class MRCNN(nn.Module):# 特征提取模块 def __init__(self, afr_reduced_cnn_size): super(MRCNN, self).__init__()#多分辨率卷积分支 drate = 0.5 self.GELU = GELU() # for older versions of PyTorch. For new versions use nn.GELU() instead. self.features1 = nn.Sequential( nn.Conv1d(1, 64, kernel_size=50, stride=6, bias=False, padding=24), nn.BatchNorm1d(64),# 大卷积核捕获低频特征 self.GELU, nn.MaxPool1d(kernel_size=8, stride=2, padding=4), nn.Dropout(drate), nn.Conv1d(64, 128, kernel_size=8, stride=1, bias=False, padding=4), nn.BatchNorm1d(128), self.GELU, nn.Conv1d(128, 128, kernel_size=8, stride=1, bias=False, padding=4), nn.BatchNorm1d(128), self.GELU, nn.MaxPool1d(kernel_size=4, stride=4, padding=2) ) self.features2 = nn.Sequential( nn.Conv1d(1, 64, kernel_size=400, stride=50, bias=False, padding=200), nn.BatchNorm1d(64), self.GELU, nn.MaxPool1d(kernel_size=4, stride=2, padding=2), nn.Dropout(drate), nn.Conv1d(64, 128, kernel_size=7, stride=1, bias=False, padding=3), nn.BatchNorm1d(128),# 小卷积核捕获高频特征 self.GELU, nn.Conv1d(128, 128, kernel_size=7, stride=1, bias=False, padding=3), nn.BatchNorm1d(128), self.GELU, nn.MaxPool1d(kernel_size=2, stride=2, padding=1) ) self.dropout = nn.Dropout(drate) self.inplanes = 128 self.AFR = self._make_layer(SEBasicBlock, afr_reduced_cnn_size, 1) def _make_layer(self, block, planes, blocks, stride=1): # makes residual SE block downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv1d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm1d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x1 = self.features1(x) x2 = self.features2(x) x_concat = torch.cat((x1, x2), dim=2) x_concat = self.dropout(x_concat) x_concat = self.AFR(x_concat) return x_concat ########################################################################################## def attention(query, key, value, dropout=None): "Implementation of Scaled dot product attention" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) p_attn = F.softmax(scores, dim=-1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class CausalConv1d(torch.nn.Conv1d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): self.__padding = (kernel_size - 1) * dilation super(CausalConv1d, self).__init__( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=self.__padding, dilation=dilation, groups=groups, bias=bias)请帮我理解该部分代码 并逐行讲解

时间: 2025-06-09 19:56:35 浏览: 27
<think>嗯,用户给了一段PyTorch的代码,包括一个MRCNN类和一个attention函数,还有CausalConv1d类。用户希望理解这段代码并逐行讲解。我需要先整体看一下代码的结构,然后分部分解释。 首先,MRCNN类继承自nn.Module,看起来是一个多分辨率的卷积神经网络。结构中有两个features分支,可能用于提取不同尺度的特征。然后还有AFR部分,可能使用了SE块。forward里将两个特征拼接后经过AFR处理。 接下来是attention函数,实现的是缩放点积注意力机制,这在Transformer里常见。然后是CausalConv1d类,继承自Conv1d,但做了因果卷积的处理,padding只在左边,确保时序上的因果关系,不能看到未来的信息。 接下来要逐行分析MRCNN的__init__方法。注意到两个features模块,分别用了不同大小的卷积核,比如50和400,这可能对应不同分辨率。每个features里包含卷积、BN、激活、池化和Dropout。之后是AFR层的构建,用了_make_layer方法,可能类似ResNet中的残差块,结合SE模块。 在forward中,x1和x2是并行处理的两个分支,然后拼接起来,经过Dropout和AFR。需要解释每个层的参数,比如kernel_size、stride的作用,以及多分辨率如何实现。 然后,attention函数部分,计算query和key的点积,除以sqrt(d_k)防止梯度消失,softmax得到注意力权重,再与value相乘。这里要提到自注意力的机制和缩放的原因。 CausalConv1d类通过padding设置为(kernel_size-1)*dilation,确保因果性,可能用于时序模型如WaveNet。需要解释因果卷积的概念,如何保持时间顺序,不泄漏未来信息。 用户可能是想了解这段代码的结构和作用,可能是在处理时间序列数据或信号,比如EEG等,需要多尺度特征和注意力机制。可能的应用场景是什么?或者是在进行某种分类或回归任务? 需要注意代码中的细节,比如GELU激活函数,旧版本PyTorch可能需要自定义,新版本有nn.GELU()。在MRCNN的初始化中,使用了SEBasicBlock,可能结合了Squeeze-and-Excitation结构,增强通道注意力。 在解释时,要分块讲解,比如先讲MRCNN类的各个部分,然后attention和CausalConv1d。对于每行代码,说明其作用,比如卷积层的参数,stride和padding如何影响输出尺寸,池化层的降采样作用,Dropout防止过拟合等。 对于AFR层,_make_layer函数可能创建了多个SEBasicBlock,类似于ResNet中的残差层,需要解释残差连接和SE模块的作用,如何调整通道间的依赖关系。 最后,总结整个MRCNN的设计思想,多分支特征提取,融合后通过注意力机制或SE模块增强重要特征,适用于需要多尺度特征的任务,如信号处理、时间序列分析等。</think>好的,我将以分块方式逐步解析这段代码的结构和功能: 一、MRCNN 类(多分辨率卷积神经网络) 1. 类定义与初始化 ```python class MRCNN(nn.Module): def __init__(self, afr_reduced_cnn_size): super(MRCNN, self).__init__() drate = 0.5 self.GELU = GELU() # 使用GELU激活函数(旧版本兼容) ``` 2. 多分辨率分支结构 ```python # 第一分支(低频特征提取) self.features1 = nn.Sequential( nn.Conv1d(1, 64, kernel_size=50, stride=6, padding=24), # 大卷积核捕获低频特征 nn.BatchNorm1d(64), self.GELU, nn.MaxPool1d(8, stride=2, padding=4), nn.Dropout(drate), nn.Conv1d(64, 128, 8, stride=1, padding=4), ... # 类似结构重复 ) # 第二分支(高频特征提取) self.features2 = nn.Sequential( nn.Conv1d(1, 64, 400, stride=50, padding=200), # 极大卷积核宽感受野 ... # 类似结构但使用较小卷积核 ) ``` 3. 特征融合与注意力机制 ```python self.AFR = self._make_layer(SEBasicBlock, afr_reduced_cnn_size, 1) # 创建注意力融合模块 def _make_layer(self, block, planes, blocks): # 构建包含SE注意力机制的残差块(类似ResNet结构) downsample = ... # 下采样层 layers = [block(...)] # 添加SE基本块 return nn.Sequential(*layers) def forward(self, x): x1 = self.features1(x) # 分支1处理 x2 = self.features2(x) # 分支2处理 x_concat = torch.cat((x1, x2), dim=2) # 特征拼接 x_concat = self.AFR(x_concat) # 注意力融合 return x_concat ``` 二、注意力机制模块 ```python def attention(query, key, value, dropout=None): d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) # 缩放点积 p_attn = F.softmax(scores, dim=-1) # 概率化注意力权重 return torch.matmul(p_attn, value), p_attn # 注意力加权输出 ``` 三、因果卷积模块 ```python class CausalConv1d(nn.Conv1d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): self.__padding = (kernel_size - 1) * dilation # 左填充计算 super().__init__( in_channels, out_channels, kernel_size, stride=stride, padding=self.__padding, # 仅左填充 dilation=dilation, groups=groups, bias=bias) def forward(self, input): result = super().forward(input) return result[:, :, :-self.__padding] # 裁剪右侧多余填充 ``` 关键设计分析(使用数学表达式说明): 1. 多分辨率特征融合公式: $$ X_{final} = AFR(Concat(CNN_{low}(x), CNN_{high}(x))) $$ 其中 $CNN_{low}$ 使用大卷积核($k=50$),$CNN_{high}$ 使用极大卷积核($k=400$) 2. 注意力计算过程: $$ Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d_k}})V $$ 3. 因果卷积的时间约束: $$ Output_t = \sum_{i=0}^{k-1} Weight_i \cdot Input_{t-i} $$ 仅依赖当前及历史时刻的输入 典型应用场景:该结构适用于需要同时捕获时域信号中长时依赖(低频特征)和短时模式(高频特征)的任务,如: - 生理信号(EEG/ECG)分析 - 语音信号处理 - 时序预测任务 每个模块的设计意图: 1. 双分支结构:通过不同尺度的卷积核分别捕获信号的低频全局特征和高频局部特征 2. SE注意力模块:通过通道注意力机制($SEBlock$)自动学习特征通道的重要性权重 3. 因果卷积:在保持时序依赖关系的前提下进行卷积操作,适用于实时处理场景
阅读全文

相关推荐

void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* Initialize SPI1 */ if (hspi->Instance == SPI1) { __HAL_RCC_GPIOB_CLK_ENABLE(); /* Enable GPIOB clock */ __HAL_RCC_GPIOA_CLK_ENABLE(); /* Enable GPIOA clock */ __HAL_RCC_SYSCFG_CLK_ENABLE(); /* Enable SYSCFG clock */ __HAL_RCC_SPI1_CLK_ENABLE(); /* Enable SPI1 clock */ __HAL_RCC_DMA_CLK_ENABLE(); /* Enable DMA clock */ HAL_SYSCFG_DMA_Req(1); /* SPI1_TX DMA_CH1 */ HAL_SYSCFG_DMA_Req(0x200); /* SPI1_RX DMA_CH2 */ /* PB3-SCK (AF0) PB4-MISO(AF0) PB5-MOSI(AF0) PA15-NSS(AF0) */ /* SPI SCK GPIO pin configuration */ GPIO_InitStruct.Pin = GPIO_PIN_3; if (hspi->Init.CLKPolarity == SPI_POLARITY_LOW) { GPIO_InitStruct.Pull = GPIO_PULLDOWN; } else { GPIO_InitStruct.Pull = GPIO_PULLUP; } GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF0_SPI1; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* SPI NSS*/ GPIO_InitStruct.Pin = GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF0_SPI1; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* Configure GPIO as SPI: MISO/MOSI*/ GPIO_InitStruct.Pin = GPIO_PIN_4 | GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF0_SPI1; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* Interrupt configuration */ HAL_NVIC_SetPriority(SPI1_IRQn, 1, 0); HAL_NVIC_EnableIRQ(SPI1_IRQn); /* DMA_CH1 configurat

/** ****************************************************************************** * @file main.c * @author MCU Application Team * @brief Main program body ****************************************************************************** * @attention * *
© Copyright (c) AirM2M. * All rights reserved.
* *
© Copyright (c) 2016 STMicroelectronics. * All rights reserved.
* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private define ------------------------------------------------------------*/ #define PERIOD_VALUE (uint32_t)(50 - 1) #define PULSE1_VALUE 10 #define PULSE2_VALUE 20 #define PULSE3_VALUE 30 #define PULSE4_VALUE 40 /* Private variables ---------------------------------------------------------*/ TIM_HandleTypeDef TimHandle; TIM_OC_InitTypeDef sConfig; /* Private user code ---------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ static void APP_GpioInit(void); static void APP_SystemClockConfig(void); /** * @brief 应用程序入口函数 * @retval int */ int main(void) { /* 初始化所有外设,Flash接口,SysTick */ HAL_Init(); APP_GpioInit(); /* 系统时钟配置 */ APP_SystemClockConfig(); TimHandle.Instance = TIM1; /* 选择TIM1 */ TimHandle.Init.Period = 50; /* 自动重装载值 */ TimHandle.Init.Prescaler = 800 - 1; /* 预分频为800-1 */ TimHandle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; /* 时钟不分频 */ TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; /* 向上计数 */ TimHandle.Init.RepetitionCounter = 1 - 1; /* 不重复计数 */ TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; /* 自动重装载寄存器没有缓冲 */ /* 基础时钟初始化 */ if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) { Error_Handler(); } sConfig.OCMode = TIM_OCMODE_PWM1; /* 输出配置为PWM1 */ sConfig.OCPolarity = TIM_OCPOLARITY_HIGH; /* OC通道输出高电平有效 */ sConfig.OCFastMode = TIM_OCFAST_DISABLE; /* 输出快速使能关闭 */ sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH; /* OCN通道输出高电平有效 */ sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET; /* 空闲状态OC1N输出低电平 */ sConfig.OCIdleState = TIM_OCIDLESTATE_RESET; /* 空闲状态OC1输出低电平 */ sConfig.Pulse = PULSE1_VALUE; /* CC1值为10,占空比=10/50=20% */ /* 配置通道1 */ if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } sConfig.Pulse = PULSE2_VALUE; /* CC2值为20,占空比=20/50=40% */ /* 配置通道2 */ if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } sConfig.Pulse = PULSE3_VALUE; /* CC3值为30,占空比=30/50=60% */ /* 配置通道3 */ if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_3) != HAL_OK) { /* Configuration Error */ Error_Handler(); } sConfig.Pulse = PULSE4_VALUE; /* CC4值为40,占空比=40/50=80% */ /* 配置通道4 */ if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } /* 开启所有通道输出 */ if (HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_3) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } while (1) { } } static void APP_GpioInit() { GPIO_InitTypeDef GPIO_InitStruct; __HAL_RCC_GPIOB_CLK_ENABLE(); /* GPIOA时钟使能 */ /* 初始化GPIO PB1 */ GPIO_InitStruct.Pin = GPIO_PIN_3|GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; /* 推挽输出 */ GPIO_InitStruct.Pull = GPIO_PULLUP; /* 使能上拉 */ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; /* GPIO速度 */ HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* GPIO初始化 */ } /** * @brief 系统时钟配置函数 * @param 无 * @retval 无 */ static void APP_SystemClockConfig(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \ | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE; /* 配置HSE、HSI、LSI、LSE */ RCC_OscInitStruct.HSIState = RCC_HSI_ON; /* 开启HSI */ RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1; /* HSI不分频 */ RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_8MHz; /* HSI校准频率8MHz */ RCC_OscInitStruct.HSEState = RCC_HSE_OFF; /* 关闭HSE */ /* RCC_OscInitStruct.HSEFreq = RCC_HSE_16_32MHz; */ /* HSE频率范围16~32MHz */ RCC_OscInitStruct.LSIState = RCC_LSI_OFF; /* 关闭LSI */ RCC_OscInitStruct.LSEState = RCC_LSE_OFF; /* 关闭LSE */ /* RCC_OscInitStruct.LSEDriver = RCC_LSEDRIVE_MEDIUM; */ /* 默认LSE驱动能力 */ RCC_OscInitStruct.PLL.PLLState = RCC_PLL_OFF; /* 关闭PLL */ /* RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_NONE; */ /* PLL无时钟源 */ /* 配置振荡器 */ if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1;/* 配置SYSCLK、HCLK、PCLK */ RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; /* 配置系统时钟为HSI */ RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; /* AHB时钟不分频 */ RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; /* APB时钟不分频 */ /* 配置时钟源 */ if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief 错误执行函数 * @param 无 * @retval 无 */ void Error_Handler(void) { /* 无限循环 */ while (1) { } } #ifdef USE_FULL_ASSERT /** * @brief 输出产生断言错误的源文件名及行号 * @param file:源文件名指针 * @param line:发生断言错误的行号 * @retval 无 */ void assert_failed(uint8_t *file, uint32_t line) { /* 用户可以根据需要添加自己的打印信息, 例如: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* 无限循环 */ while (1) { } } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT AirM2M *****END OF FILE******************/ 这个是AIR001芯片的主函数现在无法输出波形需要怎么更改程序输出PWM波形

struct EFI_State { // When this structure was last updated (milliseconds) uint32_t last_updated_ms; // Current overall engine state Engine_State engine_state; // If there is an error that does not fit other error types bool general_error; // Error/status fields Crankshaft_Sensor_Status crankshaft_sensor_status; Temperature_Status temperature_status; Fuel_Pressure_Status fuel_pressure_status; Oil_Pressure_Status oil_pressure_status; Detonation_Status detonation_status; Misfire_Status misfire_status; Debris_Status debris_status; // Engine load (percent) uint8_t engine_load_percent; // Engine speed (revolutions per minute) uint32_t engine_speed_rpm; // Spark dwell time (milliseconds) float spark_dwell_time_ms;union { struct PACKED { // fields from channels in LUTAN-MS2.ini uint16_t length; uint8_t flags; uint16_t seconds; uint16_t pulseWidth1; // ms, scale 0.000666 uint16_t pulseWidth2; // ms, scale 0.000666 uint16_t rpm; int16_t advance; // deg, scale 0.1 uint8_t squirt_flags; uint8_t engine_flags; uint8_t afrtgt1; uint8_t afrtgt2; uint8_t wbo2_en1; uint8_t wbo2_en2; int16_t barometer; // kPa, scale 0.1 int16_t map; // kPa, scale 0.1 int16_t mat; // degF, scale 0.1 int16_t coolant; // degF, scale 0.1 int16_t tps; // %, scale 0.1 int16_t batteryVoltage; // V, scale 0.1 int16_t afr1; // scale 0.1 int16_t afr2; // scale 0.1 uint16_t knock; // %, scale 0.1 int16_t egoCorrection1; // %, scale 0.1 int16_t egoCorrection2; // %, scale 0.1 int16_t airCorrection; // %, scale 0.1 int16_t warmupEnrich; // %, scale 0.1 int16_t accelEnrich; // ms, scale 0.1 int16_t tpsfuelcut; // % int16_t baroCorrection; // %, scale 0.1 int16_t gammaEnrich; // % int16_t veCurr1; // %, scale 0.1 int16_t veCurr2; // %, scale 0.1 int16_t iacstep; int16_t idleDC; // scale 0.392 int16_t coldAdvDeg; // deg, scale 0.1 int16_t TPSdot; // %/s, scale 0.1 int16_t MAPdot; // kPa/s int16_t dwell; // ms, scale 0.0666 } data; uint8_t pkt[400]; }; // state maps 1:1 from Engine_State istate.engine_state = Engine_State(pkt.state); if (!(pkt.flags & UAVCAN_EQUIPMENT_ICE_RECIPROCATING_STATUS_FLAG_CRANKSHAFT_SENSOR_ERROR_SUPPORTED)) { istate.crankshaft_sensor_status = Crankshaft_Sensor_Status::NOT_SUPPORTED; } else if (pkt.flags & UAVCAN_EQUIPMENT_ICE_RECIPROCATING_STATUS_FLAG_CRANKSHAFT_SENSOR_ERROR) { istate.crankshaft_sensor_status = Crankshaft_Sensor_Status::ERROR; } else { istate.crankshaft_sensor_status = Crankshaft_Sensor_Status::OK; } istate.engine_load_percent = pkt.engine_load_percent;这是什么用法,这里定义的联合体和结构体,是怎样的调用关系

u8 OLED_GRAM[128][8]; /************************************************************************** Function: Refresh the OLED screen Input : none Output : none گ˽٦ŜúˢтOLEDǁĻ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //Set page address (0~7) //ʨ׃ҳַ֘è0~7é OLED_WR_Byte (0x00,OLED_CMD); //Set the display location - column low address //ʨ׃Дʾλ׃j֍ַ֘ OLED_WR_Byte (0x10,OLED_CMD); //Set the display location - column height address //ʨ׃Дʾλ׃jַٟ֘ for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } void OLED_Refresh_Line(void) { u8 i,n; for(i=0;i<2;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //Set page address (0~7) //ʨ׃ҳַ֘è0~7é OLED_WR_Byte (0x00,OLED_CMD); //Set the display location - column low address //ʨ׃Дʾλ׃j֍ַ֘ OLED_WR_Byte (0x10,OLED_CMD); //Set the display location - column height address //ʨ׃Дʾλ׃jַٟ֘ for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } /************************************************************************** Function: Refresh the OLED screen Input : Dat: data/command to write, CMD: data/command flag 0, represents the command;1, represents data Output : none گ˽٦ŜúвOLEDдɫһٶؖޚ ɫࠚӎ˽údat:Ҫдɫք˽ߝ/ļ®ìcmd:˽ߝ/ļ®Ҫ־ 0,ҭʾļ®;1,ҭʾ˽ߝ ׵ܘ ֵúϞ **************************************************************************/ void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; if(cmd) OLED_RS_Set(); else OLED_RS_Clr(); for(i=0;i<8;i++) { OLED_SCLK_Clr(); if(dat&0x80) OLED_SDIN_Set(); else OLED_SDIN_Clr(); OLED_SCLK_Set(); dat<<=1; } OLED_RS_Set(); } /************************************************************************** Function: Turn on the OLED display Input : none Output : none گ˽٦ŜúߪǴOLEDДʾ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC command //SET DCDCļ® OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } /************************************************************************** Function: Turn off the OLED display Input : none Output : none گ˽٦ŜúژҕOLEDДʾ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC command //SET DCDCļ® OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } /************************************************************************** Function: Screen clear function, clear the screen, the entire screen is black, and did not light up the same Input : none Output : none گ˽٦Ŝúȥǁگ˽,ȥΪǁ,ֻٶǁώۚɫքìۍû֣һҹ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++)for(n=0;n<128;n++)OLED_GRAM[n][i]=0X00; OLED_Refresh_Gram(); //Update the display //ټтДʾ } /************************************************************************** Function: Draw point Input : x,y: starting coordinate;T :1, fill,0, empty Output : none گ˽٦Ŝúۭ֣ ɫࠚӎ˽úx,y :ǰ֣ظҪ; t:1,ͮԤ,0,ȥࠕ ׵ܘ ֵúϞ **************************************************************************/ void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//ӬԶ׶Χ‹. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } /************************************************************************** Function: Displays a character, including partial characters, at the specified position Input : x,y: starting coordinate;Len: The number of digits;Size: font size;Mode :0, anti-white display,1, normal display Output : none گ˽٦Ŝú՚ָ֨λ׃Дʾһٶؖػ,Ѽ(ҿؖؖػ ɫࠚӎ˽úx,y :ǰ֣ظҪ; len :˽ؖքλ˽; size:ؖͥճС; mode:0,״їДʾ,1,ֽӣДʾ ׵ܘ ֵúϞ **************************************************************************/ void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; chr=chr-' '; //Get the offset value //փսƫӆ۳քֵ for(t=0;t<size;t++) { if(size==12)temp=oled_asc2_1206[chr][t]; //Invoke 1206 font //ַԃ1206ؖͥ else temp=oled_asc2_1608[chr][t]; //Invoke the 1608 font //ַԃ1608ؖͥ for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } /************************************************************************** Function: Find m to the NTH power Input : m: base number, n: power number Output : none گ˽٦ŜúȳmքnՎ׽քگ˽ ɫࠚӎ˽úmú֗˽ìnúՎ׽˽ ׵ܘ ֵúϞ **************************************************************************/ u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n--)result*=m; return result; } /************************************************************************** Function: Displays 2 numbers Input : x,y: starting coordinate;Len: The number of digits;Size: font size;Mode: mode, 0, fill mode, 1, overlay mode;Num: value (0 ~ 4294967295); Output : none گ˽٦ŜúДʾ2ٶ˽ؖ ɫࠚӎ˽úx,y :ǰ֣ظҪ; len :˽ؖքλ˽; size:ؖͥճС; mode:ģʽ, 0,ͮԤģʽ, 1,־ݓģʽ; num:˽ֵ(0~4294967295); ׵ܘ ֵúϞ **************************************************************************/ void OLED_ShowNumber(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) { if(temp==0) { OLED_ShowChar(x+(size/2)*t,y,' ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); } } /************************************************************************** Function: Display string Input : x,y: starting coordinate;*p: starting address of the string Output : none گ˽٦ŜúДʾؖػԮ ɫࠚӎ˽úx,y :ǰ֣ظҪ; *p:ؖػԮǰʼַ֘ ׵ܘ ֵúϞ **************************************************************************/ void OLED_ShowString(u8 x,u8 y,const u8 *p) { #define MAX_CHAR_POSX 122 #define MAX_CHAR_POSY 58 while(*p!='\0') { if(x>MAX_CHAR_POSX){x=0;y+=16;} if(y>MAX_CHAR_POSY){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,12,1); x+=8; p++; } } void OLED_ShowString16(u8 x,u8 y,const u8 *p) { #define MAX_CHAR_POSX 122 #define MAX_CHAR_POSY 58 while(*p!='\0') { if(x>MAX_CHAR_POSX){x=0;y+=16;} if(y>MAX_CHAR_POSY){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,16,1); x+=8; p++; } } /************************************************************************** Function: Initialize the OLED Input : none Output : none گ˽٦ŜúԵʼۯOLED ɫࠚӎ˽: Ϟ ׵ܘ ֵúϞ **************************************************************************/ void OLED_Init(void) { // 1. 关闭显示 OLED_WR_Byte(0xAE, OLED_CMD); // 2. 硬件复位 OLED_RST_Clr(); delay_ms(10); OLED_RST_Set(); delay_ms(50); // 3. 重新配置GPIO GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOD, &GPIO_InitStructure); // 4. 精简初始化序列 const uint8_t init_seq[] = { 0xAE, // 关闭显示 0xD5, 0x80, // 时钟分频 0xA8, 0x3F, // 多路复用 0xD3, 0x00, // 显示偏移 0x40, // 起始行 0x8D, 0x14, // 开启充电泵 0x20, 0x02, // 页地址模式 0xA1, // 段重定向 0xC8, // COM扫描方向 0xDA, 0x12, // COM配置 0x81, 0xEF, // 对比度 0xD9, 0xF1, // 预充电 0xDB, 0x30, // VCOMH 0xA4, // 关闭全局显示 0xA6 // 正常显示模式 }; // 直接发送所有命令(无错误检查) for(uint8_t i=0; i<sizeof(init_seq); ) { OLED_WR_Byte(init_seq[i++], OLED_CMD); // 保留关键命令的固定延时结构(但移除条件判断) if(i==7 || i==9 || i==11) delay_ms(10); } // 5. 清屏并开启显示 OLED_Clear(); OLED_WR_Byte(0xAF, OLED_CMD); }#define SDA_IN() {GPIOB->MODER&=~(3<<(11*2));GPIOB->MODER|=0<<11*2;} //PB5ˤɫģʽ #define SDA_OUT() {GPIOB->MODER&=~(3<<(11*2));GPIOB->MODER|=1<<11*2;} //PB5ˤԶģʽ //IOәطگ˽ #define IIC_SCL PBout(10) //SCL #define IIC_SDA PBout(11) //SDA #define READ_SDA PBin(11) //ˤɫSDA #ifndef I2C_Direction_Transmitter #define I2C_Direction_Transmitter ((uint8_t)0x00) #endif #ifndef I2C_Direction_Receiver #define I2C_Direction_Receiver ((uint8_t)0x01) #endif enum { I2C_ACK, I2C_NACK };void I2C_GPIOInit(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);//ʹŜGPIOBʱד GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10|GPIO_Pin_11; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//ǕͨˤԶģʽ GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//ΆάˤԶ GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//ʏ- GPIO_Init(GPIOB, &GPIO_InitStructure);//Եʼۯ IIC_SCL=1; IIC_SDA=1; } /************************************************************************** Function: Simulate IIC start signal Input : none Output : none گ˽٦ŜúģŢIICǰʼхۅ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void I2C_Start(void) { SDA_OUT(); //sdaПˤԶ IIC_SDA=1; if(!READ_SDA)return ; IIC_SCL=1; delay_us(1); IIC_SDA=0;//START:when CLK is high,DATA change form high to low if(READ_SDA)return ; delay_us(1); IIC_SCL=0;//ǯסI2C؜Пì׼Ѹע̍ܲޓ˕˽ߝ return ; } /************************************************************************** Function: Analog IIC end signal Input : none Output : none گ˽٦ŜúģŢIICޡ˸хۅ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void I2C_Stop(void) { SDA_OUT();//sdaПˤԶ IIC_SCL=0; IIC_SDA=0;//STOP:when CLK is high DATA change form low to high delay_us(1); IIC_SCL=1; IIC_SDA=1;//ע̍I2C؜Пޡ˸хۅ delay_us(1); } bool I2C_WaiteForAck(void) { u8 ucErrTime=0; SDA_IN(); //SDAʨ׃Ϊˤɫ IIC_SDA=1; delay_us(1); IIC_SCL=1; delay_us(1); while(READ_SDA) { ucErrTime++; if(ucErrTime>50) { I2C_Stop(); return 0; } delay_us(1); } IIC_SCL=0;//ʱדˤԶ0 return 1; } /************************************************************************** Function: IIC response Input : none Output : none گ˽٦ŜúIICӦհ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void I2C_Ack(void) { IIC_SCL=0; SDA_OUT(); IIC_SDA=0; delay_us(1); IIC_SCL=1; delay_us(1); IIC_SCL=0; } /************************************************************************** Function: IIC don't reply Input : none Output : none گ˽٦ŜúIICһӦհ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void I2C_NAck(void) { IIC_SCL=0; SDA_OUT(); IIC_SDA=1; delay_us(1); IIC_SCL=1; delay_us(1); IIC_SCL=0; } bool I2C_WriteOneBit(uint8_t DevAddr, uint8_t RegAddr, uint8_t BitNum, uint8_t Data) { uint8_t Dat; Dat =I2C_ReadOneByte(DevAddr, RegAddr); Dat = (Data != 0) ? (Dat | (1 << BitNum)) : (Dat & ~(1 << BitNum)); I2C_WriteOneByte(DevAddr, RegAddr, Dat); return true; } bool I2C_WriteBits(uint8_t DevAddr, uint8_t RegAddr, uint8_t BitStart, uint8_t Length, uint8_t Data) { uint8_t Dat, Mask; Dat = I2C_ReadOneByte(DevAddr, RegAddr); Mask = (0xFF << (BitStart + 1)) | 0xFF >> ((8 - BitStart) + Length - 1); Data <<= (8 - Length); Data >>= (7 - BitStart); Dat &= Mask; Dat |= Data; I2C_WriteOneByte(DevAddr, RegAddr, Dat); return true; } /************************************************************************** Function: IIC sends a bit Input : none Output : none گ˽٦ŜúIICע̍һٶλ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void I2C_WriteByte(uint8_t Data) { u8 t; SDA_OUT(); IIC_SCL=0;//-֍ʱדߪʼ˽ߝԫˤ for(t=0;t<8;t++) { IIC_SDA=(Data&0x80)>>7; Data<<=1; delay_us(1); IIC_SCL=1; delay_us(1); IIC_SCL=0; delay_us(1); } } u8 I2C_WriteOneByte(uint8_t DevAddr, uint8_t RegAddr, uint8_t Data) { I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Transmitter); I2C_WaiteForAck(); I2C_WriteByte(RegAddr); I2C_WaiteForAck(); I2C_WriteByte(Data); I2C_WaiteForAck(); I2C_Stop(); return 1; } bool I2C_WriteBuff(uint8_t DevAddr, uint8_t RegAddr, uint8_t Num, uint8_t *pBuff) { uint8_t i; if(0 == Num || NULL == pBuff) { return false; } I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Transmitter); I2C_WaiteForAck(); I2C_WriteByte(RegAddr); I2C_WaiteForAck(); for(i = 0; i < Num; i ++) { I2C_WriteByte(*(pBuff + i)); I2C_WaiteForAck(); } I2C_Stop(); return true; } /************************************************************************** Function: IIC reads a bit Input : none Output : none گ˽٦ŜúIICׁȡһٶλ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ uint8_t I2C_ReadByte(uint8_t Ack) { uint8_t i, RecDat = 0; SDA_IN(); for(i = 0; i < 8; i ++) { // I2C_SCL_Clr(); IIC_SCL=0; delay_us(1); // I2C_SCL_Set(); IIC_SCL=1; RecDat <<= 1; if(READ_SDA) RecDat |= 0x01; else RecDat &= ~0x01; delay_us(1); } if(I2C_ACK == Ack) I2C_Ack(); else I2C_NAck(); return RecDat; } uint8_t I2C_ReadOneByte(uint8_t DevAddr, uint8_t RegAddr) { uint8_t TempVal = 0; I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Transmitter); I2C_WaiteForAck(); I2C_WriteByte(RegAddr); I2C_WaiteForAck(); I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Receiver); I2C_WaiteForAck(); TempVal = I2C_ReadByte(I2C_NACK); I2C_Stop(); return TempVal; } bool I2C_ReadBuff(uint8_t DevAddr, uint8_t RegAddr, uint8_t Num, uint8_t *pBuff) { uint8_t i; if(0 == Num || NULL == pBuff) { return false; } I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Transmitter); I2C_WaiteForAck(); I2C_WriteByte(RegAddr); I2C_WaiteForAck(); I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Receiver); I2C_WaiteForAck(); for(i = 0; i < Num; i ++) { if((Num - 1) == i) { *(pBuff + i) = I2C_ReadByte(I2C_NACK); } else { *(pBuff + i) = I2C_ReadByte(I2C_ACK); } } I2C_Stop(); return true; }重写基于STM32F407的6针OLED 初始化

大家在看

recommend-type

离心泵特性曲线计算程序VB源代码包

离心泵特性曲线计算程序VB源代码包 化工原理课程实验使用
recommend-type

python的预测房价模型组合代码.zip

模型-python的预测房价模型.zip python的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zip python的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zip
recommend-type

中国检查徽章背景的检察机关PPT模板

这是一套中国检查徽章背景的,检察机关PPT模板。第一PPT模板网提供精美军警类幻灯片模板免费下载; 关键词:蓝天白云、华表、彩带、中国检查徽章PPT背景图片,中国检查院工作汇报PPT模板,蓝色绿色搭配扁平化幻灯片图表,.PPTX格式;
recommend-type

WinUSB4NuVCOM_NUC970+NuWriter.rar

NUC970 USB启动所需的USB驱动,已经下载工具NuWriter,可以用于裸机启动NUC970调试,将USB接电脑后需要先安装WinUSB4NuVCOM_NUC970驱动,然后使用NuWriter初始化硬件,之后就可以使用jlink或者ulink调试。
recommend-type

indonesia-geojson:印度尼西亚GEOJSON文件收集

印尼省数据 indonesia-province.zip:SHP格式的印度尼西亚省 indonesia-province.json:GeoJSON格式的印度尼西亚省 indonesia-province-simple.json:GeoJSON格式的印度尼西亚省的简单版本(文件大小也较小!) id-all.geo.json:印度尼西亚省GEOJSON id-all.svg:印度尼西亚SVG地图 indonesia.geojson:来自成长亚洲的印度尼西亚GEOJSON 来源 工具 将SHP文件的形状转换并简化为GeoJSON

最新推荐

recommend-type

spring-ai-commons-1.0.0-M8.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

全面掌握Oracle9i:基础教程与实践指南

Oracle9i是一款由甲骨文公司开发的关系型数据库管理系统,它在信息技术领域中占据着重要的地位。Oracle9i的“i”代表了互联网(internet),意味着它具有强大的网络功能,能够支持大规模的网络应用。该系统具有高度的数据完整性和安全性,并且其强大稳定的特点使得它成为了企业级应用的首选数据库平台。 为了全面掌握Oracle9i,本教程将从以下几个方面详细讲解: 1. Oracle9i的安装与配置:在开始学习之前,您需要了解如何在不同的操作系统上安装Oracle9i数据库,并对数据库进行基本的配置。这包括数据库实例的创建、网络配置文件的设置(如listener.ora和tnsnames.ora)以及初始参数文件的设置。 2. SQL语言基础:SQL(Structured Query Language)是用于管理和操作关系型数据库的标准语言。您需要熟悉SQL语言的基本语法,包括数据查询语言(DQL)、数据操纵语言(DML)、数据定义语言(DDL)和数据控制语言(DCL)。 3. PL/SQL编程:PL/SQL是Oracle公司提供的过程化语言,它是SQL的扩展,增加了过程化编程的能力。学习PL/SQL可以让您编写更复杂、更高效的数据库程序,包括存储过程、函数、包和触发器等。 4. Oracle9i的数据管理:这部分内容涉及数据表的创建、修改、删除以及索引、视图、同义词、序列和分区等高级特性。 5. 数据库性能优化:为了确保数据库的高效运行,需要对数据库进行性能调优。这包括了解Oracle9i的内存管理、锁定机制、SQL语句优化和数据库设计原则等。 6. 数据库备份与恢复:为防止数据丢失或损坏,需要了解Oracle9i的备份和恢复机制。您将学习到如何使用RMAN(Recovery Manager)进行数据备份和恢复,并且熟悉数据库的逻辑备份和恢复策略。 7. 安全管理:安全管理是保护数据库不受非法访问和操作的重要环节。Oracle9i提供了丰富的安全特性,如用户权限管理、审计和加密等,您需要学习如何实施这些安全措施来保证数据库的安全性。 8. Oracle9i网络管理:由于Oracle9i对网络的特别设计,您还需要掌握如何管理Oracle网络,包括监听器的配置、网络故障的诊断等。 9. 高级特性介绍:Oracle9i提供了很多高级功能,如高级复制、流复制、高级安全性、Oracle Data Guard等,这些内容将帮助您掌握Oracle9i的高级特性,从而在面对复杂业务需求时有更多解决方案。 在学习Oracle9i教程的过程中,您将通过大量实例练习加深理解,同时也会了解到最佳实践和常见问题的解决方法。本教程的目的是让您全面掌握Oracle9i数据库管理系统的使用,并具备解决实际问题的能力,无论您是数据库管理员、开发人员还是系统分析师,本教程都将成为您提升技能的有力工具。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

模糊大津法

<think>首先,用户查询是关于“模糊大津法”的,我需要理解这个术语。从引用中,我知道大津法(Otsu's method)是一种图像二值化的全局阈值算法。用户提到“模糊大津法”,这可能是大津法与模糊理论结合的一种变体。我需要基于提供的引用和自己的知识来回答。关键引用:- [^1]:讨论了大津法在图像处理中的应用,特别是二值化。- [^2]:解释了大津法的原理和实现。- [^3]:提到大津法是全局阈值算法。- [^4]:讨论了高斯模糊对大津二值化算法的影响,指出高斯模糊可以减少噪声,提高阈值计算的准确性。用户的问题是:“我想查找关于模糊大津法的技术资料或实现方法请问模糊大津法原理实现方法技术文
recommend-type

SOA服务设计原则:2007年7月版原理深入解析

由于提供的文件信息是相同的标题、描述和标签,且压缩包中仅包含一个文件,我们可以得出文件“Prentice.Hall.SOA.Principles.of.Service.Design.Jul.2007.pdf”很可能是一本关于面向服务架构(SOA)的书籍。该文件的名称和描述表明了它是一本专门讨论服务设计原则的出版物,其出版日期为2007年7月。以下是从标题和描述中提取的知识点: ### SOA设计原则 1. **服务导向架构(SOA)基础**: - SOA是一种设计原则,它将业务操作封装为可以重用的服务。 - 服务是独立的、松耦合的业务功能,可以在不同的应用程序中复用。 2. **服务设计**: - 设计优质服务对于构建成功的SOA至关重要。 - 设计过程中需要考虑到服务的粒度、服务的生命周期管理、服务接口定义等。 3. **服务重用**: - 服务设计的目的是为了重用,需要识别出业务领域中可重用的功能单元。 - 通过重用现有的服务,可以降低开发成本,缩短开发时间,并提高系统的整体效率。 4. **服务的独立性与自治性**: - 服务需要在技术上是独立的,使得它们能够自主地运行和被管理。 - 自治性意味着服务能够独立于其他服务的存在和状态进行更新和维护。 5. **服务的可组合性**: - SOA强调服务的组合性,这意味着可以通过组合不同的服务构建新的业务功能。 - 服务之间的交互应当是标准化的,以确保不同服务间的无缝通信。 6. **服务的无状态性**: - 在设计服务时,最好让服务保持无状态,以便它们可以被缓存、扩展和并行处理。 - 状态信息可以放在服务外部,比如数据库或缓存系统中。 7. **服务的可发现性**: - 设计服务时,必须考虑服务的发现机制,以便服务消费者可以找到所需的服务。 - 通常通过服务注册中心来实现服务的动态发现和绑定。 8. **服务的标准化和协议**: - 服务应该基于开放标准构建,确保不同系统和服务之间能够交互。 - 服务之间交互所使用的协议应该广泛接受,如SOAP、REST等。 9. **服务的可治理性**: - 设计服务时还需要考虑服务的管理与监控,确保服务的质量和性能。 - 需要有机制来跟踪服务使用情况、服务变更管理以及服务质量保障。 10. **服务的业务与技术视角**: - 服务设计应该同时考虑业务和技术的视角,确保服务既满足业务需求也具备技术可行性。 - 业务规则和逻辑应该与服务实现逻辑分离,以保证业务的灵活性和可维护性。 ### SOA的实施挑战与最佳实践 1. **变更管理**: - 实施SOA时需要考虑到如何管理和适应快速变更。 - 必须建立适当的变更控制流程来管理和批准服务的更改。 2. **安全性**: - 安全是SOA设计中的一个关键方面,需要确保服务交互的安全。 - 需要实现身份验证、授权、加密和审计机制以保护数据和服务。 3. **互操作性**: - 服务应设计为可与不同平台和技术实现互操作。 - 必须确保服务之间可以跨平台和语言进行通信。 4. **质量保证**: - 对服务进行持续的质量监控和改进是实施SOA不可或缺的一部分。 - 服务质量(QoS)相关的特性如性能、可靠性、可用性等都应被纳入设计考量。 5. **投资回报(ROI)和成本效益分析**: - 从经济角度评估实施SOA的合理性。 - 在设计服务时考虑长期成本节约和ROI。 根据以上知识点的总结,可以看出“Prentice.Hall.SOA.Principles.of.Service.Design.Jul.2007.pdf”这本书很可能是系统地介绍SOA设计原则和最佳实践的专业著作,对于想要深入了解SOA设计的读者来说是一本宝贵的参考资料。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

rc滤波导致相位

<think>我们参考了关于RC滤波器的多个引用,特别是引用[3]和引用[4]中提到了相位的影响。 根据引用[3]:对于一阶RC低通滤波器,相位角θ的计算公式为:θ = -arctan(ωRC),其中ω是角频率(ω=2πf),R是电阻值,C是电容值。 引用[4]也解释了相位变化的原因:电容是储能元件,信号通过电容时会有延时,导致输出信号相对于输入信号产生相位差。 因此,对于RC低通滤波器,相位差是负的,表示输出信号滞后于输入信号。滞后的角度随频率增加而增加,在截止频率处滞后45度,当频率趋近于无穷大时,滞后90度。 对于RC高通滤波器,根据引用[3]的提示(虽然没有直接给出公式),
recommend-type

FTP搜索工具:IP检测与数据库管理功能详解

FTP(File Transfer Protocol)即文件传输协议,是一种用于在网络上进行文件传输的协议,使得用户可以通过互联网与其他用户进行文件共享。FTP Search是一款专注于FTP文件搜索的工具,其工作原理和应用场景使其在处理大规模数据共享和远程文件管理方面具有一定的优势。 **属性页控件** 属性页控件是一种用户界面元素,通常用于组织多个属性或设置页面。在FTP Search工具中,属性页控件可能被用来显示和管理FTP搜索的各项参数。用户可以通过它来设置搜索的FTP服务器地址、登录凭证、搜索范围以及结果处理方式等。属性页控件可以提高用户操作的便利性,使得复杂的设置更加直观易懂。 **Ping命令** Ping命令是互联网上广泛使用的一种网络诊断工具。它通过发送ICMP(Internet Control Message Protocol)回显请求消息到指定的IP地址,并等待接收回显应答,以此来检测目标主机是否可达以及网络延迟情况。在FTP Search工具中,Ping命令被用来检测FTP服务器的存活状态,即是否在线并能够响应网络请求。 **扫描主机端口** 端口扫描是网络安全领域中的一个基本操作,它用于检测特定主机上的哪些端口是开放的、关闭的或是被过滤的。了解端口的状态可以帮助确定目标主机上运行的服务和应用程序。在FTP Search工具中,端口扫描功能可能被用于识别FTP服务器上开放的端口,从而帮助用户找到合适的途径进行文件传输。 **数据库管理** 数据库管理在数据密集型应用中扮演着关键角色。FTP Search工具中包含的数据库操作功能,如打开、添加、查询和关闭数据库,表明该工具可能被设计为与数据库系统交互,以便更好地处理搜索到的FTP文件信息。可能涉及到的数据库管理系统(DBMS)包括MySQL、Microsoft SQL Server、SQLite等,用户可以通过工具提供的数据库管理接口来进行数据的维护和检索。 **IP地址控件** IP地址控件是一种用户界面组件,它允许用户输入或选择一个IP地址。在FTP Search工具中,IP地址控件用于输入目标FTP服务器的IP地址,使工具能够定位并连接到相应的服务器。该控件可能还具备验证IP地址有效性(如是否符合IPv4标准)的功能,并且能提供下拉列表或自动完成来提升用户体验。 综上所述,FTP Search工具是一个集成了多种网络和数据库操作功能的实用工具。通过属性页控件,用户可以方便地配置和管理工具;Ping命令和端口扫描功能则有助于用户确认服务器的状态和可用性;数据库管理功能则确保用户能够有效地存储和查询FTP搜索结果;而IP地址控件则简化了用户对服务器地址的输入流程。这些功能相互配合,使得FTP Search工具在执行FTP搜索任务时更加强大、高效和用户友好。对于网络管理员、数据分析师、IT专业人员等,这类工具能够显著提升工作效率,尤其是在处理大规模的文件共享和数据检索时。
recommend-type

【制图技术】:甘肃高质量土壤分布TIF图件的成图策略

# 摘要 本文针对甘肃土壤分布数据的TIF图件制作进行了系统研究。首先概述了甘肃土壤的分布情况,接着介绍了TIF图件的基础知识,包括其格式特点、空间数据表达以及质量控制方法。随后,文中构建了成图策略的理论框架,分析了土壤分布图的信息需求与数据处理流程,并探讨了成图原则与标准。在实践操作部分,详细阐述了制图软
recommend-type

iperf命令-t最多能设置多大

<think>首先,用户的问题是:“我想了解iperf命令中-t参数的最大可设置值 请问iperf -t parameter maximum value”。这涉及到iperf工具,具体是-t参数的最大值。 从系统指令中,我需要: - 使用$...$格式处理行内数学表达式。 - 独立公式用$$...$$格式。 - 使用中文回答。 - 生成相关问题。 - 在引用的段落末尾添加引用标识。 - 回答结构清晰,逐步解决问题。 参考提供的引用: - 引用[1]: 提到iperf3用于性能测试,但不是文件传输工具,因为UDP丢包可能导致文件长度不一致。使用方式:iperf3 -s -F ./log.tx