss += loss.item() * points.size(0) # 计算准确率 _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += predicted.eq(labels).sum().item() # 更新学习率 scheduler.step() # 计算训练指标 train_loss /= len(train_loader.dataset) train_acc = 100. * correct / total log_string(f'Train Loss: {train_loss:.4f}, Accuracy: {train_acc:.2f}%') log_string(f'Current LR: {scheduler.get_last_lr()[0]:.6f}') # 评估模型 model.eval() test_loss = 0.0 test_correct = 0 test_total = 0 all_preds = [] all_labels = [] with torch.no_grad(): for points, labels in tqdm(test_loader, desc='Testing'): points = points.float().to(device) labels = labels.long().to(device) # 前向传播 outputs = model(points) # 计算损失 loss = criterion(outputs, labels) test_loss += loss.item() * points.size(0) # 计算准确率 _, predicted = torch.max(outputs.data, 1) test_total += labels.size(0) test_correct += predicted.eq(labels).sum().item() # 收集预测和真实标签 all_preds.append(predicted.cpu().numpy()) all_labels.append(labels.cpu().numpy()) # 计算测试指标 test_loss /= len(test_loader.dataset) test_acc = 100. * test_correct / test_total # 计算平均准确率 all_preds = np.concatenate(all_preds) all_labels = np.concatenate(all_labels) test_acc_avg = 100. * balanced_accuracy_score(all_labels, all_preds) log_string('Test Results:') log_string(f'Loss: {test_loss:.4f}, Accuracy: {test_acc:.2f}%, Avg Accuracy: {test_acc_avg:.2f}%') # 保存最佳模型 if test_acc > best_test_acc: best_test_acc = test_acc best_test_acc_avg = test_acc_avg is_best = True else: is_best = False if is_best: state = { 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'train_loss': train_loss, 'train_acc': train_acc, 'test_loss': test_loss, 'test_acc': test_acc, 'test_acc_avg': test_acc_avg, 'best_test_acc': best_test_acc, 'best_test_acc_avg': best_test_acc_avg } torch.save(state, str(checkpoint_path)) log_string(f'Saved best model at epoch {epoch + 1} with Test Acc: {best_test_acc:.2f}%') # 定期保存检查点 if (epoch + 1) % 10 == 0: checkpoint = checkpoints_dir / f'model_epoch_{epoch + 1}.pth' torch.save(state, str(checkpoint)) log_string(f'Saved checkpoint at epoch {epoch + 1}') # 训练结束 log_string('Training completed!') log_string(f'Best Test Accuracy: {best_test_acc:.2f}%') log_string(f'Best Test Avg Accuracy: {best_test_acc_avg:.2f}%') if __name__ == '__main__': main() # *_*coding:utf-8 *_* import os import json import warnings import numpy as np import torch import h5py from torch.utils.data import Dataset from torchvision import transforms from utils import ( random_scale_point_cloud, shift_point_cloud, rotate_point_cloud, jitter_point_cloud, pc_normalize # 导入归一化函数 ) warnings.filterwarnings('ignore') os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" # 定义可序列化的转换函数 def jitter_transform(x): return jitter_point_cloud(x) def rotate_transform(x): return rotate_point_cloud(x) def scale_transform(x): return random_scale_point_cloud(x) def shift_transform(x): return shift_point_cloud(x) def normalize_transform(x): return pc_normalize(x) # 加载ScanObjectNN数据 def load_scanobjectnn_data(split, root_dir): # 映射分割名称到文件名 split_mapping = { 'train': 'training', 'val': 'training', # ScanObjectNN没有验证集,使用部分训练数据 'test': 'test' } if split not in split_mapping: raise ValueError(f"无效的分割类型: {split}. 可选: {list(split_mapping.keys())}") # 构建绝对路径 h5_name = os.path.join( root_dir, 'h5_files', 'main_split', f'{split_mapping[split]}_objectdataset_augmentedrot_scale75.h5' ) if not os.path.exists(h5_name): raise FileNotFoundError(f"ScanObjectNN数据文件不存在: {h5_name}") with h5py.File(h5_name, 'r') as f: data = f['data'][:].astype('float32') labels = f['label'][:].astype('int64') # 如果是验证集,取前10%作为验证 if split == 'val': num_val = int(len(data) * 0.1) data = data[:num_val] labels = labels[:num_val] return data, labels class ScanObjectNNDataset(Dataset): def __init__(self, root, npoints=2048, split='train', normal_channel=False, augment=True): """ 参数: root: ScanObjectNN数据集根目录 (包含h5_files目录) npoints: 每个点云采样的点数 (默认2048) split: 数据集分割 (train/val/test) (默认train) normal_channel: 是否使用法线信息 (默认False) augment: 是否使用数据增强 (默认True) """ self.root = root self.npoints = npoints self.normal_channel = normal_channel self.split = split self.augment = augment and (split == 'train') # 仅在训练时增强 # 加载数据 self.data, self.labels = load_scanobjectnn_data(split, root) # 类别数量 self.num_classes = 15 # 设置数据增强 if self.augment: self.augment_transforms = transforms.Compose([ transforms.Lambda(scale_transform), transforms.Lambda(shift_transform), transforms.Lambda(rotate_transform), transforms.Lambda(jitter_transform), transforms.Lambda(normalize_transform) ]) else: self.augment_transforms = transforms.Compose([ transforms.Lambda(normalize_transform) ]) print(f"成功初始化ScanObjectNN数据集: {split}分割, 样本数: {len(self.data)}") print(f"数据集根目录: {self.root}") print(f"使用法线信息: {'是' if self.normal_channel else '否'}") print(f"数据增强: {'启用' if self.augment else '禁用'}") def __len__(self): return len(self.data) def __getitem__(self, index): # 获取点云和标签 point_set = self.data[index].copy() label = self.labels[index] # 选择通道 if not self.normal_channel: point_set = point_set[:, :3] else: point_set = point_set[:, :6] # 采样点 if point_set.shape[0] < self.npoints: # 点不够时重复采样 indices = np.random.choice(point_set.shape[0], self.npoints, replace=True) else: indices = np.random.choice(point_set.shape[0], self.npoints, replace=False) point_set = point_set[indices] # 应用数据增强 point_set = self.augment_transforms(point_set) # 转换为PyTorch需要的格式 (C, N) point_set = point_set.transpose() return point_set, label # 定义可序列化的collate函数 def custom_collate_fn(batch): points, labels = zip(*batch) # 直接堆叠所有元素 points = torch.tensor(np.stack(points)).float() labels = torch.tensor(np.stack(labels)).long() return points, labels # 数据加载器函数 def get_scanobjectnn_dataloader(root, batch_size=32, npoints=2048, split='train', normal_channel=False, num_workers=4, augment=True, shuffle=None): """ 创建ScanObjectNN的数据加载器 参数: root: ScanObjectNN数据集根目录 (包含h5_files目录) batch_size: 批大小 (默认32) npoints: 采样点数 (默认2048) split: 数据集分割 (train/val/test) (默认train) normal_channel: 是否包含法线信息 (默认False) num_workers: 数据加载线程数 (默认4) augment: 是否数据增强 (默认True) shuffle: 是否打乱数据 (默认None, 自动根据split设置) """ if shuffle is None: shuffle = (split == 'train') # 训练集默认打乱 dataset = ScanObjectNNDataset( root=root, npoints=npoints, split=split, normal_channel=normal_channel, augment=augment ) dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, collate_fn=custom_collate_fn, # 使用可序列化的函数 pin_memory=True, drop_last=(split == 'train') # 训练时丢弃最后不完整的批次 ) return dataloader # 示例用法 if __name__ == "__main__": # 设置ScanObjectNN数据集根目录 (包含h5_files目录) SCANOBJECTNN_ROOT = '/Users/zhaoboyang/Model_Introduction/Classification/PENet_cls/data' # 创建训练数据加载器 train_loader = get_scanobjectnn_dataloader( root=SCANOBJECTNN_ROOT, batch_size=16, npoints=1024, split='train', normal_channel=False ) # 创建测试数据加载器 test_loader = get_scanobjectnn_dataloader( root=SCANOBJECTNN_ROOT, batch_size=16, npoints=1024, split='test', normal_channel=False, augment=False, shuffle=False ) # 测试训练加载器 print("\n训练集示例:") for i, (points, labels) in enumerate(train_loader): print(f"批次 {i + 1}:") print(f" 点云形状: {points.shape}") # (B, C, N) print(f" 标签形状: {labels.shape}") # (B,) print(f" 示例标签: {labels[:4].tolist()}") if i == 0: # 仅显示第一批次 break # 测试测试加载器 print("\n测试集示例:") for i, (points, labels) in enumerate(test_loader): print(f"批次 {i + 1}:") print(f" 点云形状: {points.shape}") print(f" 标签形状: {labels.shape}") print(f" 示例标签: {labels[:4].tolist()}") if i == 0: # 仅显示第一批次 break import torch import torch.nn as nn import torch.nn.functional as F import numpy as np def pc_normalize(pc): """归一化点云数据""" centroid = np.mean(pc, axis=0) pc = pc - centroid m = np.max(np.sqrt(np.sum(pc ** 2, axis=1))) pc = pc / m return pc def square_distance(src, dst): """ 计算点对之间的欧氏距离平方 参数: src: 源点, [B, N, C] dst: 目标点, [B, M, C] 返回: dist: 每点的平方距离, [B, N, M] """ B, N, _ = src.shape _, M, _ = dst.shape dist = -2 * torch.matmul(src, dst.permute(0, 2, 1)) dist += torch.sum(src ** 2, -1).view(B, N, 1) dist += torch.sum(dst ** 2, -1).view(B, 1, M) return dist def index_points(points, idx): """ 索引点云数据 参数: points: 输入点云, [B, N, C] idx: 采样索引, [B, S] 返回: new_points: 索引后的点, [B, S, C] """ device = points.device B = points.shape[0] view_shape = list(idx.shape) view_shape[1:] = [1] * (len(view_shape) - 1) repeat_shape = list(idx.shape) repeat_shape[0] = 1 batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape) new_points = points[batch_indices, idx, :] return new_points def farthest_point_sample(xyz, npoint): """ 最远点采样(FPS) 参数: xyz: 点云数据, [B, N, 3] npoint: 采样点数 返回: centroids: 采样点索引, [B, npoint] """ device = xyz.device B, N, C = xyz.shape centroids = torch.zeros(B, npoint, dtype=torch.long).to(device) distance = torch.ones(B, N).to(device) * 1e10 farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device) batch_indices = torch.arange(B, dtype=torch.long).to(device) for i in range(npoint): centroids[:, i] = farthest centroid = xyz[batch_indices, farthest, :].view(B, 1, 3) dist = torch.sum((xyz - centroid) ** 2, -1) mask = dist < distance distance[mask] = dist[mask] farthest = torch.max(distance, -1)[1] return centroids def query_ball_point(radius, nsample, xyz, new_xyz): """ 球查询 参数: radius: 搜索半径 nsample: 最大采样数 xyz: 所有点, [B, N, 3] new_xyz: 查询点, [B, S, 3] 返回: group_idx: 分组点索引, [B, S, nsample] """ device = xyz.device B, N, C = xyz.shape _, S, _ = new_xyz.shape group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1]) sqrdists = square_distance(new_xyz, xyz) group_idx[sqrdists > radius ** 2] = N group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample] group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample]) mask = group_idx == N group_idx[mask] = group_first[mask] return group_idx def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False): """ 采样和分组 参数: npoint: 采样点数 radius: 搜索半径 nsample: 每组点数 xyz: 点云位置, [B, N, 3] points: 点云特征, [B, N, D] 返回: new_xyz: 采样点位置, [B, npoint, nsample, 3] new_points: 采样点特征, [B, npoint, nsample, 3+D] """ B, N, C = xyz.shape S = npoint fps_idx = farthest_point_sample(xyz, npoint) new_xyz = index_points(xyz, fps_idx) idx = query_ball_point(radius, nsample, xyz, new_xyz) grouped_xyz = index_points(xyz, idx) grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C) if points is not None: grouped_points = index_points(points, idx) new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) else: new_points = grouped_xyz_norm if returnfps: return new_xyz, new_points, grouped_xyz, fps_idx else: return new_xyz, new_points def sample_and_group_all(xyz, points): """ 全局采样和分组 参数: xyz: 点云位置, [B, N, 3] points: 点云特征, [B, N, D] 返回: new_xyz: 采样点位置, [B, 1, 3] new_points: 采样点特征, [B, 1, N, 3+D] """ device = xyz.device B, N, C = xyz.shape new_xyz = torch.zeros(B, 1, C).to(device) grouped_xyz = xyz.view(B, 1, N, C) if points is not None: new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1) else: new_points = grouped_xyz return new_xyz, new_points # 在utils.py中修改PointNetSetAbstraction类 class PointNetSetAbstraction(nn.Module): def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all): super(PointNetSetAbstraction, self).__init__() self.npoint = npoint self.radius = radius self.nsample = nsample # 关键修改:添加3个坐标差值通道 actual_in_channel = in_channel + 3 # 3个坐标差值 self.mlp_convs = nn.ModuleList() self.mlp_bns = nn.ModuleList() # 使用实际输入通道数 last_channel = actual_in_channel for out_channel in mlp: self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1)) self.mlp_bns.append(nn.BatchNorm2d(out_channel)) last_channel = out_channel self.group_all = group_all def forward(self, xyz, points): xyz = xyz.permute(0, 2, 1) if points is not None: points = points.permute(0, 2, 1) if self.group_all: new_xyz, new_points = sample_and_group_all(xyz, points) else: new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points) new_points = new_points.permute(0, 3, 2, 1) for i, conv in enumerate(self.mlp_convs): bn = self.mlp_bns[i] new_points = F.relu(bn(conv(new_points))) new_points = torch.max(new_points, 2)[0] new_xyz = new_xyz.permute(0, 2, 1) return new_xyz, new_points # 数据增强函数 def random_scale_point_cloud(point_set, scale_low=0.8, scale_high=1.2): """随机缩放点云 (默认缩放范围0.8-1.2)""" scale = np.random.uniform(scale_low, scale_high) point_set[:, :3] *= scale return point_set def shift_point_cloud(point_set, shift_range=0.1): """随机平移点云 (默认平移范围±0.1)""" shifts = np.random.uniform(-shift_range, shift_range, 3) point_set[:, :3] += shifts return point_set def rotate_point_cloud(point_set, normal_start_idx=3): """ 随机旋转点云 (绕z轴旋转),支持任意向量信息 :param point_set: 点云数组 [N, C] :param normal_start_idx: 法线/向量起始维度索引 """ angle = np.random.uniform(0, 2 * np.pi) cosval = np.cos(angle) sinval = np.sin(angle) rotation_matrix = np.array([ [cosval, sinval, 0], [-sinval, cosval, 0], [0, 0, 1] ]) # 旋转所有三维向量(坐标和法线) for i in range(0, point_set.shape[1], 3): if i + 3 > point_set.shape[1]: break point_set[:, i:i + 3] = np.dot(point_set[:, i:i + 3], rotation_matrix) return point_set def jitter_point_cloud(point_set, sigma=0.01, clip=0.05): """添加噪声扰动 (默认σ=0.01, 裁剪±0.05)""" noise = np.clip(sigma * np.random.randn(*point_set[:, :3].shape), -clip, clip) point_set[:, :3] += noise return point_set # 包装函数用于数据增强 def random_scale_wrapper(x): return random_scale_point_cloud(x, scale_low=0.85, scale_high=1.15) def shift_wrapper(x): return shift_point_cloud(x, shift_range=0.1) def rotate_wrapper(x): return rotate_point_cloud(x) def jitter_wrapper(x): return jitter_point_cloud(x, sigma=0.005, clip=0.02) def normalize_wrapper(x): return pc_normalize(x) 上述的三个代码分别是之前提到的分类模型的训练代码,数据加载代码以及工具函数代码(utils),看一下是否是这些代码出了错误才导致训练指标及其低的不正常的

default.yaml,data: data_path: "data/raw/SalinasA_corrected.mat" label_path: "data/raw/SalinasA_gt.mat" normalize: true test_size: 0.2 random_state: 42 patch_size: 1 n_bands: 204 # ← 新增此行 n_classes: 6 training: batch_size: 16 learning_rate: 0.001 weight_decay: 0.0001 epochs: 100 save_dir: "checkpoints" model: d_model: 128 # 特征维度 nhead: 8 # 注意力头数 nhid: 256 # 前馈网络隐藏层维度 nlayers: 4 # Transformer编码器层数 dropout: 0.2 # Dropout率 activation: 'gelu' # 激活函数 max_len: 100 # 位置编码最大长度 pos_encoding: 'fixed' # 位置编码类型 ('fixed' 或 'learned') # 预测配置 prediction: batch_size: 64 # 预测时的批次大小 rgb_bands: [40, 20, 10] # 用于可视化的RGB波段索引 # 评估配置 evaluation: batch_size: 64 # 评估时的批次大小 metrics: ['OA', 'AA', 'Kappa'],transformer.py,import torch import torch.nn as nn import torch.nn.functional as F import math class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe) def forward(self, x): """ 应用位置编码 x shape: [batch_size, seq_len, features] """ x = x + self.pe[:x.size(1), :].unsqueeze(0) return self.dropout(x) class TransformerModel(nn.Module): def __init__(self, ntoken, ninp, nhead, nhid, nlayers, nclasses, dropout=0.5): super(TransformerModel, self).__init__() self.model_type = 'Transformer' self.ninp = ninp # 输入投影层 self.encoder = nn.Linear(ntoken, ninp) self.pos_encoder = PositionalEncoding(ninp, dropout) # 使用batch_first=True确保输入格式为[batch_size, seq_len, features] encoder_layers = nn.TransformerEncoderLayer( ninp, nhead, nhid, dropout, batch_first=True ) self.transformer_encoder = nn.TransformerEncoder(encoder_layers, nlayers) self.decoder = nn.Linear(ninp, nclasses) self.init_weights() def init_weights(self): """初始化模型权重""" initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) if self.decoder.bias is not None: self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, src): # 临时注释断言,打印详细信息 print(f"[Transformer] 输入形状: {src.shape}, 期望特征数: {self.encoder.in_features}") batch_size, seq_len, features = src.size() # 确保输入特征数与模型定义一致 assert features == self.encoder.in_features, \ f"特征数不匹配: 输入{features} vs 模型期望{self.encoder.in_features}" # 重塑为二维张量 [batch_size*seq_len, features] src_2d = src.view(batch_size * seq_len, features) print(f"[Transformer] 重塑后形状: {src_2d.shape}") # 应用投影层并缩放 src_proj = self.encoder(src_2d) * math.sqrt(self.ninp) print(f"[Transformer] 投影后形状: {src_proj.shape}") # 恢复三维形状 [batch_size, seq_len, ninp] src_3d = src_proj.view(batch_size, seq_len, self.ninp) # 应用位置编码 src_pos = self.pos_encoder(src_3d) # 通过Transformer编码器 output = self.transformer_encoder(src_pos) print(f"[Transformer] 编码器输出形状: {output.shape}") # 处理输出维度 if seq_len == 1: # 单像素输入,直接挤压seq_len维度 output = output.squeeze(1) # [batch_size, ninp] else: # 多像素patch,取序列平均作为特征表示 output = torch.mean(output, dim=1) # [batch_size, ninp] # 解码为类别预测 output = self.decoder(output) print(f"[Transformer] 最终输出形状: {output.shape}") return F.log_softmax(output, dim=-1) def create_transformer_model(config): """根据配置创建Transformer模型""" n_bands = config['data']['n_bands'] n_classes = config['data']['n_classes'] d_model = config['model']['d_model'] nhead = config['model']['nhead'] nhid = config['model']['nhid'] nlayers = config['model']['nlayers'] dropout = config['model']['dropout'] model = TransformerModel( n_bands, d_model, nhead, nhid, nlayers, n_classes, dropout ) return model,predict.py,import torch import numpy as np from model.transformer import create_transformer_model from tqdm import tqdm import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler import os import scipy.io as sio from typing import Tuple, Optional, Union def generate_prediction_map( model_path: str, config: dict, hsi_image: Optional[np.ndarray] = None ) -> Tuple[np.ndarray, plt.Figure]: """生成高光谱图像的预测图(最终修正版)""" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"使用设备: {device}") # 加载模型 try: model = create_transformer_model(config) state_dict = torch.load(model_path, map_location=device) model.load_state_dict(state_dict) model = model.to(device) model.eval() print(f"成功加载模型: {model_path}") except Exception as e: raise RuntimeError(f"模型加载失败: {e}") from e # 加载图像数据 if hsi_image is None: try: data_path = config['data']['data_path'] if not os.path.exists(data_path): raise FileNotFoundError(f"数据文件不存在: {data_path}") data = sio.loadmat(data_path) data_key = next(key for key in data.keys() if not key.startswith('__')) hsi_image = data[data_key].astype(np.float32) # 验证数据形状和波段数 print(f"加载的数据形状: {hsi_image.shape}") n_bands = config['data']['n_bands'] assert hsi_image.shape[2] == n_bands, \ f"数据波段数错误: {hsi_image.shape[2]} vs 配置{n_bands}" print(f"成功加载数据: {data_path}, 波段数: {n_bands}") except Exception as e: raise RuntimeError(f"数据加载失败: {e}") from e # 数据预处理 try: if config['data'].get('normalize', False): scaler = StandardScaler() h, w, c = hsi_image.shape data_2d = hsi_image.reshape(h * w, c) data_2d = scaler.fit_transform(data_2d) hsi_image = data_2d.reshape(h, w, c).astype(np.float32) print(f"数据归一化完成,形状: {hsi_image.shape}") except Exception as e: raise RuntimeError(f"数据预处理失败: {e}") from e patch_size = config['data'].get('patch_size', 1) pad_size = patch_size // 2 n_classes = config['data']['n_classes'] n_bands = config['data']['n_bands'] # 图像零填充 h, w, c = hsi_image.shape padded_image = np.zeros((h + 2 * pad_size, w + 2 * pad_size, c), dtype=np.float32) padded_image[pad_size:-pad_size, pad_size:-pad_size, :] = hsi_image # 初始化预测图 prediction_map = np.zeros((h, w), dtype=np.int64) batch_size = config['prediction'].get('batch_size', 64) rgb_bands = config['prediction'].get('rgb_bands', [40, 20, 10]) # 逐行批量预测(最终维度修正) with torch.no_grad(): for i in tqdm(range(h), desc="生成预测图"): for j in range(0, w, batch_size): end_j = min(j + batch_size, w) batch_size_actual = end_j - j patches = np.zeros((batch_size_actual, c, patch_size, patch_size), dtype=np.float32) # 提取patch并转换为CHW格式 [C, H, W] for k in range(batch_size_actual): patch = padded_image[i:i + patch_size, j + k:j + k + patch_size, :] patches[k] = np.transpose(patch, (2, 0, 1)) # [C, H, W] # 转换为tensor并调整形状(关键修正) patches_tensor = torch.from_numpy(patches).to(device) # [B, C, H, W] b, c, h_p, w_p = patches_tensor.shape assert c == n_bands, f"特征数错误: {c} vs {n_bands}" # 调整为 [B, seq_len, C] 并强制转换维度顺序 seq_len = h_p * w_p inputs = patches_tensor.view(b, c, seq_len) # [B, C, seq_len] # 核心修正:交换C和seq_len维度 inputs = inputs.transpose(1, 2) # [B, seq_len, C] print(f"输入模型形状: {inputs.shape}") # 模型预测 outputs = model(inputs) print(f"模型输出形状: {outputs.shape}") # 获取预测结果 _, predicted = torch.max(outputs, 1) prediction_map[i, j:end_j] = predicted.cpu().numpy() # 可视化结果(略,与之前版本一致) fig = plt.figure(figsize=(12, 5)) try: # 显示RGB合成图像 ax1 = fig.add_subplot(1, 2, 1) if len(rgb_bands) == 3 and rgb_bands[0] < c and rgb_bands[1] < c and rgb_bands[2] < c: rgb_image = hsi_image[:, :, rgb_bands] rgb_image = rgb_image / np.max(rgb_image) if np.max(rgb_image) > 0 else rgb_image ax1.imshow(rgb_image) ax1.set_title('RGB合成图像') else: ax1.imshow(np.zeros((h, w, 3))) ax1.set_title('RGB合成图像 (波段配置错误)') ax1.axis('off') # 显示预测结果 ax2 = fig.add_subplot(1, 2, 2) cmap = plt.cm.get_cmap('viridis', n_classes) im = ax2.imshow(prediction_map, cmap=cmap) ax2.set_title('预测结果') ax2.axis('off') # 添加颜色条 cbar = fig.colorbar(im, ax=[ax1, ax2], ticks=range(n_classes)) cbar.ax.set_yticklabels([str(i + 1) for i in range(n_classes)]) plt.tight_layout() except Exception as e: print(f"可视化生成失败: {e}") # 确保此行缩进4个空格 return prediction_map, fig if __name__ == "__main__": import yaml with open('config/default.yaml', 'r') as f: config = yaml.safe_load(f) model_path = 'checkpoints/best_model.pth' pred_map, fig = generate_prediction_map(model_path, config) plt.savefig('prediction_visualization.png', dpi=300, bbox_inches='tight') plt.close(fig) print(f"预测完成,预测图形状: {pred_map.shape}"),出现这个错误AssertionError: 特征数不匹配: 输入64 vs 模型期望204,该怎么改

import os import time import itertools import math import numpy as np import scipy as sp import scipy.sparse as sps from scipy.sparse.linalg import splu import torch import torch.nn as nn import pyamg from scipy.sparse import csr_matrix, isspmatrix_csr, diags from pyamg.multilevel import multilevel_solver from warnings import warn from scipy.sparse import csr_matrix, isspmatrix_csr, SparseEfficiencyWarning from pyamg.relaxation.smoothing import change_smoothers device = 'cpu' # ========== 辅助函数 ========== def prolongation_fn(grid_size): res_stencil = np.zeros((3,3), dtype=np.double) k=16 res_stencil[0,0] = 1/k res_stencil[0,1] = 2/k res_stencil[0,2] = 1/k res_stencil[1,0] = 2/k res_stencil[1,1] = 4/k res_stencil[1,2] = 2/k res_stencil[2,0] = 1/k res_stencil[2,1] = 2/k res_stencil[2,2] = 1/k P_stencils = np.zeros((grid_size//2, grid_size//2, 3, 3)) for i in range(grid_size//2): for j in range(grid_size//2): P_stencils[i,j,:,:] = res_stencil return compute_p2(P_stencils, grid_size).astype(np.double) def compute_p2(P_stencil, grid_size): indexes = get_p_matrix_indices_one(grid_size) P = csr_matrix((P_stencil.reshape(-1), (indexes[:, 1], indexes[:, 0])), shape=((grid_size//2) ** 2, (grid_size) ** 2)) return P def get_p_matrix_indices_one(grid_size): K = map_2_to_1(grid_size=grid_size) indices = [] for ic in range(grid_size // 2): i = 2 * ic + 1 for jc in range(grid_size // 2): j = 2 * jc + 1 J = int(grid_size // 2 * jc + ic) for k in range(3): for m in range(3): I = int(K[i, j, k, m]) indices.append([I, J]) return np.array(indices) def map_2_to_1(grid_size=8): k = np.zeros((grid_size, grid_size, 3, 3)) M = np.reshape(np.arange(grid_size ** 2), (grid_size, grid_size)).T M = np.concatenate([M, M], axis=0) M = np.concatenate([M, M], axis=1) for i in range(3): I = (i - 1) % grid_size for j in range(3): J = (j - 1) % grid_size k[:, :, i, j] = M[I:I + grid_size, J:J + grid_size] return k def diffusion_stencil_2d(epsilon=1.0, theta=0.0, type='FD'): eps = float(epsilon) theta = float(theta) C = np.cos(theta) S = np.sin(theta) CS = C*S CC = C**2 SS = S**2 if type == 'FE': a = (-1*eps - 1)*CC + (-1*eps - 1)*SS + (3*eps - 3)*CS b = (2*eps - 4)*CC + (-4*eps + 2)*SS c = (-1*eps - 1)*CC + (-1*eps - 1)*SS + (-3*eps + 3)*CS d = (-4*eps + 2)*CC + (2*eps - 4)*SS e = (8*eps + 8)*CC + (8*eps + 8)*SS stencil = np.array([[a, b, c],[d, e, d],[c, b, a]]) / 6.0 elif type == 'FD': a = -0.5*(eps - 1)*CS b = -(eps*SS + CC) c = -a d = -(eps*CC + SS) e = 2.0*(eps + 1) stencil = np.array([[a, d, c],[b, e, b],[c, d, a]]) return stencil def coo_to_tensor(coo): values = coo.data.astype(np.float64) indices = np.vstack((coo.row, coo.col)) i = torch.LongTensor(indices) v = torch.DoubleTensor(values) shape = coo.shape return torch.sparse_coo_tensor(i, v, torch.Size(shape)).to(device) # ========== 光滑算子 ========== def neural_smoother(net, size, mixed=0): # 返回PyTorch张量而不是SciPy矩阵 if mixed == 1: I = torch.eye(size*size, dtype=torch.double, device=device) x0 = I for conv_layer in net.convLayers1: kernel = conv_layer.weight.detach().view(3, 3) M = toeplitz_conv(kernel, size) x0 = torch.mm(M, x0) return x0 else: I = torch.eye(size*size, dtype=torch.double, device=device) x0 = I for conv_layer in net.convLayers1: kernel = conv_layer.weight.detach().view(3, 3) M = toeplitz_conv(kernel, size) x0 = torch.mm(M, x0) kernel2 = net.convLayers2[0].weight.detach().view(3, 3) M2 = toeplitz_conv(kernel2, size) y = x0 + (2/3) * M2 return y def toeplitz_conv(kernel, size): # 将3x3卷积核转换为Toeplitz矩阵 full_size = size * size M = torch.zeros(full_size, full_size, dtype=torch.double, device=device) for i in range(size): for j in range(size): idx = i * size + j for di in [-1, 0, 1]: for dj in [-1, 0, 1]: ni, nj = i + di, j + dj if 0 <= ni < size and 0 <= nj < size: nidx = ni * size + nj k_val = kernel[di+1, dj+1] M[idx, nidx] = k_val return M # ========== Level 创建 ========== def create_levels(eps, theta, n): mxl = 5 # max levels levels = [] # 创建最细层 s = diffusion_stencil_2d(eps, theta * np.pi / 180, 'FD') * 2 A = pyamg.gallery.stencil_grid(s, (n, n)).tocsr() # 创建第一层 - 使用PyAMG的level类而不是字典 level0 = multilevel_solver.level() level0.A = A level0.N = n level0.l = A.shape[0] levels.append(level0) current_n = n for i in range(1, mxl): # 因为已经有一层,所以从1开始 # 获取当前最细层(最后一层) fine_level = levels[-1] current_n = fine_level.N # 创建限制算子 R = prolongation_fn(current_n) # 插值算子是限制算子的转置 P = R.T * 4 # 存储到当前层(细层) fine_level.R = R fine_level.P = P # 为下一层准备:计算粗网格矩阵 A_coarse = R @ fine_level.A @ P # 创建粗网格层 coarse_level = multilevel_solver.level() coarse_level.A = A_coarse coarse_level.N = current_n // 2 # 网格大小减半 coarse_level.l = A_coarse.shape[0] levels.append(coarse_level) # 检查是否达到最小网格 if coarse_level.N < 8: break return levels # ========== Problem Class ========== class Problem: def __init__(self, eps, theta, grid_size, k=20, initial_ground_truth=None, initial_u=None, levels=None, net_trained=None, mxl=0): self.eps = eps self.theta = theta self.grid_size = grid_size if levels is None: levels = create_levels(eps, theta, grid_size) self.levels = levels N = levels[0].N l = levels[0].l # 初始化真实解 if initial_ground_truth is None: self.ground_truth = torch.rand(l, 1, dtype=torch.double, device=device, requires_grad=False) else: self.ground_truth = initial_ground_truth.detach().requires_grad_(False) # 初始解 if initial_u is None: self.initial_u = torch.rand(l, 1, dtype=torch.double, device=device, requires_grad=False) else: self.initial_u = initial_u.detach().requires_grad_(False) self.k = k self.N = N self.levels = levels self.mxl = mxl self.net_trained = net_trained or [] # 冻结预训练网络的参数 for net in self.net_trained: for param in net.parameters(): param.requires_grad = False # 使用SciPy稀疏矩阵计算右端项 A_sparse = self.levels[0].A gt_numpy = self.ground_truth.detach().cpu().numpy().flatten() f_numpy = A_sparse @ gt_numpy self.f = torch.tensor(f_numpy, dtype=torch.double, device=device).view(-1, 1).requires_grad_(False) def compute_solution(self, net): with torch.no_grad(): # 禁用梯度计算 A_sparse = self.levels[0].A # SciPy稀疏矩阵 b = self.f.detach().cpu().numpy().flatten() # 创建多重网格求解器 solver_a_CNN = multigrid_solver(A_sparse, self.grid_size, {'smoother': 'a-CNN', 'eps': self.eps, 'theta': self.theta}, net, self.net_trained, self.mxl) u_solution = solver_a_CNN.solve(b, maxiter=10, tol=1e-6) return torch.tensor(u_solution, dtype=torch.double, device=device).view(-1, 1) # ========== 求解器 ========== def multigrid_solver(A, size, args, net, net_trained, mxl): solver = geometric_solver(A, prolongation_fn, max_levels=5, coarse_solver='splu') if net_trained!=0: nets = [net]+net_trained else: nets = [net] if args['smoother'] == 'a-CNN': # mxl最大是5 i in range(4) 0 1 2 3 for i in range(mxl-1): # 创建当前层的光滑算子 M = neural_smoother(nets[i], size// (2 ** i )) # 定义光滑函数 - 修改后版本 def relax(A, x, b, M_new=M): # 计算残差 (使用NumPy的稀疏矩阵操作) r = b - A.dot(x) # 转换为PyTorch张量进行矩阵乘法 r_tensor = torch.tensor(r, dtype=torch.double, device='cpu').view(-1, 1) correction = M_new @ r_tensor # 转回NumPy并更新解 x += correction.view(-1).cpu().numpy() # 设置光滑器 solver.levels[i].presmoother = relax solver.levels[i].postsmoother = relax return solver def geometric_solver(A, prolongation_function, presmoother=('gauss_seidel', {'sweep': 'forward'}), postsmoother=('gauss_seidel', {'sweep': 'forward'}), max_levels=5, max_coarse=10, coarse_solver='splu', **kwargs): levels = [multilevel_solver.level()] # convert A to csr if not isspmatrix_csr(A): try: A = csr_matrix(A) warn("Implicit conversion of A to CSR", SparseEfficiencyWarning) except BaseException: raise TypeError('Argument A must have type csr_matrix, or be convertible to csr_matrix') # preprocess A A = A.asfptype() if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix') levels[-1].A = A while len(levels) < max_levels and levels[-1].A.shape[0] > max_coarse: extend_hierarchy(levels, prolongation_function) # 使用MultilevelSolver代替弃用的multilevel_solver ml = pyamg.multilevel.MultilevelSolver(levels, **kwargs) change_smoothers(ml, presmoother, postsmoother) return ml # internal function def extend_hierarchy(levels, prolongation_fn): """Extend the multigrid hierarchy.""" A = levels[-1].A N = A.shape[0] n = int(math.sqrt(N)) R = prolongation_fn(n) P = R.T.tocsr() * 4 levels[-1].P = P # prolongation operator levels[-1].R = R # restriction operator levels.append(multilevel_solver.level()) # Form next level through Galerkin product A = R * A * P A = A.astype(np.float64) # convert from complex numbers, should have A.imag==0 levels[-1].A = A # ========== 神经网络模型 ========== class _ConvNet_(nn.Module): def __init__(self, initial=5, kernel_size=3, initial_kernel=0.1): super(_ConvNet_, self).__init__() self.convLayers1 = nn.ModuleList([ nn.Conv2d(1, 1, kernel_size, padding=kernel_size//2, bias=False).double() for _ in range(5) ]) self.convLayers2 = nn.ModuleList([ nn.Conv2d(1, 1, kernel_size, padding=kernel_size//2, bias=False).double() for _ in range(2) ]) # 初始化权重 initial_weights = torch.zeros(1, 1, kernel_size, kernel_size, dtype=torch.double) initial_weights[0, 0, kernel_size//2, kernel_size//2] = initial_kernel for net in self.convLayers1: net.weight = nn.Parameter(initial_weights.clone()) for net in self.convLayers2: net.weight = nn.Parameter(initial_weights.clone()) def forward(self, x): y1 = x y2 = x for net in self.convLayers1: y1 = torch.tanh(net(y1)) for net in self.convLayers2: y2 = torch.tanh(net(y2)) return y1 + (2/3) * y2 def compute_loss(net, problem_instances): loss = torch.zeros(1, device=device, requires_grad=True) for problem in problem_instances: # 确保计算图连接 with torch.set_grad_enabled(True): u_pred = problem.compute_solution(net) u_true = problem.ground_truth # 确保梯度可以回传 u_pred.requires_grad_(True) u_true.requires_grad_(False) # 计算损失 diff = u_pred - u_true norm_diff = torch.norm(diff) norm_true = torch.norm(u_true) loss = loss + norm_diff / norm_true return loss def chunks(l, n): for i in range(0, len(l), n): yield l[i:i + n] def set_seed(seed): torch.manual_seed(seed) np.random.seed(seed) # ========== AlphaCNN ========== class alphaCNN: def __init__(self, net=None, batch_size=1, learning_rate=1e-6, max_epochs=1000, nb_layers=5, tol=1e-6, stable_count=50, optimizer='SGD', check_spectral_radius=False, random_seed=None, kernel_size=3, initial_kernel=0.1): if random_seed is not None: set_seed(random_seed) if net is None: self.net = _ConvNet_(initial=5, kernel_size=kernel_size, initial_kernel=initial_kernel).to(device) else: self.net = net # 确保网络参数需要梯度 for param in self.net.parameters(): param.requires_grad = True self.learning_rate = learning_rate if optimizer == 'Adadelta': self.optim = torch.optim.Adadelta(self.net.parameters(), lr=learning_rate) elif optimizer == 'Adam': self.optim = torch.optim.Adam(self.net.parameters(), lr=learning_rate) else: self.optim = torch.optim.SGD(self.net.parameters(), lr=learning_rate) self.batch_size = batch_size self.max_epochs = max_epochs self.tol = tol self.stable_count = stable_count def _optimization_step_(self, problem_instances): shuffled_problem_instances = np.random.permutation(problem_instances) for problem_chunk in chunks(shuffled_problem_instances, self.batch_size): self.optim.zero_grad() loss = compute_loss(self.net, problem_chunk) # 检查梯度是否存在 if loss.grad_fn is None: raise RuntimeError("Loss has no gradient. Check the computation graph.") loss.backward() self.optim.step() # 确保梯度被应用 with torch.no_grad(): for param in self.net.parameters(): if param.grad is not None: param -= self.learning_rate * param.grad def fit(self, problem_instances): losses = [] prev_total_loss = compute_loss(self.net, problem_instances).item() convergence_counter = 0 problem_number = len(problem_instances) for n_epoch in range(self.max_epochs): start_time = time.time() self._optimization_step_(problem_instances) total_loss = compute_loss(self.net, problem_instances).item() losses.append(total_loss) if np.abs(total_loss - prev_total_loss) < self.tol * problem_number: convergence_counter += 1 if convergence_counter >= self.stable_count: print(f"Converged after {n_epoch} epochs") break else: convergence_counter = 0 prev_total_loss = total_loss epoch_time = time.time() - start_time if n_epoch % 10 == 0: print(f"Epoch: {n_epoch:>3} Loss: {total_loss:>10.6f} Time: {epoch_time:.2f}s") self.losses = losses print(f"Training completed. Final loss: {total_loss:.6f}") return self # ========== 模型训练 ========== def train_and_save_model(eps, theta, coarsening='full'): n = 33 # 网格大小 # 创建模型目录 model_dir = f'./models/theta_{theta}_eps_{eps}' if not os.path.isdir(model_dir): os.makedirs(model_dir) # 创建层级结构 levels = create_levels(eps, theta, n) # 第一层训练 (最粗层) problem_instances1 = [ Problem(eps, theta, n, k=k, levels=levels, mxl=1) for k in range(1, 13) ] model1 = alphaCNN( batch_size=8, learning_rate=1e-8, max_epochs=1000, nb_layers=5, tol=1e-6, stable_count=10, optimizer='Adam', random_seed=9, initial_kernel=0.1 ) model1.fit(problem_instances1) torch.save(model1.net.state_dict(), os.path.join(model_dir, f'theta_{theta}_eps_{eps}_level1.pth')) # 第二层训练 problem_instances2 = [ Problem(eps, theta, n, k=k, levels=levels, mxl=2, net_trained=[model1.net]) for k in range(1, 15) ] model2 = alphaCNN( batch_size=8, learning_rate=1e-8, max_epochs=1000, nb_layers=5, tol=1e-6, stable_count=10, optimizer='Adam', random_seed=9, initial_kernel=0.02/3 ) model2.fit(problem_instances2) torch.save(model2.net.state_dict(), os.path.join(model_dir, f'theta_{theta}_eps_{eps}_level2.pth')) # 第三层训练 problem_instances3 = [ Problem(eps, theta, n, k=k, levels=levels, mxl=3, net_trained=[model1.net, model2.net]) for k in range(1, 17) ] model3 = alphaCNN( batch_size=8, learning_rate=1e-8, max_epochs=1000, nb_layers=5, tol=1e-6, stable_count=10, optimizer='Adam', random_seed=9, initial_kernel=0.002/3 ) model3.fit(problem_instances3) torch.save(model3.net.state_dict(), os.path.join(model_dir, f'theta_{theta}_eps_{eps}_level3.pth')) # 第四层训练 (最细层) problem_instances4 = [ Problem(eps, theta, n, k=k, levels=levels, mxl=4, net_trained=[model1.net, model2.net, model3.net]) for k in range(1, 20) ] model4 = alphaCNN( batch_size=8, learning_rate=1e-8, max_epochs=1000, nb_layers=5, tol=1e-6, stable_count=10, optimizer='Adam', random_seed=9, initial_kernel=0.002/3 ) model4.fit(problem_instances4) torch.save(model4.net.state_dict(), os.path.join(model_dir, f'theta_{theta}_eps_{eps}_level4.pth')) # 训练模型 if __name__ == "__main__": train_and_save_model(100, 75) 这是代码,帮我修改

import os import re import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torchvision import transforms, models import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm from PIL import Image import json from torch.cuda.amp import GradScaler, autocast # ------------------- # 环境配置 # ------------------- device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"使用设备: {device}") # ------------------- # 数据集定义 # ------------------- class COCOCaptionDataset(Dataset): def __init__(self, root_dir, captions_file, vocab=None, transform=None, max_len=20): self.root_dir = root_dir self.transform = transform self.max_len = max_len with open(captions_file, 'r') as f: self.captions_data = json.load(f) self.image_id_to_filename = {img['id']: img['file_name'] for img in self.captions_data['images']} self.image_id_to_captions = {} for ann in self.captions_data['annotations']: img_id = ann['image_id'] if img_id not in self.image_id_to_captions: self.image_id_to_captions[img_id] = [] self.image_id_to_captions[img_id].append(ann['caption']) self.image_ids = list(self.image_id_to_captions.keys()) if vocab is None: self.build_vocab() else: self.vocab = vocab self.idx_to_word = {idx: word for word, idx in self.vocab.items()} def simple_tokenize(self, text): text = text.lower() text = re.sub(r'[^\w\s]', ' ', text) return text.split() def build_vocab(self): all_captions = [] for img_id in self.image_ids: all_captions.extend(self.image_id_to_captions[img_id]) word_freq = {} for caption in all_captions: tokens = self.simple_tokenize(caption) for token in tokens: if token not in word_freq: word_freq[token] = 0 word_freq[token] += 1 min_freq = 5 self.vocab = { '': 0, '<start>': 1, '<end>': 2, '<unk>': 3 } idx = 4 for word, freq in word_freq.items(): if freq >= min_freq: self.vocab[word] = idx idx += 1 print(f"词汇表大小: {len(self.vocab)}") def __len__(self): return len(self.image_ids) def __getitem__(self, idx): img_id = self.image_ids[idx] filename = self.image_id_to_filename[img_id] image_path = os.path.join(self.root_dir, filename) image = Image.open(image_path).convert('RGB') if self.transform: image = self.transform(image) captions = self.image_id_to_captions[img_id] caption = np.random.choice(captions) tokens = self.simple_tokenize(caption) tokens = ['<start>'] + tokens + ['<end>'] caption_indices = [self.vocab.get(token, self.vocab['<unk>']) for token in tokens] if len(caption_indices) < self.max_len: caption_indices = caption_indices + [self.vocab['']] * (self.max_len - len(caption_indices)) else: caption_indices = caption_indices[:self.max_len] return image, torch.tensor(caption_indices) class COCOTestDataset(Dataset): def __init__(self, root_dir, image_info_file, transform=None): self.root_dir = root_dir self.transform = transform with open(image_info_file, 'r') as f: self.image_data = json.load(f) self.image_id_to_filename = {img['id']: img['file_name'] for img in self.image_data['images']} self.image_ids = self.image_data['images'] def __len__(self): return len(self.image_ids) def __getitem__(self, idx): img = self.image_ids[idx] img_id = img['id'] filename = self.image_id_to_filename[img_id] image_path = os.path.join(self.root_dir, filename) image = Image.open(image_path).convert('RGB') if self.transform: image = self.transform(image) return image, img_id # ------------------- # 模型定义 - 修复BatchNorm维度问题 # ------------------- class EncoderCNN(nn.Module): def __init__(self, embed_size): super(EncoderCNN, self).__init__() resnet = models.resnet50(pretrained=True) modules = list(resnet.children())[:-2] self.resnet = nn.Sequential(*modules) self.adaptive_pool = nn.AdaptiveAvgPool2d((14, 14)) self.embed = nn.Linear(2048, embed_size) # 修改:移除不正确的BatchNorm层 self.dropout = nn.Dropout(0.5) def forward(self, images): features = self.resnet(images) features = self.adaptive_pool(features) features = features.permute(0, 2, 3, 1) # [batch, H, W, channels] features = features.view(features.size(0), -1, features.size(3)) # [batch, H*W, channels] # 修改:调整BatchNorm的应用方式 batch_size, num_pixels, channels = features.size() features_reshaped = features.contiguous().view(batch_size * num_pixels, channels) features_reshaped = self.embed(features_reshaped) features = features_reshaped.view(batch_size, num_pixels, -1) return self.dropout(features) class Attention(nn.Module): def __init__(self, encoder_dim, decoder_dim, attention_dim): super(Attention, self).__init__() self.encoder_att = nn.Linear(encoder_dim, attention_dim) self.decoder_att = nn.Linear(decoder_dim, attention_dim) self.full_att = nn.Linear(attention_dim, 1) self.relu = nn.ReLU() self.softmax = nn.Softmax(dim=1) def forward(self, encoder_out, decoder_hidden): att1 = self.encoder_att(encoder_out) att2 = self.decoder_att(decoder_hidden) att2 = att2.unsqueeze(1) att = self.full_att(self.relu(att1 + att2)).squeeze(2) alpha = self.softmax(att) context = (encoder_out * alpha.unsqueeze(2)).sum(dim=1) return context, alpha class DecoderRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, encoder_dim=2048, attention_dim=128, num_layers=1): super(DecoderRNN, self).__init__() self.embed_size = embed_size self.hidden_size = hidden_size self.vocab_size = vocab_size self.attention_dim = attention_dim self.encoder_dim = encoder_dim self.embedding = nn.Embedding(vocab_size, embed_size) self.attention = Attention(encoder_dim, hidden_size, attention_dim) self.lstm = nn.LSTM(embed_size + encoder_dim, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, vocab_size) self.init_weights() # 添加:保存词汇表引用,用于生成描述 self.vocab = vocab_size def init_weights(self): self.embedding.weight.data.uniform_(-0.1, 0.1) self.fc.weight.data.uniform_(-0.1, 0.1) self.fc.bias.data.fill_(0) def forward(self, encoder_out, captions, lengths): batch_size = encoder_out.size(0) encoder_dim = encoder_out.size(-1) vocab_size = self.vocab_size embeddings = self.embedding(captions) h, c = self.init_hidden_state(encoder_out) outputs = torch.zeros(batch_size, max(lengths)-1, vocab_size).to(device) for t in range(max(lengths)-1): batch_size_t = sum([l > t for l in lengths]) context, alpha = self.attention( encoder_out[:batch_size_t], h[:batch_size_t, 0] ) lstm_input = torch.cat( [embeddings[:batch_size_t, t], context], dim=1 ).unsqueeze(1) _, (h, c) = self.lstm(lstm_input, (h[:batch_size_t], c[:batch_size_t])) preds = self.fc(h.view(-1, self.hidden_size)) outputs[:batch_size_t, t] = preds return outputs def init_hidden_state(self, encoder_out): batch_size = encoder_out.size(0) h = torch.zeros(1, batch_size, self.hidden_size).to(device) c = torch.zeros(1, batch_size, self.hidden_size).to(device) return h, c def sample(self, encoder_out, max_len=20): batch_size = encoder_out.size(0) h, c = self.init_hidden_state(encoder_out) inputs = torch.tensor([[1]] * batch_size).to(device) # 使用<start>的索引 sampled_ids = [] for i in range(max_len): embeddings = self.embedding(inputs) context, alpha = self.attention(encoder_out, h[0]) lstm_input = torch.cat([embeddings.squeeze(1), context], dim=1).unsqueeze(1) _, (h, c) = self.lstm(lstm_input, (h, c)) outputs = self.fc(h.view(-1, self.hidden_size)) _, predicted = outputs.max(1) sampled_ids.append(predicted) inputs = predicted.unsqueeze(1) # 检查是否生成了<end>标记 if predicted.item() == 2: # <end>的索引 break sampled_ids = torch.stack(sampled_ids, 1) return sampled_ids # ------------------- # 训练与评估函数 # ------------------- def train(encoder, decoder, train_loader, criterion, optimizer, scheduler, device, epochs=10): encoder.train() decoder.train() scaler = GradScaler() for epoch in range(epochs): total_loss = 0 progress_bar = tqdm(enumerate(train_loader), total=len(train_loader)) for i, (images, captions) in progress_bar: images = images.to(device) captions = captions.to(device) lengths = [] for cap in captions: pad_pos = (cap == 0).nonzero() if len(pad_pos) > 0: lengths.append(pad_pos[0].item()) else: lengths.append(len(cap)) with autocast(): features = encoder(images) outputs = decoder(features, captions, lengths) targets = captions[:, 1:].contiguous().view(-1) outputs = outputs.view(-1, outputs.size(-1)) loss = criterion(outputs, targets) optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() total_loss += loss.item() progress_bar.set_description(f'Epoch {epoch+1}/{epochs}, Loss: {total_loss/(i+1):.4f}') del images, captions, features, outputs, targets torch.cuda.empty_cache() scheduler.step() print(f'Epoch {epoch+1}/{epochs}, 平均损失: {total_loss/len(train_loader):.4f}') torch.save({ 'encoder': encoder.state_dict(), 'decoder': decoder.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'epoch': epoch }, f'model_epoch_{epoch+1}.pth') print(f'模型已保存至 model_epoch_{epoch+1}.pth') # ------------------- # 主函数 # ------------------- def main(): data_dir = 'data' image_dirs = { 'train': os.path.join(data_dir, 'images', 'train2014'), 'val': os.path.join(data_dir, 'images', 'val2014'), 'test': os.path.join(data_dir, 'images', 'test2014') } ann_files = { 'train': os.path.join(data_dir, 'annotations', 'captions_train2014.json'), 'val': os.path.join(data_dir, 'annotations', 'captions_val2014.json'), 'test': os.path.join(data_dir, 'annotations', 'image_info_test2014.json') } for key, path in image_dirs.items(): if not os.path.exists(path): print(f"错误: 图像目录不存在 - {path}") return for key, path in ann_files.items(): if not os.path.exists(path): print(f"错误: 标注文件不存在 - {path}") return train_transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.RandomCrop((224, 224)), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) val_test_transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) print("加载训练集...") train_dataset = COCOCaptionDataset( image_dirs['train'], ann_files['train'], transform=train_transform ) print(f"训练集大小: {len(train_dataset)}") print("加载验证集...") val_dataset = COCOCaptionDataset( image_dirs['val'], ann_files['val'], vocab=train_dataset.vocab, transform=val_test_transform ) print(f"验证集大小: {len(val_dataset)}") print("加载测试集...") test_dataset = COCOTestDataset( image_dirs['test'], ann_files['test'], transform=val_test_transform ) print(f"测试集大小: {len(test_dataset)}") batch_size = 16 if torch.cuda.is_available() else 4 train_loader = DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True ) val_loader = DataLoader( val_dataset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True ) test_loader = DataLoader( test_dataset, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True ) embed_size = 256 hidden_size = 256 vocab_size = len(train_dataset.vocab) print("初始化模型...") encoder = EncoderCNN(embed_size).to(device) decoder = DecoderRNN( embed_size=embed_size, hidden_size=hidden_size, vocab_size=vocab_size, encoder_dim=2048, attention_dim=128 ).to(device) criterion = nn.CrossEntropyLoss(ignore_index=0) params = list(decoder.parameters()) + list(encoder.parameters()) optimizer = optim.Adam(params, lr=0.0001) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) print("\n开始训练...") train(encoder, decoder, train_loader, criterion, optimizer, scheduler, device, epochs=10) sample_image = os.path.join(image_dirs['val'], 'COCO_val2014_000000000042.jpg') if os.path.exists(sample_image): print(f"\n为示例图像生成描述: {sample_image}") test_transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) image = Image.open(sample_image).convert('RGB') image_tensor = test_transform(image).unsqueeze(0).to(device) with torch.no_grad(): features = encoder(image_tensor) sampled_ids = decoder.sample(features) sampled_ids = sampled_ids[0].cpu().numpy() caption_words = [] for word_id in sampled_ids: word = train_dataset.idx_to_word.get(word_id, '<unk>') if word == '<end>': break if word not in ['', '<start>']: caption_words.append(word) caption = ' '.join(caption_words) print(f"生成的描述: {caption}") plt.imshow(image) plt.title(caption) plt.axis('off') plt.savefig('generated_caption.png') plt.show() else: print("\n示例图像不存在,请替换为实际存在的图像路径") if __name__ == "__main__": main()报错:C:\Users\wb159\anaconda3\envs\torch_gpu\python.exe D:\code\pycode\pythonProject1\test1.py 使用设备: cuda 加载训练集... 词汇表大小: 8769 训练集大小: 82783 加载验证集... 验证集大小: 40504 加载测试集... 测试集大小: 40775 初始化模型... 开始训练... 使用设备: cuda 使用设备: cuda 0%| | 0/5174 [00:04<?, ?it/s] Traceback (most recent call last): File "D:\code\pycode\pythonProject1\test1.py", line 467, in <module> main() File "D:\code\pycode\pythonProject1\test1.py", line 428, in main train(encoder, decoder, train_loader, criterion, optimizer, scheduler, device, epochs=10) File "D:\code\pycode\pythonProject1\test1.py", line 291, in train outputs = decoder(features, captions, lengths) File "C:\Users\wb159\anaconda3\envs\torch_gpu\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "D:\code\pycode\pythonProject1\test1.py", line 220, in forward context, alpha = self.attention( File "C:\Users\wb159\anaconda3\envs\torch_gpu\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "D:\code\pycode\pythonProject1\test1.py", line 177, in forward att1 = self.encoder_att(encoder_out) File "C:\Users\wb159\anaconda3\envs\torch_gpu\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\wb159\anaconda3\envs\torch_gpu\lib\site-packages\torch\nn\modules\linear.py", line 103, in forward return F.linear(input, self.weight, self.bias) File "C:\Users\wb159\anaconda3\envs\torch_gpu\lib\site-packages\torch\nn\functional.py", line 1848, in linear return torch._C._nn.linear(input, weight, bias) RuntimeError: mat1 and mat2 shapes cannot be multiplied (3136x256 and 2048x128) 进程已结束,退出代码为 1

# data/dataset.py import os import numpy as np import torch from torch.utils.data import Dataset from plyfile import PlyData import open3d as o3d def read_ply_points(file_path): """ 使用 plyfile 解析 .ply 文件,提取 x, y, z 字段 返回一个 numpy 数组 (N, 3) """ ply = PlyData.read(file_path) # 提取 x, y, z 字段 x = ply['vertex']['x'] y = ply['vertex']['y'] z = ply['vertex']['z'] # 拼接为点云数组 points = np.vstack([x, y, z]).T points = points.astype(np.float32) return points class UnifiedPointCloudDataset(Dataset): def __init__(self, root_dirs, file_exts=['.ply', '.stl', '.obj'], num_points=1024): """ :param root_dirs: 包含所有数据文件夹的列表 :param file_exts: 支持的点云格式 :param num_points: 每个点云采样点数 """ self.file_list = [] self.num_points = num_points # 收集所有点云文件路径 for root_dir in root_dirs: if not os.path.exists(root_dir): raise FileNotFoundError(f"❌ 数据目录不存在: {root_dir}") for root, _, files in os.walk(root_dir): for file in files: if any(file.lower().endswith(ext) for ext in file_exts): full_path = os.path.join(root, file) if os.path.exists(full_path): # 确保文件真实存在 self.file_list.append(full_path) print(f"✅ 共发现 {len(self.file_list)} 个点云文件,用于训练") if len(self.file_list) == 0: raise ValueError("⚠️ 没有发现任何点云文件,请检查路径和文件格式") def __len__(self): return len(self.file_list) def __getitem__(self, idx): path = self.file_list[idx] ext = os.path.splitext(path)[1].lower() try: if ext == '.ply': # 使用 plyfile 读取 .ply 文件 points = read_ply_points(path) elif ext == '.stl': # 使用 open3d 读取 STL 文件并采样成点云 mesh = o3d.io.read_triangle_mesh(path) pcd = mesh.sample_points_uniformly(number_of_points=100000) points = np.asarray(pcd.points) elif ext == '.obj': # 使用 open3d 读取 OBJ 文件 pcd = o3d.io.read_point_cloud(path) if not pcd.has_points(): raise ValueError(f"点云为空或损坏: {path}") points = np.asarray(pcd.points) else: raise ValueError(f"不支持的格式: {ext}") # 检查点云是否为空 if len(points) < 10: raise ValueError(f"点云为空或损坏: {path}") # 固定点数采样 if len(points) < self.num_points: indices = np.random.choice(len(points), self.num_points, replace=True) else: indices = np.random.choice(len(points), self.num_points, replace=False) points = points[indices] return torch.tensor(points, dtype=torch.float32) except Exception as e: print(f"❌ 读取失败: {path},错误: {str(e)}") return self.__getitem__((idx + 1) % len(self.file_list)) # models/ballmamba.py import torch import torch.nn as nn from torch_geometric.nn import knn_graph, radius_graph from models.mamba_block import MambaBlock from utils.pointcloud_utils import farthest_point_sample class FPS_Causal(nn.Module): def __init__(self, in_channels, hidden_channels, k=512): super(FPS_Causal, self).__init__() self.k = k self.downsample = nn.Linear(in_channels, hidden_channels) self.mamba = MambaBlock(hidden_channels) def forward(self, x, pos): batch_size, num_points, _ = pos.shape idxs = [] for i in range(batch_size): idx = farthest_point_sample(pos[i], self.k) # 现在支持 (N, 3) idxs.append(idx) idx = torch.stack(idxs, dim=0) # (B, k) # 使用 gather 正确采样 x_sampled = torch.gather(pos, 1, idx.unsqueeze(-1).expand(-1, -1, 3)) # (B, k, 3) x_sampled = self.downsample(x_sampled) # (B, k, hidden_channels) x_sampled = self.mamba(x_sampled) # (B, k, hidden_channels) return x_sampled class BallQuery_Sort(nn.Module): def __init__(self, radius=0.3, k=64): super(BallQuery_Sort, self).__init__() self.radius = radius self.k = k def forward(self, pos, x): edge_index = radius_graph(pos, r=self.radius) row, col = edge_index neighbor_pos = pos[col] neighbor_x = x[col] dist = torch.norm(neighbor_pos - pos[row], dim=1) sorted_indices = torch.argsort(dist.view(-1, self.k), dim=1) neighbors = neighbor_x.view(-1, self.k, neighbor_x.shape[1]) return neighbors.gather(1, sorted_indices.unsqueeze(-1).expand(-1, -1, neighbor_x.shape[1])) class BallMambaModel(nn.Module): def __init__(self, in_channels=3, num_keypoints=1024): super(BallMambaModel, self).__init__() self.fps = FPS_Causal(in_channels, 64, k=num_keypoints) self.ball_query = BallQuery_Sort(radius=0.1, k=64) self.mamba = MambaBlock(64) self.decoder = nn.Linear(64, 3) def forward(self, pos): print("pos shape:", pos.shape) # 添加此行,查看 pos 的形状 x = self.fps(None, pos) x = self.ball_query(pos, x) x = x.mean(dim=1) x = self.mamba(x.unsqueeze(0)).squeeze(0) out = self.decoder(x) return out import torch import torch.nn as nn import torch.nn.functional as F class MambaBlock(nn.Module): def __init__(self, d_model: int, d_state: int = 16, d_conv: int = 4, expand: int = 2, dt_rank: int or str = "auto"): """ 完整的 MambaBlock 实现(无 LSTM,基于状态空间模型 SSM) :param d_model: 输入特征维度(通道数) :param d_state: 状态维度(SSM 中的 N) :param d_conv: 卷积核大小(用于局部依赖建模) :param expand: 扩展因子,中间维度 = d_model * expand :param dt_rank: 离散时间步秩,控制参数量,若为 "auto" 则自动计算 """ super(MambaBlock, self).__init__() self.d_model = d_model self.d_state = d_state self.d_inner = int(expand * d_model) self.dt_rank = dt_rank if dt_rank != "auto" else max(1, self.d_model // 16) # 输入投影:将输入特征升维 self.in_proj = nn.Linear(d_model, self.d_inner * 2, bias=False) # 卷积分支(局部建模) self.conv = nn.Conv1d( in_channels=self.d_inner, out_channels=self.d_inner, kernel_size=d_conv, bias=True, groups=self.d_inner, padding=d_conv - 1, # 保证 causal ) # x_proj 将 x 映射到 dt、B、C self.x_proj = nn.Linear(self.d_inner, self.dt_rank + 2 * d_state, bias=False) # dt_proj 将 dt 映射到 d_inner self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True) # A 和 D 参数(状态矩阵和跳跃连接) A = torch.arange(1, d_state + 1, dtype=torch.float32)[None, :].repeat(self.d_inner, 1) self.A_log = nn.Parameter(torch.log(A)) self.D = nn.Parameter(torch.ones(self.d_inner)) # (d_inner, ) # 输出投影 self.out_proj = nn.Linear(self.d_inner, d_model, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: """ 前向传播 :param x: 输入张量,形状 (B, L, d_model) :return: 输出张量,形状 (B, L, d_model) """ batch, seqlen, dim = x.shape # 1. 输入投影 + 拆分 xz = self.in_proj(x) # (B, L, 2 * d_inner) x, z = torch.split(xz, [self.d_inner, self.d_inner], dim=-1) # (B, L, d_inner) # 2. 卷积处理 x = x.transpose(1, 2) # (B, d_inner, L) x = self.conv(x)[:, :, :seqlen] # (B, d_inner, L) x = x.transpose(1, 2) # (B, L, d_inner) # 3. x_proj 分割出 dt、B、C x_dbl = self.x_proj(x) # (B, L, dt_rank + 2 * d_state) dt, B, C = torch.split( x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1 ) # 4. dt_proj 映射 dt dt = F.softplus(self.dt_proj(dt)) # (B, L, d_inner) # 5. 获取 A A = -torch.exp(self.A_log) # (d_inner, d_state) A = A.unsqueeze(0).unsqueeze(0) # (1, 1, d_inner, d_state) B = B.unsqueeze(dim=2) # (B, L, 1, d_state) C = C.unsqueeze(dim=2) # (B, L, 1, d_state) # 调试信息 print(f"[MambaBlock] A.shape = {A.shape}") print(f"[MambaBlock] B.shape = {B.shape}") print(f"[MambaBlock] C.shape = {C.shape}") print(f"[MambaBlock] dt.shape = {dt.shape}") states = torch.zeros(batch, self.d_inner, self.d_state, device=x.device) outputs = [] for t in range(seqlen): # 更新状态 states = states + x[:, t:t+1, :, None] * B[:, t:t+1, :, :] states = states * torch.exp(A * dt[:, t:t+1, :, None]) # 添加 dt 到状态更新 # 获取当前时间步的 C 并进行 einsum current_C = C[:, t] # (B, 1, d_state) current_C = current_C.squeeze(1) # (B, d_state) # 使用广播机制 y = torch.einsum("binc,bc->bin", states, current_C) # bc 会广播为 binc outputs.append(y) y = torch.stack(outputs, dim=1) # (B, L, d_inner) # ✅ 修复:self.D 扩展为 (1, 1, d_inner) 以便广播 y = y + x * self.D.view(1, 1, -1) # 加上跳跃连接 # 激活 + 输出 y = y * F.silu(z) out = self.out_proj(y) # 调试信息 print(f"[MambaBlock] y.shape = {y.shape}") print(f"[MambaBlock] out.shape = {out.shape}") return out # train.py import os import torch import torch.nn as nn from torch.utils.data import DataLoader from data.dataset import UnifiedPointCloudDataset from models.ballmamba import BallMambaModel from utils.loss import ChamferLoss # 👇 Windows 多进程训练必须放在 if __name__ == '__main__' 里面 if __name__ == '__main__': # 设置多进程启动方式(Windows 下推荐 spawn) torch.multiprocessing.set_start_method('spawn') # ✅ 修改为你自己的路径 ROOT_DIRS = [ r"D:\桌面\point\data1\part1", r"D:\桌面\point\data1\part2", r"D:\桌面\point\data1\part3", r"D:\桌面\point\data1\part4", r"D:\桌面\point\data1\part5", r"D:\桌面\point\data1\part6", r"D:\桌面\point\data1\part7", r"D:\桌面\point\data1\part8", r"D:\桌面\point\data1\part9", r"D:\桌面\point\data1\part10", r"D:\桌面\point\data1\part11", r"D:\桌面\point\data1\part12", r"D:\桌面\point\data1\part13", r"D:\桌面\point\data1\part14", r"D:\桌面\point\data1\part15", r"D:\桌面\point\data1\part16", r"D:\桌面\point\data1\part17", r"D:\桌面\point\data1\part18", r"D:\桌面\point\data1\part19", r"D:\桌面\point\data1\part20", ] # ✅ 创建 Dataset dataset = UnifiedPointCloudDataset( root_dirs=ROOT_DIRS, file_exts=['.ply', '.stl'], num_points=1024 ) print(f"✅ 共发现 {len(dataset)} 个点云文件,用于训练") if len(dataset) == 0: raise ValueError("⚠️ 没有发现任何点云文件,请检查路径和文件格式") # ✅ 创建 DataLoader(num_workers=0 可临时绕过问题) loader = DataLoader( dataset, batch_size=16, shuffle=True, num_workers=0, # 👈 Windows 下训练先设置为 0,后续再尝试 4 pin_memory=True ) # ✅ 模型初始化 device = torch.device("cpu") model = BallMambaModel(in_channels=3, num_keypoints=512).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) criterion = ChamferLoss().to(device) # ✅ 训练循环 for epoch in range(50): model.train() total_loss = 0 for i, points in enumerate(loader): points = points.to(device) # 输入输出一致(重构任务) recon_points = model(points) loss = criterion(recon_points, points) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() if i % 10 == 0: print(f"Epoch [{epoch+1}/50], Batch [{i+1}/{len(loader)}], Loss: {loss.item():.4f}") print(f"Epoch [{epoch+1}/50] 完成,平均 Loss: {total_loss / len(loader):.4f}") torch.save(model.state_dict(), f"models/ballmamba_epoch_{epoch+1}.pth") 上述是我的项目模型训练的代码,现在运行后出现问题C:\ProgramData\miniconda3\envs\torch\python.exe D:\桌面\point\scripts\train_model.py ✅ 共发现 907 个点云文件,用于训练 ✅ 共发现 907 个点云文件,用于训练 pos shape: torch.Size([16, 1024, 3]) [MambaBlock] A.shape = torch.Size([1, 1, 128, 16]) [MambaBlock] B.shape = torch.Size([16, 512, 1, 16]) [MambaBlock] C.shape = torch.Size([16, 512, 1, 16]) [MambaBlock] dt.shape = torch.Size([16, 512, 128]) Traceback (most recent call last): File "D:\桌面\point\scripts\train_model.py", line 76, in <module> recon_points = model(points) File "C:\ProgramData\miniconda3\envs\torch\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "D:\桌面\point\models\ballmamba.py", line 63, in forward x = self.fps(None, pos) File "C:\ProgramData\miniconda3\envs\torch\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "D:\桌面\point\models\ballmamba.py", line 30, in forward x_sampled = self.mamba(x_sampled) # (B, k, hidden_channels) File "C:\ProgramData\miniconda3\envs\torch\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "D:\桌面\point\models\mamba_block.py", line 111, in forward y = y + x * self.D.view(1, 1, -1) # 加上跳跃连接 RuntimeError: The size of tensor a (16) must match the size of tensor b (512) at non-singleton dimension 2 进程已结束,退出代码为 1 应该如何修改代码?给我修改后的完整代码

import numpy as np from tqdm import tqdm import tensorflow as tf import pandas as pd import torch import re from sklearn.model_selection import train_test_split CHEM_FORMULA_SIZE = "([A-Z][a-z]*)([0-9]*)" VALID_ELEMENTS = [ "C", "N", "P", "O", "S", "Si", "I", "H", "Cl", "F", "Br", "B", "Se", "Fe", "Co", "As", "K", "Na", ] ELEMENT_VECTORS = np.eye(len(VALID_ELEMENTS)) element_to_position = dict(zip(VALID_ELEMENTS, ELEMENT_VECTORS)) def formula_to_dense(chem_formula: str) -> np.ndarray: total_onehot = [] for (chem_symbol, num) in re.findall(CHEM_FORMULA_SIZE, chem_formula): num = 1 if num == "" else int(num) one_hot = element_to_position[chem_symbol].reshape(1, -1) one_hot_repeats = np.repeat(one_hot, repeats=num, axis=0) total_onehot.append(one_hot_repeats) if len(total_onehot) == 0: dense_vec = np.zeros(len(element_to_position)) else: dense_vec = np.vstack(total_onehot).sum(0) return dense_vec def sine_embed(v, max_count=256): num_freqs = int(np.ceil(np.log2(max_count))) freqs = 0.5 ** torch.arange(num_freqs, dtype=torch.float32) * np.pi v_tensor = torch.tensor(v, dtype=torch.float32)[:, None] embedded = torch.sin(v_tensor * freqs[None, :]) return torch.abs(embedded).numpy() def encode_formula(formula: str): candidate_features = formula_to_dense(formula) # 将单个化学式转为特征向量 sine_embeddings = sine_embed(candidate_features) return sine_embeddings.flatten() def positional_encoding(max_position, d_model, min_freq=1e-6): position = np.arange(max_position) freqs = min_freq**(2*(np.arange(d_model)//2)/d_model) pos_enc = position.reshape(-1,1)*freqs.reshape(1,-1) pos_enc[:, ::2] = np.cos(pos_enc[:, ::2]) pos_enc[:, 1::2] = np.sin(pos_enc[:, 1::2]) return pos_enc P=positional_encoding(2000000,256, min_freq=1e2) dimn=256 def encoding(rag_tensor,P,dimn): to_pad=[] for sample in rag_tensor: all_dim=[sample[0].numpy().tolist()] pos_enc=[P[int(i)-1] for i in sample[1].numpy().tolist()] for dim in range(dimn): dim_n=[i[dim] for i in pos_enc] all_dim.append(dim_n) to_pad.append(all_dim) to_pad=[tf.keras.preprocessing.sequence.pad_sequences(i,maxlen=501,dtype='float32',padding='post',truncating='post',value=10) for i in to_pad] to_pad=np.stack((to_pad)) to_pad=np.swapaxes(to_pad, 1, -1) return to_pad def trun_n_d(n,d): return ( n if not n.find('.')+1 else n[:n.find('.')+d+1] ) def prepro_specs_train(df): df = df.reset_index(drop=True) valid = [] mz_intensity = df['Spectrum'].to_list() def process_line(line): pairs = line.split() mz_list = [] intensity_list = [] for pair in pairs: mz, intensity = pair.split(':') mz_list.append(float(mz)) intensity_list.append(float(intensity)) return mz_list, intensity_list for idx, intensities in tqdm(enumerate(mz_intensity)): mz_list, intensity_list = process_line(intensities) mz_list.append(float(df.at[idx, 'Total Exact Mass'])) round_mz_list = [round(float(mz), 2) for mz in mz_list] round_intensity_list = [round(float(intensity), 2) for intensity in intensity_list] valid.append([round_mz_list, round_intensity_list]) return tf.ragged.constant(valid) import json import torch from typing import Dict, List from torch.utils.data import Dataset import transformers from peft import LoraConfig, TaskType, get_peft_model from torch.utils.data import DataLoader, SequentialSampler from transformers import Trainer, TrainingArguments from lora_plus import LoraPlusTrainer from torch.utils.data import RandomSampler def infer_seqlen(source_len: int, target_len: int, cutoff_len: int) -> tuple[int, int]: if target_len * 2 < cutoff_len: # truncate source max_target_len = cutoff_len elif source_len * 2 < cutoff_len: # truncate target max_target_len = cutoff_len - source_len else: # truncate both max_target_len = int(cutoff_len * (target_len / (source_len + target_len))) new_target_len = min(max_target_len , target_len) max_source_len = max(cutoff_len - new_target_len, 0) new_source_len = min(max_source_len, source_len) return new_source_len, new_target_len class SupervisedDataset(Dataset): """Dataset for supervised fine-tuning.""" def __init__( self, data_path, tokenizer, model_max_length, user_tokens=[151644], assistant_tokens=[151645], ): super(SupervisedDataset, self).__init__() self.data = json.load(open(data_path)) self.tokenizer = tokenizer self.model_max_length = model_max_length self.user_tokens = user_tokens self.assistant_tokens = assistant_tokens self.ignore_index = -100 # 测试第一条数据是否正确处理 item = self.preprocessing(self.data[0]) print("input:", self.tokenizer.decode(item["input_ids"])) labels = [id_ for id_ in item["labels"] if id_ != -100] # 过滤 -100 的标签 def __len__(self): return len(self.data) def preprocessing(self, example): input_ids = [] labels = [] # 将用户和助手的内容配对 messages = example["conversations"] pairs = [] current_user_encoded = None # 将 user 和 assistant 配对,并将其打包成编码后的 pairs for message in messages: if message["role"] == "user": # 编码用户消息 current_user_encoded = [self.tokenizer.bos_token_id] + self.user_tokens + self.tokenizer.encode( message["content"], add_special_tokens=False ) elif message["role"] == "assistant" and current_user_encoded is not None: # 编码助手消息 assistant_encoded = self.assistant_tokens + self.tokenizer.encode( message["content"], add_special_tokens=False ) # 配对形成一个 (source_ids, target_ids) pairs.append((current_user_encoded, assistant_encoded)) current_user_encoded = None total_length = 0 # 初始化总长度 # 逐对处理编码后的 (source_ids, target_ids) for turn_idx, (source_ids, target_ids) in enumerate(pairs): # 检查是否超出最大长度,若超出则停止处理 if total_length >= self.model_max_length: print("Exceeded max length, stopping processing further turns.") break # 动态截断长度 source_len, target_len = infer_seqlen( len(source_ids), len(target_ids), self.model_max_length - total_length ) source_ids = source_ids[:source_len] target_ids = target_ids[:target_len] # 更新总长度 total_length += source_len + target_len source_label = [self.tokenizer.bos_token_id] + [self.ignore_index] * (source_len-1) target_label = target_ids # 数据拼接 input_ids += source_ids + target_ids labels += source_label + target_label # 添加 EOS 标记 input_ids += [self.tokenizer.eos_token_id] labels += [self.tokenizer.eos_token_id] input_ids += [self.tokenizer.pad_token_id] * ( self.model_max_length - len(input_ids) ) labels += [self.ignore_index] * (self.model_max_length - len(labels)) # 转换为 Tensor input_ids = torch.LongTensor(input_ids) labels = torch.LongTensor(labels) # 构造 attention_mask attention_mask = attention_mask = input_ids.ne(self.tokenizer.pad_token_id) return { "input_ids": input_ids, "labels": labels, "attention_mask": attention_mask, } def __getitem__(self, idx) -> Dict[str, torch.Tensor]: return self.preprocessing(self.data[idx])修改代码,改为读取csv文件,提取csv文件的Molecular Formula、Total Exact Mass、Spectrum以及SELFIES列数据,对Molecular Formula使用formula_to_dense函数获取形状为(batch,18)的输入,对Total Exact Mass和Spectrum列使用prepro_specs_train和encoding函数获取形状为(batch,501,257)的输入,然后SELFIES使用tokenrizer编码,使用cls_token和sep_token作为开始和结束标记,填充标记为pad_token

import scipy.io import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader, TensorDataset from sklearn.model_selection import train_test_split # 1. 加载MAT文件 def load_matlab_data(file_path): data = scipy.io.loadmat(file_path) csi = np.squeeze(data['csi']) # [num_samples, num_subcarriers, num_users] allocations = np.squeeze(data['allocations']) # [num_samples, num_subcarriers] symbols = np.squeeze(data['symbols_with_channel']) snr = np.squeeze(data['snr']) return csi, allocations, symbols, snr # 2. 数据预处理 def preprocess_data(csi, allocations, snr): X = np.concatenate([ np.abs(csi).reshape(csi.shape[0], -1), snr.reshape(-1, 1) ], axis=1) y = allocations return X, y # 3. 定义LSTM模型 class LSTMModel(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2): super().__init__() self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): out, _ = self.lstm(x) # [batch_size, seq_length=1, hidden_dim] out = self.fc(out) # [batch_size, seq_length=1, output_dim] return out.squeeze(1) # [batch_size, output_dim] # 4. 训练与验证 def train_model(model, X_train, y_train, num_epochs=50, batch_size=32, lr=1e-3): dataset = TensorDataset( torch.tensor(X_train, dtype=torch.float32), torch.tensor(y_train, dtype=torch.long) ) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=lr) for epoch in range(num_epochs): model.train() total_loss = 0 for batch_X, batch_y in dataloader: optimizer.zero_grad() outputs = model(batch_X.unsqueeze(1)) # [batch_size, output_dim] outputs_flat = outputs.view(-1, outputs.shape[-1]) targets_flat = batch_y.view(-1) loss = criterion(outputs_flat, targets_flat) loss.backward() optimizer.step() total_loss += loss.item() if (epoch + 1) % 10 == 0: print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {total_loss/len(dataloader):.4f}') def evaluate_model(model, X_test, y_test): model.eval() with torch.no_grad(): outputs = model(torch.tensor(X_test, dtype=torch.float32).unsqueeze(1)) outputs_flat = outputs.view(-1, outputs.shape[-1]) targets_flat = torch.tensor(y_test, dtype=torch.long).view(-1) accuracy = (outputs_flat.argmax(1) == targets_flat).float().mean() print(f'Test Accuracy: {accuracy.item():.4f}') # 主函数 def main(): csi, allocations, _, snr = load_matlab_data('ofdm_dataset_with_channel.mat') X, y = preprocess_data(csi, allocations, snr) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LSTMModel( input_dim=X_train.shape[1], hidden_dim=128, output_dim=np.max(allocations) + 1 ) train_model(model, X_train, y_train) evaluate_model(model, X_test, y_test) if __name__ == '__main__': main()有Expected input batch_size (32) to match target batch_size (2048).修改一下

import datasets import transformers import modelscope from itertools import chain import glob import torch import evaluate from swanlab.integration.transformers import SwanLabCallback import swanlab import numpy as np from sklearn.metrics import accuracy_score from rdkit import Chem from rdkit import DataStructs from rdkit.Chem import AllChem import evaluate from rdkit import Chem def main(): swanlab.init("PreTrain-llama-SELFIES") swanlab_callback = SwanLabCallback( project="PreTrain-llama-SELFIES", experiment_name="PreTrain-llama-SELFIES" ) raw_datasets = datasets.load_dataset( "json", data_files="/root/workspace/d1na3k4p420c73ccafcg/txt/selfies.json" ) # split dataset raw_datasets = raw_datasets["train"].train_test_split(test_size=0.05, seed=2333) print("dataset info") print(raw_datasets) tokenizer = transformers.AutoTokenizer.from_pretrained( "/root/workspace/d1na3k4p420c73ccafcg/DeepSeek-R1-Distill-Llama-8B",use_fast=True, trust_remote_code=True, model_max_length=1024 ) context_length = 1024 # use a small context length) # preprocess dataset def tokenize(element): # 对数据集进行预处理,将文本转换为模型可以处理的输入格式 # 这里使用的是Qwen2-0.5B的Tokenizer,将文本转换为模型可以处理的输入格式 # truncation=True表示如果文本长度超过了context_length,就截断 # max_length=context_length表示文本的最大长度为context_length # return_overflowing_tokens=True表示返回溢出的tokens outputs = tokenizer( element["text"], truncation=True, max_length=context_length, return_overflowing_tokens=True, return_length=True, ) input_batch = [] # 作用是将溢出的tokens转换为模型可以处理的输入格式 # 这里使用的是Qwen2-0.5B的Tokenizer,将文本转换为模型可以处理的输入格式 # 这里的input_ids是一个二维数组,每一行表示一个文本的输入格式 # 这里的length是一个一维数组,每一个元素表示一个文本的长度 # 这里的input_batch是一个二维数组,每一行表示一个文本的输入格式 # 这里的context_length是一个整数,表示文本的最大长度 for length, input_ids in zip(outputs["length"], outputs["input_ids"]): if length == context_length: input_batch.append(input_ids) return {"input_ids": input_batch} # map函数的作用是将tokenize函数应用到数据集的每一个元素上 # batched=True表示将数据集分成batch进行处理 # remove_columns=raw_datasets["train"].column_names表示删除原始数据集的列名 tokenized_datasets = raw_datasets.map( tokenize, batched=True,num_proc=20, remove_columns=raw_datasets["train"].column_names ) print("tokenize dataset info") # print(tokenized_datasets) # eos_token的作用是表示文本的结束 # pad_token的作用是表示填充的token tokenizer.pad_token = tokenizer.eos_token # DataCollatorForLanguageModeling的作用是将数据集转换为模型可以处理的输入格式 # 这里使用的是Qwen2-0.5B的Tokenizer,将文本转换为模型可以处理的输入格式 # mlm=False表示不进行masked language modeling data_collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False) # prepare a model from scratch config = transformers.AutoConfig.from_pretrained( "/root/workspace/d1na3k4p420c73ccafcg/DeepSeek-R1-Distill-Llama-8B", trust_remote_code=True) model = transformers.AutoModelForCausalLM.from_config(config) model_size = sum(t.numel() for t in model.parameters()) print("Model Config:") print(config) print(f"Model Size: {model_size/1000**2:.1f}M parameters") # 加载各个所需的指标 accuracy_metric = evaluate.load('./metrics/accuracy') def compute_metrics(eval_preds): logits, labels = eval_preds # 获取预测结果(取logits中概率最大的索引) preds = np.argmax(logits, axis=-1) # 形状: [batch_size, sequence_length] labels = labels[:, 1:].reshape(-1) preds = preds[:, :-1].reshape(-1) # 计算每个标记的准确度 accuracy = accuracy_metric.compute(predictions=preds, references=labels) return accuracy import random def compute_metrics_partial(eval_preds, subset_ratio=0.5): # 这里假设 eval_preds 是一个 list,包含 logits 和 labels logits, labels = eval_preds # 随机选择部分批次进行计算 batch_size = logits.shape[0] subset_size = int(batch_size * subset_ratio) # 计算子集的大小 selected_indices = random.sample(range(batch_size), subset_size) # 获取预测结果(只对选定的批次进行计算) selected_logits = logits[selected_indices] selected_labels = labels[selected_indices] preds = np.argmax(selected_logits, axis=-1) # shape: [subset_size, sequence_length] selected_labels = selected_labels[:, 1:].reshape(-1) selected_preds = preds[:, :-1].reshape(-1) # 计算准确度 accuracy = accuracy_metric.compute(predictions=selected_preds, references=selected_labels) return accuracy # train args = transformers.TrainingArguments( output_dir="./WikiLLM-llama-SELFIES", per_device_train_batch_size=3, # 每个GPU的训练batch数 per_device_eval_batch_size=3, # 每个GPU的测试batch数 eval_strategy="steps", eval_steps=2, logging_steps=5, gradient_accumulation_steps=8, # 梯度累计总数 num_train_epochs=100, # 训练epoch数 lr_scheduler_type="cosine", # 学习率衰减策略 learning_rate=1e-5, # 基础学习率, save_steps=500, save_total_limit=10, bf16=True, # 开启bf16训练, 对于Amper架构以下的显卡建议替换为fp16=True ) print("Train Args:") print(args) # enjoy training trainer = transformers.Trainer( model=model, tokenizer=tokenizer, args=args, data_collator=data_collator, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"], compute_metrics=compute_metrics, callbacks=[swanlab_callback], ) trainer.train() # save model trainer.save_model("./WikiLLM-llama-SELFIES/Weight") # 保存模型的路径 # generate pipe = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer) print("GENERATE:", pipe("人工智能", num_return_sequences=1)[0]["generated_text"]) prompts = ["牛顿", "北京市", "亚洲历史"] examples = [] for i in range(3): # 根据提示词生成数据 text = pipe(prompts[i], num_return_sequences=1)[0]["generated_text"] text = swanlab.Text(text) examples.append(text) swanlab.log({"Generate": examples}) if __name__ == "__main__": main() 修改代码,预训练模型修改为gpt2-large,而且要将gpt2-large的位置编码转换为旋转位置编码

class SVFNet(nn.Module): def __init__(self, cfg): super(SVFNet, self).__init__() self.channel = 64 self.point_feature_extractor = FeatureExtractor() self.view_distance = cfg.NETWORK.view_distance self.relu = nn.GELU() self.sa = self_attention(self.channel*8,self.channel*8,dropout=0.0) self.viewattn = self_attention(128+256, 256) self.conv_out = nn.Conv1d(64, 3, kernel_size=1) self.conv_out1 = nn.Conv1d(512+self.channel*4, 64, kernel_size=1) self.ps = nn.ConvTranspose1d(512, self.channel, 128, bias=True) self.ps_refuse = nn.Conv1d(512+self.channel, self.channel*8, kernel_size=1) img_layers, in_features = self.get_img_layers( 'resnet18', feat_size=16) self.img_feature_extractor = nn.Sequential(*img_layers) self.posmlp = MLP_CONV(3,[64,256]) @staticmethod def get_img_layers(backbone, feat_size): """ Return layers for the image model """ from models.resnet import _resnet, BasicBlock assert backbone == 'resnet18' layers = [2, 2, 2, 2] block = BasicBlock backbone_mod = _resnet( arch=None, block=block, layers=layers, pretrained=False, progress=False, feature_size=feat_size, zero_init_residual=True) all_layers = [x for x in backbone_mod.children()] in_features = all_layers[-1].in_features # all layers except the final fc layer and the initial conv layers # WARNING: this is checked only for resnet models main_layers = all_layers[4:-1] img_layers = [ nn.Conv2d(1, feat_size, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False), nn.BatchNorm2d(feat_size, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True), nn.ReLU(inplace=True), *main_layers, Squeeze() ] return img_layers, in_features def forward(self, points,depth): batch_size,_,N = points.size() f_v = self.img_feature_extractor(depth).view(batch_size,3,-1).transpose(1,2).contiguous() f_p = self.point_feature_extractor(points) # View Augment view_point = torch.tensor([0,0,-self.view_distance,-self.view_distance,0,0,0,self.view_distance,0],dtype=torch.float32).view(-1,3,3).permute(0,2,1).expand(batch_size,3,3).to(depth.device) view_feature = self.posmlp(view_point).permute(2, 0, 1) f_v_ = self.viewattn(torch.cat([f_v,f_p.repeat(1,1,f_v.size(2))],1), view_feature) f_v_ = F.adaptive_max_pool1d(f_v_, 1) f_g = torch.cat([f_p,f_v_],1) x = self.relu(self.ps(f_g)) x = self.relu(self.ps_refuse(torch.cat([x,f_g.repeat(1,1,x.size(2))],1))) x2_d = (self.sa(x)).reshape(batch_size,self.channel*4,N//8) coarse = self.conv_out(self.relu(self.conv_out1(torch.cat([x2_d,f_g.repeat(1,1,x2_d.size(2))],1)))) return f_g, coarse但是深度图是由点云自投影得到的

最新推荐

recommend-type

工具变量-5G示范城市DID(2014-2025).xlsx

详细介绍及样例数据:https://blog.csdn.net/T0620514/article/details/149811741
recommend-type

Python打造的Slaee管理系统升级版发布

由于提供的文件信息中,文件名《基于python的slaee管理系统 (15).zip》与描述《基于python的slaee管理系统 (15).zip》相同,并且给出的压缩包文件名称列表中只有一个文件《基于python的slaee管理系统 (14).zip》,该信息表明我们正在讨论两个不同版本的Python系统管理软件的压缩包。以下知识点将根据这些信息详细展开: 知识点一:Python编程语言基础 Python是一种高级编程语言,以其简洁的语法和强大的库支持而闻名。它是解释型语言,具有动态类型系统和垃圾回收功能,适用于多种编程范式,包括面向对象、命令式、函数式和过程式编程。Python广泛应用于系统管理、网络服务器、开发脚本、科学计算、数据挖掘和人工智能等领域。 知识点二:系统管理相关知识 系统管理指的是对计算机系统进行配置、监控和维护的过程,包括硬件资源、软件资源和数据资源的管理。在Python中,系统管理通常涉及操作系统级别的任务,如进程管理、文件系统管理、网络配置、系统日志监控等。Python的系统管理库(例如psutil、fabric、paramiko等)提供了丰富的API来简化这些任务。 知识点三:项目版本控制 从文件名《基于python的slaee管理系统 (14).zip》和《基于python的slaee管理系统 (15).zip》可以看出,这是一个项目在不同版本之间的迭代。版本控制是一种记录一个或多个文件随时间变化的方式,它允许用户可以回到特定版本。在软件开发中,版本控制非常重要,它有助于团队协作、代码合并、分支管理和错误跟踪。常见的版本控制系统包括Git、Subversion (SVN)、Mercurial等。 知识点四:打包与部署 提到“压缩包子文件”,这通常意味着文件已经被压缩打包成一个ZIP文件。在软件开发中,打包是为了便于文件传输、存档保存和分发。在Python项目中,打包也是部署过程的一部分。一个Python项目通常需要包含源代码、依赖关系、配置文件和安装脚本等。打包成ZIP文件后,可以通过各种方式部署到服务器上运行,如使用Fabric或Ansible等自动化部署工具。 知识点五:项目命名及版本命名规则 文件命名中的“基于python的slaee管理系统”表明这是一个与Python语言相关的系统管理项目。而数字“15”和“14”则代表着项目的版本号,这表明项目在持续发展,不同的数字代表了项目在不同时期的迭代。版本号的命名规则通常遵循语义化版本控制(SemVer),这种版本控制系统以 MAJOR.MINOR.PATCH 的形式表示版本号。 知识点六:文件压缩与解压缩技术 ZIP是一种常用的文件压缩格式,它通过减少文件大小来提高存储效率和传输速度。ZIP文件通常是无损压缩,意味着文件在压缩和解压缩的过程中不会丢失信息。Python标准库提供了zipfile模块,允许用户在Python程序中创建ZIP文件、读取ZIP文件内容、提取ZIP文件中的文件等操作。用户可以使用各种图形界面工具(如WinRAR、7-Zip)或命令行工具来处理ZIP文件。 总结以上内容,从文件信息中我们可以得知该内容涉及了Python编程语言、系统管理知识、版本控制、打包与部署、命名规则以及文件压缩技术等多方面的知识点。这些知识点对于理解和应用Python进行系统管理软件开发以及软件的版本迭代、打包与部署均具有重要意义。
recommend-type

深入解析PCB走线传输延时:关键因素与实用公式

# 1. PCB走线传输延时基础 在电子工程领域,尤其是在印刷电路板(PCB)设计中,走线传输延时是一个不可忽视的重要概念。传输延时主要指的是电信号通过PCB上的导电路径从源头传送到目的地所耗费的时间。本章将介绍PCB走线传输延时的基础知识点,为后续章节的深入探讨打下坚实的基础。 首先,了解什么是传输延时是至关重要的。简单来说,它反
recommend-type

gpio很弱是什么意思

<think>嗯,用户的问题是关于GPIO信号弱的概念及其影响。用户似乎对硬件或嵌入式系统有一定了解,但需要更深入的解释。从用户提到的"信号弱"来看,ta可能遇到了实际电路设计中的驱动能力问题,或者在学习GPIO原理时遇到了术语困惑。 用户引用了四篇资料,其中提到GPIO的模拟输入输出模式、施密特触发器的作用、上拉下拉电阻的配置,以及信号线串联电阻的作用。这些内容都与GPIO的驱动能力和信号质量相关。特别是引用[4]中提到的"信号线串联小电阻"和"低频电路不考虑反射",暗示用户可能正在处理实际电路中的信号完整性问题。 用户真正想知道的可能是:为什么我的GPIO输出无法正确驱动某个设备?或者
recommend-type

Python打造的Slaee管理系统升级版发布

标题中的“基于python的slaee管理系统”表明这是一个使用Python编程语言开发的系统。Python是一种广泛使用的高级编程语言,以其易读性和简洁的语法而闻名。SLAEE管理系统可能是指一个特定类型的管理软件,但由于没有给出缩写的完整解释,我们可以假设SLAEE可能是某机构或系统名称的缩写。 从标题和描述来看,存在一处笔误:“基于python的slaee管理系统 (19).zip”和“基于python的slaee管理系统 (18).zip”所指的似乎是同一软件系统,只是版本号不同。根据文件名称列表中的两个文件名,可以推断系统至少有两个版本,一个是版本18,一个是版本19。通常情况下,版本号的增加表示软件进行了更新或改进。 接下来,根据这些信息,我们可以阐述一些相关的知识点: 1. Python编程基础:Python是一种解释型、面向对象、高级编程语言。Python支持多种编程范式,包括过程式、面向对象和函数式编程。Python由于其简洁和易于学习的特性,被广泛应用于网络开发、数据分析、人工智能、机器学习和科学计算等领域。 2. 文件压缩与打包:文件压缩是将文件的大小减小以节省存储空间或网络传输时间的技术。常见的文件压缩格式包括ZIP、RAR、7Z等。文件打包通常指的是将多个文件或文件夹压缩成一个单独的文件。这在数据备份、软件分发和档案管理中非常常见。 3. 版本控制:在软件开发中,“版本”通常指软件的特定状态,版本号则用来标识这些状态。版本控制是一种记录文件、目录或集合随着时间变化的方式,以便将来可以检索特定版本。对于软件项目来说,版本控制是至关重要的,它不仅允许开发者追踪和管理代码的变化,而且还能帮助团队协作,解决冲突,并回滚到旧版本。 4. 软件管理系统的开发:一个软件管理系统可能是针对特定业务领域而设计的,它可能包括用户界面、数据库管理、业务逻辑处理、报告生成和其他许多功能。软件管理系统的开发通常涉及需求分析、系统设计、编程、测试和维护等多个阶段。 5. Python在软件开发中的应用:Python因为具有丰富的库和框架,被广泛用于开发各种类型的软件。例如,Django和Flask是用于Web开发的流行Python框架;而对于数据分析和数据科学任务,Pandas、NumPy和Matplotlib等库提供了强大的数据处理和可视化工具;对于机器学习和人工智能,TensorFlow、PyTorch等库使得复杂算法的实现变得更为简单。 6. 系统更新与维护:随着软件的使用和发展,需求可能会变化,新的问题可能会出现,所以软件系统需要定期进行更新和维护。软件更新可能包括修复已知问题、改进现有功能、增加新功能或优化性能。开发者需要评估是否需要为修复安全漏洞或提高系统性能而更新系统,以及更新之后对用户体验的影响。 由于文件名中只提到了“基于python的slaee管理系统”,没有提供该系统具体功能的详细描述,我们无法提供更加具体的技术知识点。如果需要分析系统的工作原理或具体的技术实现细节,还需要更多的信息。
recommend-type

【Keil-ARM编程艺术】:如何编写可维护且高效的代码

# 摘要 本文旨在为读者提供ARM微控制器编程和Keil开发环境的全面指南。第一章概览了ARM微控制
recommend-type

应用层协议概述

<think>首先,用户的问题是:“我想了解应用层协议的基本概念和常见类型 请问应用层协议简介 常见应用层协议概述”。这翻译成:“I want to understand the basic concepts of application layer protocols and common types. Please introduce application layer protocols and overview common application layer protocols.” 根据系统级指令: - 所有行内数学表达式必须使用$...$格式。 - 独立公式使用$$...$$格式
recommend-type

Delphi 12 TeeChartVCLFMX控件包下载及功能介绍

标题中提到的"Delphi 12 控件之TeeChartVCLFMX-2024.40.rar"指的是Delphi 12版本中使用的TeeChartVCLFMX图表控件的特定版本(2024.40版本)。Delphi是由Embarcadero Technologies开发的一款流行的集成开发环境(IDE),专门用于使用Object Pascal和C++语言开发软件应用程序。该标题强调了Delphi 12环境下TeeChartVCLFMX控件的使用,这表明Delphi的图形用户界面(GUI)组件库中包含了一个专门用于创建复杂图表和图形的组件。 从描述中仅能得到的关于文件的名称是"TeeChartVCLFMX-2024.40.rar",这意味着文件是一个压缩包,具体包含了一个TeeChartVCLFMX的图表控件,版本号为2024.40。它可能包含了在Delphi 12版本中使用该图表控件所需的所有文件,包括库文件、二进制文件、文档等。 标签"delphi 控件"简单而直接地指出了该文件属于Delphi编程环境中的一个控件类别,表明了目标用户是Delphi开发者,他们通常使用这些控件来丰富他们的应用程序界面或增强应用程序的功能。 文件名称列表提供了关于TeeChartVCLFMX压缩包内包含的具体文件及其用途的详细信息: 1. TeeChartVCLFMX-2024.40.exe:这个文件很可能是一个安装程序或可执行文件,用于安装或运行TeeChartVCLFMX图表控件。 2. Keygen.exe:这个文件名表明它可能是一个密钥生成器(Key Generator),用于生成软件的注册码或激活码,使得控件可以脱离试用限制或进行合法授权。 3. Delphi29Binaries-2024.40-windows.pak:这个文件名暗示它包含了特定于Windows平台的Delphi 29(可能指的是Delphi 12的内部版本号)的二进制文件。pak文件是压缩包的一种格式,可能包含了运行TeeChartVCLFMX图表控件所需的库文件、DLLs、组件文件等。 4. TeeChartVCLFMX-2024.40 - D12.pdf:这是一个PDF格式的文件,很可能是用户手册或帮助文档,提供了对TeeChartVCLFMX图表控件版本2024.40在Delphi 12中的使用说明,安装指南,功能介绍或示例代码等。 综合以上信息,可以推断TeeChartVCLFMX-2024.40压缩包是为Delphi 12的开发人员提供了一个专业的图表解决方案,使得用户能够将图表功能集成到他们用Delphi开发的应用程序中。TeeChartVCLFMX可能包含各种图表类型(如条形图、折线图、饼图等),以及丰富的定制选项,如颜色、样式、图例、数据绑定、交互式功能等。开发者可以利用TeeChartVCLFMX提供的图表控件在应用程序中创建强大的数据可视化功能,这对数据分析、科学计算、商业智能、财务报告等领域特别有用。 开发者需要使用Delphi 12 IDE配合提供的组件安装程序或执行文件安装和配置TeeChartVCLFMX控件,通过阅读PDF文档来了解如何使用控件,并在需要时使用Keygen.exe激活控件。Delphi29Binaries-2024.40-windows.pak文件可能包含了控件运行所需的核心二进制组件。通过合理使用这些资源,开发者可以将TeeChartVCLFMX控件集成到自己的项目中,快速构建功能丰富的图表和数据可视化组件。
recommend-type

【Keil-ARM性能优化全解】:代码监控与优化工具的实用技巧

# 摘要 本文对基于Keil-ARM平台的性能优化进行了系统性探讨,涵盖了性能监控工具的介绍、代码优化策略、系统资源管理以及综合案例分析。首先,介绍了Keil-ARM的性能监控工具及其在性能分析中的重要性,包括工具的配置和性能数据解读方法。其次,文中讨论了代码层面的优化,包括高效循环和条件语句的编写,函数内联与尾调用优化,以及编译器优化选项的应用。然后,深入分析了ARM系统资源分配、
recommend-type

电子邮箱协议

<think>首先,用户的问题是:“我想了解电子邮箱相关的协议 请问电子邮件协议有哪些”。这直接询问电子邮件协议的种类。 从系统级指令中,我需要: - 使用中文回答。 - 结构清晰,帮助用户逐步解决问题。 - 保证回答真实可靠。 - 在行内数学表达式使用 $...$,但这里可能没有数学内容。 - 独立公式使用 $$...$$,但可能不需要。 - 生成相关问题。 - 在引用的段落末尾添加引用标识如 [^1]。 参考提供的引用: - 引用[1]: 讨论了SMTP、POP3和IMAP。 - 引用[2]: 提到电子邮件系统采用客户机/服务器模式,涉及接收和发送邮件。 - 引用[3]: 详细描述了P