D:\anaconda3\envs\pytorch\lib\site-packages\numpy\__init__.py:148: UserWarning: mkl-service package failed to import, therefore Intel(R) MKL initialization ensuring its correct out-of-the box operation under condition when Gnu OpenMP had already been loaded by Python process is not assured. Please install mkl-service package, see http://github.com/IntelPython/mkl-service from . import _distributor_init Traceback (most recent call last): File "D:\anaconda3\envs\pytorch\lib\site-packages\numpy\core\__init__.py", line 22, in <module> from . import multiarray File "D:\anaconda3\envs\pytorch\lib\site-packages\numpy\core\multiarray.py", line 12, in <module> from . import overrides File "D:\anaconda3\envs\pytorch\lib\site-packages\numpy\core\overrides.py", line 7, in <module> from numpy.core._multiarray_umath import ( ImportError: DLL load failed: 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\cityscapesYOLOv5\code\ui.py", line 7, in <module> import torch File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\__init__.py", line 196, in <module> from torch._C import * File "D:\anaconda3\envs\pytorch\lib\site-packages\numpy\__init__.py", line 150, in <module> from . import core File "D:\anaconda3\envs\pytorch\lib\site-packages\numpy\core\__init__.py", line 48, in <module> raise ImportError(msg) ImportError: IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE! Importing the numpy C-extensions failed. This error can happen for many reasons, often due to issues with your setup or how NumPy was installed. We have compiled some common reasons and troubleshooting tips at: https://numpy.org/devdocs/user/troubleshooting-importerror.html Please note and check the following: * The Python version is: Python3.7 from "D:\anaconda3\envs\pytorch\python.exe" * The NumPy version is: "1.21.5" and make sure that they are the versions you expect

时间: 2025-07-06 16:34:14 浏览: 8
<think>嗯,我现在遇到了一个问题,就是在Anaconda环境里用Python 3.7,numpy 1.21.5和PyTorch的时候,导入numpy的时候报错,说是mkl-service找不到,或者DLL加载失败。这该怎么解决呢? 首先,我应该回忆一下之前有没有碰到类似的问题。好像有时候安装包的时候,依赖没装全就会这样。特别是像numpy这样的科学计算库,可能需要Intel的MKL库支持。用户提到用的是Anaconda,可能conda的管理工具可以解决这个问题。 用户已经引用了几个解决方案,比如重新安装numpy,或者用conda安装numpy、mkl等。可能需要按照这些步骤来操作。比如先卸载现有的numpy,然后重新安装,同时安装mkl相关的包。另外,还要更新环境和清理缓存,可能旧的缓存文件导致加载失败。 步骤的话,可能应该先尝试卸载numpy,然后安装numpy和mkl相关的包。比如执行conda uninstall numpy,然后conda install numpy mkl mkl-include。接着更新整个环境conda update --all,再清理缓存conda clean --all。这样应该能确保所有的依赖都正确安装,并且没有残留的旧文件。 不过,用户已经试过这些步骤吗?可能有时候需要检查是否安装了正确版本的包。比如numpy 1.21.5是否兼容Python 3.7,以及对应的mkl版本。另外,可能需要检查系统环境变量,有没有冲突的路径,或者是否缺少某些运行时库。例如,某些DLL文件可能在系统路径中缺失,或者被其他软件覆盖了。 还有用户提到在PyTorch虚拟环境中出现这个问题,可能是环境隔离的问题。确保激活了正确的conda环境,并在该环境中重新安装相关包。有时候,即使使用conda,如果之前用pip安装过某些包,可能会导致依赖冲突。所以可能需要彻底删除numpy和相关包,再通过conda安装。 另外,检查CPU架构也是必要的,比如是否安装了32位的库在64位系统上,或者反之。Anaconda通常会自动处理这些,但有时候可能出错。可以用conda info命令查看当前环境的详细信息,确认平台是否正确。 如果上述步骤都无效,可能需要考虑创建新的conda环境,重新安装所有依赖,这样避免旧环境中的残留问题。或者检查错误信息中的具体DLL名称,看看是哪个文件缺失,然后手动寻找解决方案,比如安装对应的Visual C++ Redistributable包。 另外,用户提到的引用[3]中,有人遇到mkl-service导入失败的问题,可能和这个情况类似。可能需要确保mkl-service包是否正确安装,或者尝试单独安装它:conda install mkl-service。 总结一下,可能的解决步骤是: 1. 卸载现有的numpy和相关包。 2. 重新安装numpy和mkl的依赖。 3. 更新整个conda环境并清理缓存。 4. 检查环境是否正确,包括激活的环境和CPU架构。 5. 如果问题依旧,考虑创建新环境或检查系统依赖项。 可能需要按顺序执行这些步骤,并逐一验证是否解决了问题。</think>### 分步解决方案 #### 问题背景 在Anaconda环境中使用Python 3.7、NumPy 1.21.5和PyTorch时,导入NumPy报错`mkl-service`缺失或DLL加载失败。根本原因是Intel数学核心库(MKL)未正确安装或环境依赖冲突。 --- ### 步骤1:卸载现有NumPy并清理残留 1. **卸载NumPy**: ```bash conda uninstall numpy ``` 此操作会移除当前环境中可能损坏的NumPy版本[^1]。 2. **强制清理依赖**: ```bash conda remove --force numpy mkl mkl-service ``` 确保彻底删除与MKL相关的残留文件。 --- ### 步骤2:重新安装NumPy及MKL依赖 1. **通过Conda安装完整依赖**: ```bash conda install numpy mkl mkl-include mkl-service ``` Conda会自动安装兼容的MKL库和NumPy版本[^2]。 2. **指定版本(可选)**: 若需严格匹配Python 3.7和NumPy 1.21.5,可指定版本: ```bash conda install numpy=1.21.5 mkl=2021.4.0 mkl-service=2.4.0 ``` --- ### 步骤3:更新环境并清理缓存 1. **更新所有包**: ```bash conda update --all ``` 修复潜在的依赖冲突。 2. **清理Conda缓存**: ```bash conda clean --all ``` 删除旧包缓存以避免加载错误。 --- ### 步骤4:验证环境配置 1. **检查CPU架构兼容性**: - 运行`conda info`,确认`platform`为`win64`(Windows)或`linux-64`(Linux)。 - 若系统为64位但安装了32位库,需重新创建环境: ```bash conda create -n new_env python=3.7 numpy mkl ``` 2. **激活环境**: ```bash conda activate your_env_name ``` 确保操作在目标环境中执行。 --- ### 步骤5:排查系统级依赖 1. **安装Visual C++ Redistributable**: - 从微软官网下载并安装[最新VC++运行库](https://support.microsoft.com/en-us/topic/the-latest-supported-visual-c-downloads-2647da03-1eea-4433-9aff-95f26a218cc0),修复缺失的DLL文件。 2. **检查系统PATH变量**: - 确保Anaconda的`Library\bin`路径(如`C:\Anaconda3\Library\bin`)在系统PATH中,避免第三方软件覆盖MKL的DLL。 --- ### 步骤6:重建环境(终极方案) 若仍报错,建议新建环境: ```bash conda create -n numpy_fix python=3.7 numpy=1.21.5 pytorch mkl mkl-service conda activate numpy_fix ``` 此方法隔离了旧环境中的潜在冲突[^3]。 --- ### 验证是否解决 运行Python并执行: ```python import numpy as np print(np.__config__.show()) # 应显示"mkl_info" ``` 若输出包含`mkl`信息,则表明问题已解决。 ---
阅读全文

相关推荐

什么原因怎么解决D:\anaconda3\envs\pytorch\lib\site-packages\numpy\__init__.py:148: UserWarning: mkl-service package failed to import, therefore Intel(R) MKL initialization ensuring its correct out-of-the box operation under condition when Gnu OpenMP had already been loaded by Python process is not assured. Please install mkl-service package, see http://github.com/IntelPython/mkl-service from . import _distributor_init Traceback (most recent call last): File "D:\anaconda3\envs\pytorch\lib\site-packages\numpy\core\__init__.py", line 22, in <module> from . import multiarray File "D:\anaconda3\envs\pytorch\lib\site-packages\numpy\core\multiarray.py", line 12, in <module> from . import overrides File "D:\anaconda3\envs\pytorch\lib\site-packages\numpy\core\overrides.py", line 7, in <module> from numpy.core._multiarray_umath import ( ImportError: DLL load failed: 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\cityscapesYOLOv5\code\ui.py", line 7, in <module> import torch File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\__init__.py", line 196, in <module> from torch._C import * File "D:\anaconda3\envs\pytorch\lib\site-packages\numpy\__init__.py", line 150, in <module> from . import core File "D:\anaconda3\envs\pytorch\lib\site-packages\numpy\core\__init__.py", line 48, in <module> raise ImportError(msg) ImportError: IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE! Importing the numpy C-extensions failed. This error can happen for many reasons, often due to issues with your setup or how NumPy was installed. We have compiled some common reasons and troubleshooting tips at: https://numpy.org/devdocs/user/troubleshooting-importerror.html Please note and check the following: * The Python version is: Python3.7 from "D:\anaconda3\envs\pytorch\python.exe" * The NumPy version is: "1.21.5" and make sure that they are the versions yo

D:\Anaconda3\envs\torch_gpu\python.exe D:\desktop\zhongcaoyao\PyTorch-Classification-Trainer\train.py A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.4 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\desktop\zhongcaoyao\PyTorch-Classification-Trainer\train.py", line 13, in <module> from basetrainer.engine import trainer File "D:\Anaconda3\envs\torch_gpu\lib\site-packages\basetrainer\engine\trainer.py", line 7, in <module> import torch File "D:\Anaconda3\envs\torch_gpu\lib\site-packages\torch\__init__.py", line 870, in <module> from . import _masked File "D:\Anaconda3\envs\torch_gpu\lib\site-packages\torch\_masked\__init__.py", line 420, in <module> def sum(input: Tensor, File "D:\Anaconda3\envs\torch_gpu\lib\site-packages\torch\_masked\__init__.py", line 223, in _apply_docstring_templates example_input = torch.tensor([[-3, -2, -1], [0, 1, 2]]) D:\Anaconda3\envs\torch_gpu\lib\site-packages\torch\_masked\__init__.py:223: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ..\torch\csrc\utils\tensor_numpy.cpp:68.) example_input = torch.tensor([[-3, -2, -1], [0, 1, 2]]) torch version:1.11.0+cpu 0.9.5 ============================================================ config_file: configs/config.yaml distributed: False train_data: ['D:/PycharmProjects/PyTorch-Classification-Trainer/data/dataset/train'] test_data: D:/PycharmProjects/PyTorch-Classification-Trainer/data/dataset/test class_name: D:/PycharmProjects/PyTorch-Classification-Trainer/data/dataset/class_name.txt train_transform: train test_transform: test work_dir: work_space/ n

D:\anaconda3\envs\GPU_pytorch\python.exe D:\python.learn\datasetload\main.py A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "D:\python.learn\datasetload\main.py", line 2, in <module> import torchvision File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\__init__.py", line 5, in <module> from torchvision import datasets, io, models, ops, transforms, utils File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\__init__.py", line 17, in <module> from . import detection, optical_flow, quantization, segmentation, video File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\__init__.py", line 1, in <module> from .faster_rcnn import * File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\faster_rcnn.py", line 16, in <module> from .anchor_utils import AnchorGenerator File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 10, in <module> class AnchorGenerator(nn.Module): File "D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 63, in AnchorGenerator device: torch.device = torch.device("cpu"), D:\anaconda3\envs\GPU_pytorch\lib\site-packages\torchvision\models\detection\anchor_utils.py:63: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at C:\cb\pytorch_1000000000000\work\torch\csrc\utils\tensor_numpy.cpp:77.) device: torch.device = torch.device("cpu"), Files already downloaded and verified

E:\Anaconda\envs\CNN\lib\site-packages\torch\_subclasses\functional_tensor.py:275: UserWarning: Failed to initialize NumPy: DLL load failed while importing _multiarray_umath: 找不到指定的模块。 (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\torch\csrc\utils\tensor_numpy.cpp:81.) cpu = _conversion_method_template(device=torch.device("cpu")) Traceback (most recent call last): File "E:\0_1cnn\test.py", line 6, in <module> output = model(x) # 接收 File "E:\Anaconda\envs\CNN\lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "E:\Anaconda\envs\CNN\lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl return forward_call(*args, **kwargs) File "E:\0_1cnn\cnn.py", line 28, in forward x = self.classifier(x) File "E:\Anaconda\envs\CNN\lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "E:\Anaconda\envs\CNN\lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl return forward_call(*args, **kwargs) File "E:\Anaconda\envs\CNN\lib\site-packages\torch\nn\modules\container.py", line 250, in forward input = module(input) File "E:\Anaconda\envs\CNN\lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "E:\Anaconda\envs\CNN\lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl return forward_call(*args, **kwargs) File "E:\Anaconda\envs\CNN\lib\site-packages\torch\nn\modules\linear.py", line 125, in forward return F.linear(input, self.weight, self.bias) RuntimeError: mat1 and mat2 shapes cannot be multiplied (57344x56 and 100352x128)

A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "E:\yolov5-7.0\detect.py", line 43, in <module> from models.common import DetectMultiBackend File "E:\yolov5-7.0\models\common.py", line 29, in <module> from utils.dataloaders import exif_transpose, letterbox File "E:\yolov5-7.0\utils\dataloaders.py", line 25, in <module> import torchvision File "E:\anaconda\envs\yolov5\lib\site-packages\torchvision\__init__.py", line 6, in <module> from torchvision import datasets, io, models, ops, transforms, utils File "E:\anaconda\envs\yolov5\lib\site-packages\torchvision\models\__init__.py", line 17, in <module> from . import detection, optical_flow, quantization, segmentation, video File "E:\anaconda\envs\yolov5\lib\site-packages\torchvision\models\detection\__init__.py", line 1, in <module> from .faster_rcnn import * File "E:\anaconda\envs\yolov5\lib\site-packages\torchvision\models\detection\faster_rcnn.py", line 16, in <module> from .anchor_utils import AnchorGenerator File "E:\anaconda\envs\yolov5\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 10, in <module> class AnchorGenerator(nn.Module): File "E:\anaconda\envs\yolov5\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 63, in AnchorGenerator device: torch.device = torch.device("cpu"), E:\anaconda\envs\yolov5\lib\site-packages\torchvision\models\detection\anchor_utils.py:63: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\wi

Traceback (most recent call last): File "F:\xiangmu\yolov8-main\yolov8-main\detect.py", line 1, in <module> from ultralytics import YOLO File "F:\xiangmu\yolov8-main\yolov8-main\ultralytics\__init__.py", line 5, in <module> from ultralytics.yolo.engine.model import YOLO File "F:\xiangmu\yolov8-main\yolov8-main\ultralytics\yolo\__init__.py", line 3, in <module> from . import v8 File "F:\xiangmu\yolov8-main\yolov8-main\ultralytics\yolo\v8\__init__.py", line 3, in <module> from ultralytics.yolo.v8 import classify, detect, segment File "F:\xiangmu\yolov8-main\yolov8-main\ultralytics\yolo\v8\classify\__init__.py", line 3, in <module> from ultralytics.yolo.v8.classify.predict import ClassificationPredictor, predict File "F:\xiangmu\yolov8-main\yolov8-main\ultralytics\yolo\v8\classify\predict.py", line 5, in <module> from ultralytics.yolo.engine.predictor import BasePredictor File "F:\xiangmu\yolov8-main\yolov8-main\ultralytics\yolo\engine\predictor.py", line 36, in <module> from ultralytics.nn.autobackend import AutoBackend File "F:\xiangmu\yolov8-main\yolov8-main\ultralytics\nn\autobackend.py", line 20, in <module> from ultralytics.yolo.utils.ops import xywh2xyxy File "F:\xiangmu\yolov8-main\yolov8-main\ultralytics\yolo\utils\ops.py", line 10, in <module> import torchvision File "E:\Anaconda\envs\yolov8\lib\site-packages\torchvision\__init__.py", line 5, in <module> from torchvision import datasets, io, models, ops, transforms, utils File "E:\Anaconda\envs\yolov8\lib\site-packages\torchvision\models\__init__.py", line 17, in <module> from . import detection, optical_flow, quantization, segmentation, video File "E:\Anaconda\envs\yolov8\lib\site-packages\torchvision\models\detection\__init__.py", line 1, in <module> from .faster_rcnn import * File "E:\Anaconda\envs\yolov8\lib\site-packages\torchvision\models\detection\faster_rcnn.py", line 16, in <module> from .anchor_utils import AnchorGenerator File "E:\Anaconda\envs\yolov8\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 10, in <module> class AnchorGenerator(nn.Module): File "E:\Anaconda\envs\yolov8\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 63, in AnchorGenerator device: torch.device = torch.device("cpu"), E:\Anaconda\envs\yolov8\lib\site-packages\torchvision\models\detection\anchor_utils.py:63: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at C:\cb\pytorch_1000000000000\work\torch\csrc\utils\tensor_numpy.cpp:77.) device: torch.device = torch.device("cpu"), Ultralytics YOLOv8.0.49 Python-3.9.21 torch-1.13.1 CUDA:0 (NVIDIA GeForce RTX 3050 Laptop GPU, 4096MiB) YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs

(Brain) PS C:\Users\22655\Desktop\temp\VL-Grasp-main\GraspNet\knn> python setup.py install A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.1 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "C:\Users\22655\Desktop\temp\VL-Grasp-main\GraspNet\knn\setup.py", line 6, in <module> import torch File "D:\Application\anaconda\envs\Brain\lib\site-packages\torch\__init__.py", line 1477, in <module> from .functional import * # noqa: F403 File "D:\Application\anaconda\envs\Brain\lib\site-packages\torch\functional.py", line 9, in <module> import torch.nn.functional as F File "D:\Application\anaconda\envs\Brain\lib\site-packages\torch\nn\__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "D:\Application\anaconda\envs\Brain\lib\site-packages\torch\nn\modules\__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "D:\Application\anaconda\envs\Brain\lib\site-packages\torch\nn\modules\transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), D:\Application\anaconda\envs\Brain\lib\site-packages\torch\nn\modules\transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at C:\cb\pytorch_1000000000000\work\torch\csrc\utils\tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), running install D:\Application\anaconda\envs\Brain\lib\site-packages\setuptools\_distutils\cmd.py:90: SetuptoolsDeprecationWarning: setup.py install is deprecated. !! ******************************************************************************** Please avoid running setup.py directly. Instead, use pypa/build, pypa/installer or other standards-based tools. See https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html for details. ******************************************************************************** !! self.initialize_options() D:\Application\anaconda\envs\Brain\lib\site-packages\setuptools\_distutils\cmd.py:90: EasyInstallDeprecationWarning: easy_install command is deprecated. !! ******************************************************************************** Please avoid running setup.py and easy_install. Instead, use pypa/build, pypa/installer or other standards-based tools. See https://github.com/pypa/setuptools/issues/917 for details. ******************************************************************************** !! self.initialize_options() running bdist_egg running egg_info writing knn_pytorch.egg-info\PKG-INFO writing dependency_links to knn_pytorch.egg-info\dependency_links.txt writing top-level names to knn_pytorch.egg-info\top_level.txt D:\Application\anaconda\envs\Brain\lib\site-packages\torch\utils\cpp_extension.py:500: UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja.. Falling back to using the slow distutils backend. warnings.warn(msg.format('we could not find ninja.')) reading manifest file 'knn_pytorch.egg-info\SOURCES.txt' writing manifest file 'knn_pytorch.egg-info\SOURCES.txt' installing library code to build\bdist.win-amd64\egg running install_lib running build_ext D:\Application\anaconda\envs\Brain\lib\site-packages\torch\utils\cpp_extension.py:381: UserWarning: Error checking compiler version for cl: [WinError 2] 系统找不到指定的文件。 warnings.warn(f'Error checking compiler version for {compiler}: {error}') running build_ext D:\Application\anaconda\envs\Brain\lib\site-packages\torch\utils\cpp_extension.py:381: UserWarning: Error checking compiler version for cl: [WinError 2] 系统找不到指定的文件。 warnings.warn(f'Error checking compiler version for {compiler}: {error}') error: [WinError 2] 系统找不到指定的文件。

Downloading https://pypi.tuna.tsinghua.edu.cn/packages/1d/c7/6e21ecece28e6d625f42e708c7523cd78ec82d1622f98562f82bf02748b7/mamba_ssm-2.2.4.tar.gz (91 kB) Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> [23 lines of output] C:\Users\admin\AppData\Local\Temp\pip-build-env-0ie_wrtf\overlay\Lib\site-packages\torch\_subclasses\functional_tensor.py:275: UserWarning: Failed to initialize NumPy: No module named 'numpy' (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\torch\csrc\utils\tensor_numpy.cpp:81.) cpu = _conversion_method_template(device=torch.device("cpu")) <string>:118: UserWarning: mamba_ssm was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc. torch.__version__ = 2.6.0+cpu Traceback (most recent call last): File "E:\anaconda\envs\mamba_env\lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 389, in <module> main() File "E:\anaconda\envs\mamba_env\lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 373, in main json_out["return_val"] = hook(**hook_input["kwargs"]) File "E:\anaconda\envs\mamba_env\lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 143, in get_requires_for_build_wheel return hook(config_settings) File "C:\Users\admin\AppData\Local\Temp\pip-build-env-0ie_wrtf\overlay\Lib\site-packages\setuptools\build_meta.py", line 334, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) File "C:\Users\admin\AppData\Local\Temp\pip-build-env-0ie_wrtf\ov

/home/cw/anaconda3/bin/conda run -n GPU_pytorch --no-capture-output python /tmp/fEokboZTuK/main.py A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "/tmp/fEokboZTuK/main.py", line 1, in <module> import torch File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/__init__.py", line 1477, in <module> from .functional import * # noqa: F403 File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /tmp/fEokboZTuK/main.py:89: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requi

大家在看

recommend-type

复盛压缩机选型软件.rar )

此款为官方专用,简单的压缩机可以选择。SRL型的没有,暂时不能使用请谨慎选择
recommend-type

多模态生理数据预测状态-飞行员

对应文章https://blog.csdn.net/devshilei/article/details/135049559中的图片以及logo
recommend-type

cubase 5 机架 好用方便的机架文件,内含效果器插件

cubase 5 机架 好用方便的机架文件,内含效果器插件
recommend-type

ISO 6469-3-2021 电动道路车辆 - 安全规范 - 第 3 部分:电气安全.docx

国际标准,txt格式 本文件规定了电力推进系统电压 B 级电路和电动道路车辆导电连接辅助电力系统的电气安全要求。 它规定了保护人员免受电击和热事故的电气安全要求。 它没有为制造、维护和维修人员提供全面的安全信息。 注 1: 碰撞后的电气安全要求在 ISO 6469-4 中有描述。 注 2:ISO 17409 描述了电动道路车辆与外部电源的导电连接的电气安全要求。 注 3: 外部磁场无线功率传输的特殊电气安全要求 在 ISO 19363 中描述了电力供应和电动车辆。 注 4 摩托车和轻便摩托车的电气安全要求在 ISO 13063 系列中有描述。 2 引用标准 以下文件在文中的引用方式是,其部分或全部内容构成本文件的要求。对于注明日期的参考文献,只有引用的版本适用。对于未注明日期的引用,引用文件的最新版本 (包括任何修订) 适用。 ISO 17409: 电动道路车辆。导电动力传输。安全要求 ISO 20653,道路车辆 - 保护程度 (IP 代码)- 电气设备防异物、水和接触的保护 IEC 60664 (所有部件) 低压系统内设备的绝缘配合 IEC 60990:2016,接触电流和保护导体
recommend-type

中国检查徽章背景的检察机关PPT模板

这是一套中国检查徽章背景的,检察机关PPT模板。第一PPT模板网提供精美军警类幻灯片模板免费下载; 关键词:蓝天白云、华表、彩带、中国检查徽章PPT背景图片,中国检查院工作汇报PPT模板,蓝色绿色搭配扁平化幻灯片图表,.PPTX格式;

最新推荐

recommend-type

§1.1-MATLAB操作界面.ppt

§1.1-MATLAB操作界面.ppt
recommend-type

英语-信息化教学设计.doc

英语-信息化教学设计.doc
recommend-type

数据库管理规范.doc

数据库管理规范.doc
recommend-type

GSM-R网络系统在武九电气化铁路无线通信中的应用.docx

GSM-R网络系统在武九电气化铁路无线通信中的应用.docx
recommend-type

全面解析SOAP库包功能与应用

从给定的文件信息中,我们可以提取到的核心知识点主要集中在“SOAP”这一项技术上,由于提供的信息量有限,这里将尽可能详细地解释SOAP相关的知识。 首先,SOAP代表简单对象访问协议(Simple Object Access Protocol),是一种基于XML的消息传递协议。它主要用于在网络上不同应用程序之间的通信。SOAP定义了如何通过HTTP和XML格式来构造消息,并规定了消息的格式应遵循XML模式。这种消息格式使得两个不同平台或不同编程语言的应用程序之间能够进行松耦合的服务交互。 在分布式计算环境中,SOAP作为一种中间件技术,可以被看作是应用程序之间的一种远程过程调用(RPC)机制。它通常与Web服务结合使用,Web服务是使用特定标准实现的软件系统,它公开了可以通过网络(通常是互联网)访问的API。当客户端与服务端通过SOAP进行通信时,客户端可以调用服务端上特定的方法,而不需要关心该服务是如何实现的,或者是运行在什么类型的服务器上。 SOAP协议的特点主要包括: 1. **平台无关性**:SOAP基于XML,XML是一种跨平台的标准化数据格式,因此SOAP能够跨越不同的操作系统和编程语言平台进行通信。 2. **HTTP协议绑定**:虽然SOAP协议本身独立于传输协议,但是它通常与HTTP协议绑定,这使得SOAP能够利用HTTP的普及性和无需额外配置的优势。 3. **消息模型**:SOAP消息是交换信息的载体,遵循严格的结构,包含三个主要部分:信封(Envelope)、标题(Header)和正文(Body)。信封是消息的外壳,定义了消息的开始和结束;标题可以包含各种可选属性,如安全性信息;正文则是实际的消息内容。 4. **错误处理**:SOAP提供了详细的错误处理机制,可以通过错误码和错误信息来描述消息处理过程中的错误情况。 5. **安全性和事务支持**:SOAP协议可以集成各种安全性标准,如WS-Security,以确保消息传输过程中的安全性和完整性。同时,SOAP消息可以包含事务信息,以便于服务端处理事务性的业务逻辑。 在描述中提到的“所有库包”,这可能意味着包含了SOAP协议的实现、相关工具集或库等。由于信息不足,这里的“库包”具体指的是什么并不清楚,但可以理解为与SOAP相关的软件开发工具包(SDK)或框架,它们使得开发者可以更加方便地创建SOAP消息,处理SOAP请求和响应,以及实现Web服务。 至于“压缩包子文件的文件名称列表”中只有一个单词“soap”,这可能表明实际文件内容仅有一个与SOAP相关的文件,或者是一个压缩包文件的名称为“soap”。由于缺乏更详尽的文件列表,无法进一步分析其可能的内容。 综上所述,SOAP作为一种实现Web服务的技术标准,通过HTTP和XML实现系统间的通信。它支持跨平台、跨语言的服务调用,并具备强大的安全性和错误处理机制。在具体应用中,开发者可能需要用到与之相关的库包或工具集来开发和部署Web服务。
recommend-type

编程语言选择指南:为不同项目量身定制的编程语言策略

# 摘要 选择合适的编程语言对于软件项目的成功至关重要。本文首先探讨了编程语言选择的重要性,并对不同分类和特点的编程语言进行了详尽分析,重点介绍了静态与动态类型、解释型与编译型、面向对象与函数式编程语言的区别和应用场景。接着,文章根据项目需求详细讨论了如何选择适合的编程语言,包括功能需求、性能考量、开发效率和团队技能等关键因素。通过实践案例分析,本文进一步探讨了不同
recommend-type

手写vue2的插件vue-router

<think>我们正在手写一个简化版的vue-router插件,用于Vue2。主要步骤:1.定义一个类VueRouter,包含路由映射、当前路由状态等。2.实现install方法,用于Vue.use()安装插件,在install方法中:-混入beforeCreate生命周期钩子,在组件创建时初始化router。-全局注册router-view和router-link组件。3.实现路由映射:将路由配置转换为路径与组件的映射表。4.监听hashchange事件(或者使用history模式,这里以hash模式为例)来响应路由变化。5.实现router-view组件,根据当前路由渲染对应组件。6.实现
recommend-type

《软件工程:实践者的方法》第6版课件解析

根据提供的文件信息,我们可以推断出以下知识点: 1. 课程名称:“SOFTWARE ENGINEERING A practitioner's approach 6e”,表明这是关于软件工程的课程教材,第6版,针对实践者的教学方法。 2. 版本信息:由于标题中明确指出是第6版(6e),我们知道这是一系列教科书或课件的最新版本,这意味着内容已经根据最新的软件工程理论和实践进行了更新和改进。 3. 课程类型:课程是针对“practitioner”,即实践者的,这表明教材旨在教授学生如何将理论知识应用于实际工作中,注重解决实际问题和案例学习,可能包含大量的项目管理、需求分析、系统设计和测试等方面的内容。 4. 适用范围:文件描述中提到了“仅供校园内使用”,说明这个教材是专为教育机构内部学习而设计的,可能含有某些版权保护的内容,不允许未经授权的外部使用。 5. 标签:“SOFTWARE ENGINEERING A practitioner's approach 6e 软件工程”提供了关于这门课程的直接标签信息。标签不仅重复了课程名称,还强化了这是关于软件工程的知识。软件工程作为一门学科,涉及软件开发的整个生命周期,从需求收集、设计、编码、测试到维护和退役,因此课程内容可能涵盖了这些方面。 6. 文件命名:压缩包文件名“SftEng”是“SOFTWARE ENGINEERING”的缩写,表明该压缩包包含的是软件工程相关的教材或资料。 7. 关键知识点:根据标题和描述,我们可以推测课件中可能包含的知识点有: - 软件工程基础理论:包括软件工程的定义、目标、原则和软件开发生命周期的模型。 - 需求分析:学习如何获取、分析、记录和管理软件需求。 - 系统设计:涉及软件架构设计、数据库设计、界面设计等,以及如何将需求转化为设计文档。 - 实现与编码:包括编程语言的选择、代码编写规范、版本控制等。 - 测试:软件测试的原则、方法和测试用例的设计。 - 项目管理:时间管理、团队协作、风险管理、成本估算等与软件项目成功相关的管理活动。 - 质量保证:软件质量模型、质量度量和质量控制措施。 - 维护和演化:软件部署后如何进行持续维护、升级和系统退役。 - 软件工程的新兴领域:包括敏捷开发方法、DevOps、用户体验设计等现代软件开发趋势。 8. 版权和使用限制:由于是专供校园内使用的教材,课件可能包含版权声明和使用限制,要求用户在没有授权的情况下不得对外传播和用于商业用途。 综上所述,这门课程的课件是为校园内的学生和教职员工设计的,关于软件工程的全面教育材料,覆盖了理论知识和实践技巧,并且在版权方面有所限制。由于是最新版的教材,它很可能包含了最新的软件工程技术和方法论。
recommend-type

QUARTUS II 13.0全攻略:新手到专家的10个必备技能

# 摘要 本文旨在详细介绍QUARTUS II 13.0软件的使用,包括其安装、FPGA基础、项目设置、设计流程、高级功能应用
recommend-type

IllegalArgumentException.class

<think>首先,用户的问题是:“我想查找与Java中IllegalArgumentException类相关的信息请问Java IllegalArgumentExceptionclass usageand examples”。这翻译成英文是:“Iwant tofind informationrelated tothe IllegalArgumentExceptionclass inJava.Please provideusage andexamples ofJavaIllegalArgumentException class.” 根据系统级指令:-所有行内数学表达式必须使用$...$格式,