将下列代码转化为python代码map<string,string> word;//记录单词 map<string,int>m;//记录词频 map<string ,string>::iterator it; int level = 0; vector<string> ans; struct TrieNode{ bool isOver = false;//判断是不是单词结尾 char data = NULL; struct TrieNode *child[26];//下层节点 }; TrieNode *CreatTrie(void){ //建树 TrieNode *root = new TrieNode; for(int i = 0 ; i < 26 ; i++) { root->data = NULL; root->child[i] = NULL; } root->isOver = false; return root; };
时间: 2024-03-26 09:36:43 浏览: 187
word = {}
m = {}
it = word.items()
level = 0
ans = []
class TrieNode:
def __init__(self):
self.isOver = False
self.data = None
self.child = [None]*26
def CreatTrie():
root = TrieNode()
for i in range(26):
root.data = None
root.child[i] = None
root.isOver = False
return root
相关问题
修改下列程序,for path in tpdm(data_fpaths): Image = sitk.ReadImage(path) img_array = sitk.GetArrayFromImage(Image)[0] id = path.split('\\')[-1][:-4] #直接保存测试集 if 'test' in path: save_path = os.path.join(data_root,'test',f'{id}.png') cv2.imwrite(save_path,img_array) else: labels = train_labels[train_labels['patientId'] == id] classes = class_info[class_in,读取该程序生成的npy文件转换成xml标签文件并保存在D盘的RSNA的data文件中,xml文件格式为<annotation> <folder>train</folder> <filename>example.npy</filename> <path>D:\RSNA\data\train\example.npy</path> <source> <database>Unknown</database> </source> <size> <width>{width}</width> <height>{height}</height> <depth>{depth}</depth> </size> <segmented>0</segmented> <object> <name>{class_name}</name> <pose>Unspecified</pose> <truncated>0</truncated> <difficult>0</difficult> <bndbox> <xmin>{xmin}</xmin> <ymin>{ymin}</ymin> <xmax>{xmax}</xmax> <ymax>{ymax}</ymax> </bndbox> </object> </annotation>,如果没有name,就自动命名为feiyan,
### 修改后的Python代码实现
以下是经过优化和完善的Python代码,用于读取`.npy`文件并将其转换为特定格式的XML标签文件。如果 `<object>/<name>` 字段缺失,则会自动设置其值为 `'feiyan'`。
#### 代码实现
```python
import numpy as np
import xml.etree.ElementTree as ET
from xml.dom import minidom
import os
def prettify(elem):
"""Return a pretty-printed XML string for the given Element."""
rough_string = ET.tostring(elem, 'utf-8')
reparsed = minidom.parseString(rough_string)
return reparsed.toprettyxml(indent=" ")
def generate_xml(filename, data, width=512, height=512, depth=3, class_name='feiyan', bbox=None):
"""
Generate an XML annotation file based on the input parameters.
Args:
filename (str): Name of the source file.
data (dict): Dictionary containing metadata such as bounding box coordinates.
width (int): Width of the image or dataset.
height (int): Height of the image or dataset.
depth (int): Depth of the image channels.
class_name (str): Class label for objects; defaults to 'feiyan'.
bbox (list): Bounding box information [xmin, ymin, xmax, ymax].
Returns:
str: Pretty-printed XML string.
"""
# Define root element <annotation>
annotation = ET.Element('annotation')
# Add child elements under <annotation>
folder = ET.SubElement(annotation, 'folder')
folder.text = 'train'
fname = ET.SubElement(annotation, 'filename')
fname.text = filename
path = ET.SubElement(annotation, 'path')
path.text = f'D:\\RSNA\\data\\train\\{filename}'
source = ET.SubElement(annotation, 'source')
database = ET.SubElement(source, 'database')
database.text = 'Unknown'
size = ET.SubElement(annotation, 'size')
w = ET.SubElement(size, 'width')
h = ET.SubElement(size, 'height')
d = ET.SubElement(size, 'depth')
w.text = str(width)
h.text = str(height)
d.text = str(depth)
segmented = ET.SubElement(annotation, 'segmented')
segmented.text = '0'
obj = ET.SubElement(annotation, 'object')
name = ET.SubElement(obj, 'name')
name.text = data.get('name', class_name) # Use default if missing
pose = ET.SubElement(obj, 'pose')
pose.text = 'Unspecified'
truncated = ET.SubElement(obj, 'truncated')
truncated.text = '0'
difficult = ET.SubElement(obj, 'difficult')
difficult.text = '0'
bndbox = ET.SubElement(obj, 'bndbox')
xmin = ET.SubElement(bndbox, 'xmin')
ymin = ET.SubElement(bndbox, 'ymin')
xmax = ET.SubElement(bndbox, 'xmax')
ymax = ET.SubElement(bndbox, 'ymax')
if bbox is None:
bbox = [0, 0, width, height]
xmin.text, ymin.text, xmax.text, ymax.text = map(str, bbox)
return prettify(annotation)
# Directory setup
input_dir = r'I:\software\npy_files' # Path where .npy files reside
output_dir = r'D:\RSNA\data\xml_annotations' # Output directory for XMLs
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Process all .npy files in the specified directory
for file in os.listdir(input_dir):
if file.endswith('.npy'):
filepath = os.path.join(input_dir, file)
try:
data_array = np.load(filepath) # Load .npy file contents
# Example processing logic: Assume first four values represent bbox
bbox_data = list(map(int, data_array[:4])) if len(data_array) >= 4 else [0, 0, 512, 512]
# Construct dictionary with optional fields like 'name'
meta_info = {
'name': 'custom_class' if 'custom_logic_here' else None,
**{'bbox': bbox_data}
}
# Generate XML content
xml_content = generate_xml(
filename=file,
data=meta_info,
width=data_array[4] if len(data_array) > 4 else 512,
height=data_array[5] if len(data_array) > 5 else 512,
depth=int(data_array[6]) if len(data_array) > 6 else 3
)
# Write output XML file
output_filepath = os.path.join(output_dir, f'{os.path.splitext(file)[0]}.xml')
with open(output_filepath, 'w', encoding='utf-8') as out_file:
out_file.write(xml_content)
except Exception as e:
print(f"Error processing {filepath}: {e}")
print("All .npy files have been successfully converted to XML annotations.")
```
---
### 关键点解析
1. **XML生成逻辑**
- 使用 `xml.etree.ElementTree` 构建树形结构。
- 默认情况下,当 `<object>/<name>` 缺失时,填充默认值 `'feiyan'`[^1]。
2. **边界框处理**
- 假设 `.npy` 文件前四个数值表示 `[xmin, ymin, xmax, ymax]` 边界框坐标。
- 若无有效数据,默认使用图像尺寸 `(0, 0)` 至 `(width, height)`[^2]。
3. **元数据提取**
- 图像宽度 (`width`)、高度 (`height`) 和通道数 (`depth`) 可选自 `.npy` 数组后续部分;若不存在则采用预定义值。
4. **异常捕获**
- 对于无法正常加载或处理的数据文件,记录错误日志以便排查问题。
---
###
用py写一段代码 <div class="page"><b>1</b><a href="/dongman/index_2.htm">2</a><a href="/dongman/index_3.htm">3</a><a href="/dongman/index_4.htm">4</a><a href="/dongman/index_5.htm">5</a><a href="/dongman/index_6.htm">6</a><a href="/dongman/index_7.htm">7</a><a href="/dongman/index_8.htm">8</a><span class="slh">…</span><a href="/dongman/index_116.htm">116</a><a href="/dongman/index_2.htm" class="prev">下一页></a></div> 这是我的思路 取所有htm|\"(.*?)</然后输出最大的数
你使用正则表达式来提取字符串中的数字找到其中的最大值。以下是Python实现的代码示例:
```
import re
html_string = '<div class="page"><b>1</><a href="/dongman/index_2.htm">2</a><a href="/dongman/index_3.htm">3</aa href="/dongman/index_4.htm">4</a><a href="/dongman/index_5.htm">5</a><a href="/dongman/index_6.htm">6</a><a href="/dongman/index_7.htm">7</a><a href="/dongman/index_8.htm">8</a><span class="slh">…</span><a href="/dongman/index_116.htm">116</a><a href="/dongman/index_2.htm" class="prev">下一页></a></div>'
numbers = re.findall(r'\d+', html_string)
max_number = max(map(int, numbers))
print(max_number)
```
这段代码会输出数字中的最大值,即116。它首先使用正则表达式`r'\d+'`匹配字符串中的所有数字,然后将这些数字转换为整数并找到其中的最大值,最后打印出来。
阅读全文
相关推荐
















