熵权法和critic权重法matlab代码
时间: 2025-03-02 10:19:19 浏览: 95
### MATLAB 实现熵权法
熵权法是一种常用的多属性决策方法,用于确定各评价指标的权重。以下是该方法的一个简单实现:
```matlab
function weights = entropy_weight_method(data)
% data: m x n matrix where rows represent alternatives and columns attributes
[m, n] = size(data);
% Step 1: Normalize the decision matrix
norm_data = data ./ sum(data, 1);
% Step 2: Calculate the probability distribution
p_ij = norm_data ./ repmat(sum(norm_data), m, 1);
% Avoid log(0) issue
epsilon = eps;
p_ij(p_ij == 0) = epsilon;
% Step 3: Compute entropy values for each attribute
e_j = -sum(p_ij .* log(p_ij)) / log(m);
% Step 4: Determine difference coefficient d_j
d_j = 1 - e_j;
% Step 5: Calculate final weights w_i
weights = d_j ./ sum(d_j);
end
```
此函数接收一个矩阵作为输入参数 `data`,其中每一列表示不同属性的数据。
### CRITIC 权重法的 MATLAB 实现
CRITIC 方法考虑了数据变异性和冲突性两个方面来计算权重。下面是一个基本实现方式:
```matlab
function weights = critic_weight_method(data)
% data: m x n matrix where rows represent alternatives and columns attributes
[~, n] = size(data);
% Standard deviation calculation
std_devs = std(data, [], 1);
% Correlation coefficients between all pairs of criteria
corr_matrix = corrcoef(data');
conflict_measures = zeros(n, 1);
for i = 1:n
temp_corr_vector = abs(corr_matrix(i,:));
temp_corr_vector(i)=[]; % Remove self-correlation
conflict_measures(i) = sum(temp_corr_vector);
end
% Critic factor computation
critic_factors = std_devs .* (1 .- conflict_measures);
% Normalization to get weights
weights = critic_factors ./ sum(critic_factors);
end
```
这两个算法都遵循各自理论框架下的标准流程[^1]。
阅读全文
相关推荐










