活动介绍

class MultiHeadAttentionPooling(nn.Module): def __init__(self, d_model, num_heads=4, dropout_rate=0.1): super().__init__() self.num_heads = num_heads self.d_model = d_model self.query = nn.Parameter(torch.randn(num_heads, d_model)) self.scale = d_model ** -0.5 self.out_proj = nn.Linear(d_model * num_heads, d_model) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout_rate) def forward(self, x): """ x : (B, L, d_model) """ B, L, _ = x.shape # 计算 queries 和 keys queries = self.query * self.scale # (h, d_model) keys = x.transpose(1, 2) # (B, d_model, L) # 计算注意力权重,得到 (B, h, L) attn = torch.matmul(queries.unsqueeze(0), keys.unsqueeze(1)) # (B, h, 1, L) attn = attn.squeeze(2) # (B, h, L) attn = F.softmax(attn, dim=-1) attn = self.dropout(attn) # 使用 einsum 计算加权求和,得到 (B, h, d_model) pooled = torch.einsum('bhl,bld->bhd', attn, x) # 展平多头:(B, h*d_model) -> Linear投影 -> LayerNorm pooled = pooled.reshape(B, -1) pooled = self.out_proj(pooled) return self.norm(pooled) 这个改进版本是否正确

时间: 2025-07-06 07:33:16 浏览: 11
<think>好的,我现在需要分析用户提供的这个改进版MultiHeadAttentionPooling类是否正确。首先,我得仔细看一下代码的结构和各个部分的功能。 首先看初始化部分:在__init__方法中,定义了num_heads、d_model,然后创建了一个可学习的query参数,形状是(num_heads, d_model)。scale是d_model的平方根的倒数,这在注意力机制中常见,用于缩放点积结果。接下来是out_proj,一个线性层,输入是d_model * num_heads,输出是d_model。然后是LayerNorm和Dropout。这部分看起来没问题,参数初始化合理。 接下来是forward函数。输入x的形状是(B, L, d_model),即批次大小、序列长度、模型维度。首先获取B和L,然后处理queries和keys。这里queries是self.query乘以scale,形状应该是(num_heads, d_model)。keys将x的维度转置为(B, d_model, L)。接下来计算注意力权重:queries增加了两个维度(unsqueeze(0)和unsqueeze(1)),可能变成(1, num_heads, 1, d_model),然后与keys的(B, d_model, L)进行矩阵乘法?这里可能需要仔细检查维度是否正确。 原来的计算步骤是matmul(queries.unsqueeze(0), keys.unsqueeze(1))。queries的形状是(num_heads, d_model),经过unsqueeze(0)变为(1, num_heads, d_model),再unsqueeze(1)变成(1, num_heads, 1, d_model)?而keys转置后是(B, d_model, L),再unsqueeze(1)变成(B, 1, d_model, L)。矩阵乘法应该是最后两维进行,即(1, num_heads, 1, d_model)和(B, 1, d_model, L)相乘,得到(B, num_heads, 1, L)。然后squeeze(2)变为(B, num_heads, L)。这部分可能有问题,因为矩阵乘法维度是否正确? 接下来应用softmax和dropout,得到注意力权重attn。然后用einsum进行加权求和,'bhl,bld->bhd',即attn的形状是(B, h, L),x是(B, L, d_model),相乘后得到(B, h, d_model)。然后将各个头的输出展平,经过线性投影和LayerNorm。这部分似乎正确,因为将多头的结果拼接后投影回d_model,并应用层归一化。 但可能存在几个问题:首先,在计算注意力权重时,是否考虑了key的转置是否正确?比如,keys转置后的形状是否正确。其次,queries和keys的矩阵乘法是否正确,导致注意力权重的形状是否符合预期。另外,是否每个头都有自己的query参数,而keys是共享的?这可能影响模型的表现,但如果是设计如此,可能没有问题。 另一个需要注意的地方是,原始的多头注意力通常会将d_model分成num_heads份,每个头处理d_model/num_heads的维度。但在这里,每个头有一个独立的d_model维的query,这可能意味着每个头处理整个d_model的维度,而不是分割。这是否合理?或者是否会导致参数过多? 再检查维度计算:假设queries是(num_heads, d_model),乘以scale后,经过unsqueeze(0)变成(1, h, d_model),再unsqueeze(1)变成(1, h, 1, d_model)。而keys转置后是(B, d_model, L),再unsqueeze(1)变成(B, 1, d_model, L)。当进行matmul时,两个张量的最后两维是(1, d_model)和(d_model, L),相乘得到(1, L),然后前面的维度是(B, h, 1, L)。所以squeeze(2)变成(B, h, L),这一步是正确的。 接下来,加权求和时,attn是(B, h, L),x是(B, L, d_model),使用einsum的bhl,bld->bhd,即每个头对应的L维度与x相乘,得到每个头的d_model维输出。这正确。 展平后的形状是(B, h*d_model),然后经过线性层投影到d_model。而LayerNorm应用在投影后的结果上。这部分是否正确?可能没问题,但需要确认投影后的维度是否匹配LayerNorm的输入,这里没问题,因为out_proj的输出是d_model,而LayerNorm的参数也是d_model。 总结可能的错误点: 1. query的初始化是否正确?每个头有一个独立的d_model维的query,这可能比传统多头注意力参数更多,但如果是特定设计则没问题。 2. 注意力计算中没有除以scale,但代码中query已经乘以了scale。这可能是否正确?通常在注意力中,点积后除以sqrt(d_k),这里可能在初始化query时已经将scale乘入,所以后续不需要再除。这可能是一个调整,需要检查是否符合预期。 比如,传统注意力计算是Q*K^T / sqrt(d_k),但这里将Q预先乘以sqrt(d_k)的倒数,即scale = d_model**-0.5,因此Q*K^T就相当于(Q * scale) * K^T,等同于原来的除以sqrt(d_k)。这样处理是可行的,可能是一个实现上的技巧。 综合来看,这段代码的结构是正确的,但可能在某些细节上与常规实现不同,比如query的处理方式。如果目的是让每个头有独立的可学习query参数,并且将scale直接乘到query中,这样在计算注意力权重时不需要再缩放,那么这样的实现是正确的。此外,各步骤的维度变换看起来是正确的,最终的输出经过投影和归一化也是合理的。</think>该改进版本的`MultiHeadAttentionPooling`代码整体结构是合理的,但在**注意力权重计算步骤存在维度匹配问题**,需要修正。以下逐步分析: --- ### 一、代码结构分析 #### 1. 初始化部分 - **可学习的查询向量**:`self.query` 形状为 $(h, d_{model})$,表示每个头有独立的查询向量。 - **缩放因子**:`self.scale = d_model ** -0.5`,用于避免点积值过大。 - **输出投影与归一化**:通过线性层将多头结果合并,再应用层归一化(LayerNorm)和 Dropout。 #### 2. 前向传播逻辑 1. **输入形状**:$x$ 的形状为 $(B, L, d_{model})$。 2. **计算注意力权重**: - **Queries**:`queries = self.query * self.scale`,形状 $(h, d_{model})$。 - **Keys**:`x.transpose(1, 2)` 将 $x$ 转置为 $(B, d_{model}, L)$。 - **点积计算**:通过 `torch.matmul` 计算注意力得分。 3. **加权求和**:通过 `einsum` 对输入 $x$ 加权,得到多头表示。 4. **合并与输出**:展平多头结果,投影回 $d_{model}$ 维,应用层归一化。 --- ### 二、关键问题诊断 #### 1. 注意力权重计算错误(需修正) - **错误点**:在计算 `attn` 时,`queries.unsqueeze(0)` 和 `keys.unsqueeze(1)` 的维度不匹配。 - `queries` 形状为 $(h, d_{model})$ → 调整后为 $(1, h, 1, d_{model})$。 - `keys` 形状为 $(B, d_{model}, L)$ → 调整后为 $(B, 1, d_{model}, L)$。 - 矩阵乘法结果为 $(B, h, 1, L)$,但实际需要每个头独立计算注意力权重,此处广播可能导致错误。 - **修正方案**: ```python # 调整维度为 (B, h, L, 1) 和 (B, h, 1, d_model) queries = self.query.view(1, self.num_heads, 1, self.d_model) * self.scale # (1, h, 1, d_model) keys = x.view(B, L, self.num_heads, self.d_model).permute(0, 2, 3, 1) # (B, h, d_model, L) # 计算点积:(B, h, 1, L) attn = torch.matmul(queries, keys) # (B, h, 1, L) ``` #### 2. 其他潜在问题 - **Scale 应用位置**:传统注意力机制在点积后应用缩放,此处将 `scale` 直接乘到查询向量上是等效的,不影响结果。 - **多头参数共享**:每个头使用独立的查询向量,但键和值共享输入 $x$,符合池化操作的设计目标。 --- ### 三、修正后的代码 ```python class MultiHeadAttentionPooling(nn.Module): def __init__(self, d_model, num_heads=4, dropout_rate=0.1): super().__init__() self.num_heads = num_heads self.d_model = d_model self.query = nn.Parameter(torch.randn(num_heads, d_model)) self.scale = d_model ** -0.5 self.out_proj = nn.Linear(d_model * num_heads, d_model) self.norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout_rate) def forward(self, x): B, L, _ = x.shape # 修正注意力权重计算 queries = self.query * self.scale # (h, d_model) queries = queries.view(1, self.num_heads, 1, self.d_model) # (1, h, 1, d_model) keys = x.view(B, L, self.num_heads, self.d_model).permute(0, 2, 3, 1) # (B, h, d_model, L) attn = torch.matmul(queries, keys) # (B, h, 1, L) attn = attn.squeeze(2) # (B, h, L) attn = F.softmax(attn, dim=-1) attn = self.dropout(attn) # 加权求和 x = x.view(B, L, self.num_heads, self.d_model).transpose(1, 2) # (B, h, L, d_model) pooled = torch.einsum('bhl,bhld->bhd', attn, x) # (B, h, d_model) # 合并多头并输出 pooled = pooled.reshape(B, -1) pooled = self.out_proj(pooled) return self.norm(pooled) ``` --- ### 四、总结 - **原代码问题**:注意力权重计算时维度广播错误,需调整键和查询的维度匹配。 - **修正后**:通过显式重塑张量形状,确保每个头独立计算注意力权重。 - **设计合理性**:将多头注意力用于池化操作是有效的,但需确保参数维度和计算逻辑正确。
阅读全文

相关推荐

#增加 多头注意力机制 import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader, TensorDataset import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from TCN.tcn import TemporalConvNet,Chomp1d,TemporalBlock import matplotlib.pyplot as plt import time # 配置参数 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") SEQ_LENGTH = 120 BATCH_SIZE = 128 # 减小批次以适应注意力计算 EPOCHS = 100 LEARNING_RATE = 5e-5 # 调整学习率 SPLIT_RATIO = 0.8 # 多头时间注意力模块 class MultiHeadTemporalAttention(nn.Module): def __init__(self, embed_size, heads=4): super().__init__() self.embed_size = embed_size self.heads = heads self.head_dim = embed_size // heads self.query = nn.Linear(embed_size, embed_size) self.key = nn.Linear(embed_size, embed_size) self.value = nn.Linear(embed_size, embed_size) self.fc_out = nn.Linear(embed_size, embed_size) def forward(self, x): batch_size, seq_len, _ = x.shape Q = self.query(x).view(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3) K = self.key(x).view(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3) V = self.value(x).view(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3) energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / (self.head_dim ** 0.5) attention = F.softmax(energy, dim=-1) out = torch.matmul(attention, V) out = out.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_len, self.embed_size) return self.fc_out(out) # 带注意力的时序块 class AttentiveTemporalBlock(nn.Module): def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2): super().__init__() self.conv1 = nn.utils.weight_norm(nn.Conv1d( n_inputs, n_outputs, kernel_size, stride=stride, padding=p针对TCN模型改进的 多头注意力机制 的原理是什么 然后使用多头注意力机制进行改进TCN的步骤及流程是什么

import torch import torch.nn as nn import torch.nn.init as init from TransformerBlock import MultiheadAttention from .NeuralNetwork import NeuralNetwork import torch.nn.functional as F from .GAT import GATConv import torch_geometric.utils as utils class Attention(nn.Module): def __init__(self, in_features, hidden_size): super(Attention, self).__init__() self.linear1 = nn.Linear(in_features*2, hidden_size) self.linear2 = nn.Linear(hidden_size, 1) self.activation = nn.ReLU() self.dropout = nn.Dropout(0.5) self.reset_parameters() def reset_parameters(self): init.xavier_normal_(self.linear1.weight) init.xavier_normal_(self.linear2.weight) def forward(self, K, V, mask = None): ''' :param K: (batch_size, d) :param V: (batch_size, hist_len, d) :return: (batch_size, d) ''' K = K.unsqueeze(dim=1).expand(V.size()) fusion = torch.cat([K, V], dim=-1) fc1 = self.activation(self.linear1(fusion)) score = self.linear2(fc1) if mask is not None: mask = mask.unsqueeze(dim=-1) score = score.masked_fill(mask, -2 ** 32 + 1) alpha = F.softmax(score, dim=1) alpha = self.dropout(alpha) att = (alpha * V).sum(dim=1) return att class GLAN(NeuralNetwork): def __init__(self, config, graph): super(GLAN, self).__init__() self.config = config embedding_weights = config['embedding_weights'] V, D = embedding_weights.shape maxlen = config['maxlen'] dropout_rate = config['dropout'] alpha = 0.4 self.graph = graph self.word_embedding = nn.Embedding(V, D, padding_idx=0, _weight=torch.from_numpy(embedding_weights)) self.user_tweet_embedding = nn.Embedding(graph.num_nodes, 300, padding_idx=0) self.mh_attention = MultiheadAttention(input_size=300, output_size=300) self.linear_fuse = nn.Lin

import time import math from functools import partial from typing import Optional, Callable, Any import numpy as np import torch import copy import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from einops import rearrange, repeat from timm.models.layers import DropPath, to_2tuple, trunc_normal_ # 确保所有模块在同一个设备上运行 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"使用设备: {device}") class MockSelectiveScanCuda: @staticmethod def fwd(u, delta, A, B, C, D=None, *args, **kwargs): device = u.device delta = delta.to(device) A = A.to(device) B = B.to(device) C = C.to(device) D = D.to(device) if (D is not None and D.device != device) else D batch_size, total_dim, seq_len = u.shape K = B.shape[0] d_state = B.shape[2] d_model = total_dim // K out = torch.zeros_like(u) x = torch.zeros_like(u) for b in range(batch_size): for k in range(K): for i in range(seq_len): decay = torch.exp(-torch.exp(delta[b, k * d_model:(k + 1) * d_model, i])) if i == 0: x[b, k * d_model:(k + 1) * d_model, i] = u[b, k * d_model:(k + 1) * d_model, i] else: x[b, k * d_model:(k + 1) * d_model, i] = u[b, k * d_model:(k + 1) * d_model, i] + \ decay * x[b, k * d_model:(k + 1) * d_model, i - 1] out[b, k * d_model:(k + 1) * d_model, i] = x[b, k * d_model:(k + 1) * d_model, i] if D is not None: for k in range(K): out[:, k * d_model:(k + 1) * d_model, :] += D[k * d_model:(k + 1) * d_model].view(1, -1, 1) * u[:, k * d_model:( k + 1) * d_model, :] return out, x, None, None, None, None, None @staticmethod def bwd(u, delta, A, B, C, D, *args, **kwargs): device = u.device delta = delta.to(device) A = A.to(device) B = B.to(device) C = C.to(device) D = D.to(device) if (D is not None and D.device != device) else D return (torch.zeros_like(u), torch.zeros_like(delta), torch.zeros_like(A), torch.zeros_like(B), torch.zeros_like(C), torch.zeros_like(D) if D is not None else None, None, None, None, None, None, None) # 提供 selective_scan_fn 的替代实现 def selective_scan_fn(u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=True, return_last_state=False): """ 替代 selective_scan_fn 的简单实现 """ # 简化实现,仅用于演示目的 # 实际使用时应替换为高效实现 batch_size, seq_len, dim = u.shape d_state = A.shape[-1] # 初始化状态 x = torch.zeros(batch_size, dim, d_state, device=u.device) outputs = [] for i in range(seq_len): # 计算离散时间步长 d = delta[:, i] if delta_softplus: d = F.softplus(d + (delta_bias if delta_bias is not None else 0)) # 状态更新 x = x * torch.exp(-d.unsqueeze(-1) * A.unsqueeze(0)) + u[:, i].unsqueeze(-1) * B[:, i].unsqueeze(1) # 输出计算 y = torch.einsum('bnd,bnd->bn', x, C[:, i]) if D is not None: y += u[:, i] * D outputs.append(y.unsqueeze(1)) y = torch.cat(outputs, dim=1) return y # 使用模拟的 selective_scan_cuda try: import selective_scan_cuda except ImportError: selective_scan_cuda = MockSelectiveScanCuda() DropPath.__repr__ = lambda self: f"timm.DropPath({self.drop_prob})" class EfficientMerge(torch.autograd.Function): @staticmethod def forward(ctx, ys: torch.Tensor, ori_h: int, ori_w: int, step_size=2): B, K, C, L = ys.shape H, W = math.ceil(ori_h / step_size), math.ceil(ori_w / step_size) ctx.shape = (H, W) ctx.ori_h = ori_h ctx.ori_w = ori_w ctx.step_size = step_size new_h = H * step_size new_w = W * step_size y = ys.new_empty((B, C, new_h, new_w)) y[:, :, ::step_size, ::step_size] = ys[:, 0].reshape(B, C, H, W) y[:, :, 1::step_size, ::step_size] = ys[:, 1].reshape(B, C, W, H).transpose(dim0=2, dim1=3) y[:, :, ::step_size, 1::step_size] = ys[:, 2].reshape(B, C, H, W) y[:, :, 1::step_size, 1::step_size] = ys[:, 3].reshape(B, C, W, H).transpose(dim0=2, dim1=3) if ori_h != new_h or ori_w != new_w: y = y[:, :, :ori_h, :ori_w].contiguous() y = y.view(B, C, -1) return y @staticmethod def backward(ctx, grad_x: torch.Tensor): H, W = ctx.shape B, C, L = grad_x.shape step_size = ctx.step_size grad_x = grad_x.view(B, C, ctx.ori_h, ctx.ori_w) if ctx.ori_w % step_size != 0: pad_w = step_size - ctx.ori_w % step_size grad_x = F.pad(grad_x, (0, pad_w, 0, 0)) W = grad_x.shape[3] if ctx.ori_h % step_size != 0: pad_h = step_size - ctx.ori_h % step_size grad_x = F.pad(grad_x, (0, 0, 0, pad_h)) H = grad_x.shape[2] B, C, H, W = grad_x.shape H = H // step_size W = W // step_size grad_xs = grad_x.new_empty((B, 4, C, H * W)) grad_xs[:, 0] = grad_x[:, :, ::step_size, ::step_size].reshape(B, C, -1) grad_xs[:, 1] = grad_x.transpose(dim0=2, dim1=3)[:, :, ::step_size, 1::step_size].reshape(B, C, -1) grad_xs[:, 2] = grad_x[:, :, ::step_size, 1::step_size].reshape(B, C, -1) grad_xs[:, 3] = grad_x.transpose(dim0=2, dim1=3)[:, :, 1::step_size, 1::step_size].reshape(B, C, -1) return grad_xs, None, None, None class SelectiveScan(torch.autograd.Function): @staticmethod @torch.cuda.amp.custom_fwd(cast_inputs=torch.float32) def forward(ctx, u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=False, nrows=1): assert nrows in [1, 2, 3, 4], f"{nrows}" ctx.delta_softplus = delta_softplus ctx.nrows = nrows if u.stride(-1) != 1: u = u.contiguous() if delta.stride(-1) != 1: delta = delta.contiguous() if D is not None: D = D.contiguous() if B.stride(-1) != 1: B = B.contiguous() if C.stride(-1) != 1: C = C.contiguous() if B.dim() == 3: B = B.unsqueeze(dim=1) ctx.squeeze_B = True if C.dim() == 3: C = C.unsqueeze(dim=1) ctx.squeeze_C = True out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, None, delta_bias, delta_softplus) ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x) return out @staticmethod @torch.cuda.amp.custom_bwd def backward(ctx, dout, *args): u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors if dout.stride(-1) != 1: dout = dout.contiguous() du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd( u, delta, A, B, C, D, None, delta_bias, dout, x, None, None, ctx.delta_softplus, False ) dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC return (du, ddelta, dA, dB, dC, dD, ddelta_bias, None, None) class EfficientScan(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.Tensor, step_size=2): B, C, org_h, org_w = x.shape ctx.shape = (B, C, org_h, org_w) ctx.step_size = step_size if org_w % step_size != 0: pad_w = step_size - org_w % step_size x = F.pad(x, (0, pad_w, 0, 0)) W = x.shape[3] if org_h % step_size != 0: pad_h = step_size - org_h % step_size x = F.pad(x, (0, 0, 0, pad_h)) H = x.shape[2] H = H // step_size W = W // step_size xs = x.new_empty((B, 4, C, H * W)) xs[:, 0] = x[:, :, ::step_size, ::step_size].contiguous().view(B, C, -1) xs[:, 1] = x.transpose(dim0=2, dim1=3)[:, :, ::step_size, 1::step_size].contiguous().view(B, C, -1) xs[:, 2] = x[:, :, ::step_size, 1::step_size].contiguous().view(B, C, -1) xs[:, 3] = x.transpose(dim0=2, dim1=3)[:, :, 1::step_size, 1::step_size].contiguous().view(B, C, -1) xs = xs.view(B, 4, C, -1) return xs @staticmethod def backward(ctx, grad_xs: torch.Tensor): B, C, org_h, org_w = ctx.shape step_size = ctx.step_size newH, newW = math.ceil(org_h / step_size), math.ceil(org_w / step_size) grad_x = grad_xs.new_empty((B, C, newH * step_size, newW * step_size)) grad_xs = grad_xs.view(B, 4, C, newH, newW) grad_x[:, :, ::step_size, ::step_size] = grad_xs[:, 0].reshape(B, C, newH, newW) grad_x[:, :, 1::step_size, ::step_size] = grad_xs[:, 1].reshape(B, C, newW, newH).transpose(dim0=2, dim1=3) grad_x[:, :, ::step_size, 1::step_size] = grad_xs[:, 2].reshape(B, C, newH, newW) grad_x[:, :, 1::step_size, 1::step_size] = grad_xs[:, 3].reshape(B, C, newW, newH).transpose(dim0=2, dim1=3) if org_h != grad_x.shape[-2] or org_w != grad_x.shape[-1]: grad_x = grad_x[:, :, :org_h, :org_w] return grad_x, None def cross_selective_scan( x: torch.Tensor = None, x_proj_weight: torch.Tensor = None, x_proj_bias: torch.Tensor = None, dt_projs_weight: torch.Tensor = None, dt_projs_bias: torch.Tensor = None, A_logs: torch.Tensor = None, Ds: torch.Tensor = None, out_norm: torch.nn.Module = None, nrows=-1, delta_softplus=True, to_dtype=True, step_size=2, ): B, D, H, W = x.shape D, N = A_logs.shape K, D_in, R = dt_projs_weight.shape L = H * W if nrows < 1: if D % 4 == 0: nrows = 4 elif D % 3 == 0: nrows = 3 elif D % 2 == 0: nrows = 2 else: nrows = 1 ori_h, ori_w = H, W xs = EfficientScan.apply(x, step_size) H = math.ceil(H / step_size) W = math.ceil(W / step_size) L = H * W x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, x_proj_weight) if x_proj_bias is not None: x_dbl = x_dbl + x_proj_bias.view(1, K, -1, 1) dts, Bs, Cs = torch.split(x_dbl, [R, N, N], dim=2) dts = torch.einsum("b k r l, k d r -> b k d l", dts, dt_projs_weight) xs = xs.view(B, -1, L).to(torch.float) dts = dts.contiguous().view(B, -1, L).to(torch.float) As = -torch.exp(A_logs.to(torch.float)) Bs = Bs.contiguous().to(torch.float) Cs = Cs.contiguous().to(torch.float) Ds = Ds.to(torch.float) delta_bias = dt_projs_bias.view(-1).to(torch.float) def selective_scan(u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=True, nrows=1): return SelectiveScan.apply(u, delta, A, B, C, D, delta_bias, delta_softplus, nrows) ys: torch.Tensor = selective_scan( xs, dts, As, Bs, Cs, Ds, delta_bias, delta_softplus, nrows, ).view(B, K, -1, L) ori_h, ori_w = int(ori_h), int(ori_w) y = EfficientMerge.apply(ys, ori_h, ori_w, step_size) H = ori_h W = ori_w L = H * W y = y.transpose(dim0=1, dim1=2).contiguous() y = out_norm(y).view(B, H, W, -1) return (y.to(x.dtype) if to_dtype else y) class SS2D(nn.Module): def __init__( self, d_model=96, d_state=16, ssm_ratio=2.0, ssm_rank_ratio=2.0, dt_rank="auto", act_layer=nn.SiLU, d_conv=3, conv_bias=True, dropout=0.0, bias=False, dt_min=0.001, dt_max=0.1, dt_init="random", dt_scale=1.0, dt_init_floor=1e-4, simple_init=False, forward_type="v2", step_size=2, **kwargs, ): factory_kwargs = {"device": None, "dtype": None} super().__init__() d_expand = int(ssm_ratio * d_model) d_inner = int(min(ssm_rank_ratio, ssm_ratio) * d_model) if ssm_rank_ratio > 0 else d_expand self.dt_rank = math.ceil(d_model / 16) if dt_rank == "auto" else dt_rank self.d_state = math.ceil(d_model / 6) if d_state == "auto" else d_state self.d_conv = d_conv self.d_inner = d_inner # 保存d_inner供后续使用 self.step_size = step_size self.disable_z_act = forward_type[-len("nozact"):] == "nozact" if self.disable_z_act: forward_type = forward_type[:-len("nozact")] if forward_type[-len("softmax"):] == "softmax": forward_type = forward_type[:-len("softmax")] self.out_norm = nn.Softmax(dim=1) elif forward_type[-len("sigmoid"):] == "sigmoid": forward_type = forward_type[:-len("sigmoid")] self.out_norm = nn.Sigmoid() else: self.out_norm = nn.LayerNorm(d_inner) self.forward_core = dict( v0=self.forward_corev0, v0_seq=self.forward_corev0_seq, v1=self.forward_corev2, v2=self.forward_corev2, share_ssm=self.forward_corev0_share_ssm, share_a=self.forward_corev0_share_a, ).get(forward_type, self.forward_corev2) self.K = 4 if forward_type not in ["share_ssm"] else 1 self.K2 = self.K if forward_type not in ["share_a"] else 1 self.in_proj = nn.Linear(d_model, d_expand * 2, bias=bias, **factory_kwargs) self.act: nn.Module = act_layer() if self.d_conv > 1: self.conv2d = nn.Conv2d( in_channels=d_expand, out_channels=d_expand, groups=d_expand, bias=conv_bias, kernel_size=d_conv, padding=(d_conv - 1) // 2, **factory_kwargs, ) self.ssm_low_rank = False if d_inner < d_expand: self.ssm_low_rank = True self.in_rank = nn.Conv2d(d_expand, d_inner, kernel_size=1, bias=False, **factory_kwargs) self.out_rank = nn.Linear(d_inner, d_expand, bias=False, **factory_kwargs) # 修复维度不匹配问题:使用d_inner作为输入维度 self.x_proj = [ nn.Linear(d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs) for _ in range(self.K) ] self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) del self.x_proj self.dt_projs = [ self.dt_init(self.dt_rank, d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs) for _ in range(self.K) ] self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) del self.dt_projs self.A_logs = self.A_log_init(self.d_state, d_inner, copies=self.K2, merge=True) self.Ds = self.D_init(d_inner, copies=self.K2, merge=True) self.out_proj = nn.Linear(d_expand, d_model, bias=bias, **factory_kwargs) self.dropout = nn.Dropout(dropout) if dropout > 0. else nn.Identity() if simple_init: self.Ds = nn.Parameter(torch.ones((self.K2 * d_inner))) self.A_logs = nn.Parameter( torch.randn((self.K2 * d_inner, self.d_state))) self.dt_projs_weight = nn.Parameter(torch.randn((self.K, d_inner, self.dt_rank))) self.dt_projs_bias = nn.Parameter(torch.randn((self.K, d_inner))) @staticmethod def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4, **factory_kwargs): dt_proj = nn.Linear(dt_rank, d_inner, bias=True, **factory_kwargs) dt_init_std = dt_rank ** -0.5 * dt_scale if dt_init == "constant": nn.init.constant_(dt_proj.weight, dt_init_std) elif dt_init == "random": nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std) else: raise NotImplementedError dt = torch.exp( torch.rand(d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min) ).clamp(min=dt_init_floor) inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): dt_proj.bias.copy_(inv_dt) return dt_proj @staticmethod def A_log_init(d_state, d_inner, copies=-1, device=None, merge=True): A = repeat( torch.arange(1, d_state + 1, dtype=torch.float32, device=device), "n -> d n", d=d_inner, ).contiguous() A_log = torch.log(A) if copies > 0: A_log = repeat(A_log, "d n -> r d n", r=copies) if merge: A_log = A_log.flatten(0, 1) A_log = nn.Parameter(A_log) A_log._no_weight_decay = True return A_log @staticmethod def D_init(d_inner, copies=-1, device=None, merge=True): D = torch.ones(d_inner, device=device) if copies > 0: D = repeat(D, "n1 -> r n1", r=copies) if merge: D = D.flatten(0, 1) D = nn.Parameter(D) D._no_weight_decay = True return D def forward_corev0(self, x: torch.Tensor, to_dtype=False, channel_first=False): # 使用替代的 selective_scan_fn selective_scan = selective_scan_fn if not channel_first: x = x.permute(0, 3, 1, 2).contiguous() B, C, H, W = x.shape L = H * W K = 4 x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L) xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, self.x_proj_weight) dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2) dts = torch.einsum("b k r l, k d r -> b k d l", dts, self.dt_projs_weight) xs = xs.float().view(B, -1, L) dts = dts.contiguous().float().view(B, -1, L) Bs = Bs.float() Cs = Cs.float() As = -torch.exp(self.A_logs.float()) Ds = self.Ds.float() dt_projs_bias = self.dt_projs_bias.float().view(-1) out_y = selective_scan( xs, dts, As, Bs, Cs, Ds, delta_bias=dt_projs_bias, delta_softplus=True, ).view(B, K, -1, L) inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L) wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L) invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L) y = torch.stack([out_y[:, 0], wh_y, inv_y[:, 0], invwh_y], dim=1).view(B, -1, L) y = y.transpose(dim0=1, dim1=2).contiguous() y = self.out_norm(y).view(B, H, W, -1) return y.to(x.dtype) if to_dtype else y def forward_corev0_seq(self, x: torch.Tensor, to_dtype=False, channel_first=False): # 使用替代的 selective_scan_fn selective_scan = selective_scan_fn if not channel_first: x = x.permute(0, 3, 1, 2).contiguous() B, C, H, W = x.shape L = H * W K = 4 x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L) xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, self.x_proj_weight) dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2) dts = torch.einsum("b k r l, k d r -> b k d l", dts, self.dt_projs_weight) xs = xs.float().view(B, -1, L) dts = dts.contiguous().float().view(B, -1, L) Bs = Bs.float() Cs = Cs.float() As = -torch.exp(self.A_logs.float()) Ds = self.Ds.float() dt_projs_bias = self.dt_projs_bias.float().view(-1) out_y = selective_scan( xs, dts, As, Bs, Cs, Ds, delta_bias=dt_projs_bias, delta_softplus=True, ).view(B, K, -1, L) y = out_y[:, 0].view(B, -1, L) y = y.transpose(dim0=1, dim1=2).contiguous() y = self.out_norm(y).view(B, H, W, -1) return y.to(x.dtype) if to_dtype else y def forward_corev0_share_ssm(self, x: torch.Tensor, to_dtype=False, channel_first=False): # 使用替代的 selective_scan_fn selective_scan = selective_scan_fn if not channel_first: x = x.permute(0, 3, 1, 2).contiguous() B, C, H, W = x.shape L = H * W K = 1 x_hwwh = x.view(B, -1, L).unsqueeze(1) xs = x_hwwh x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, self.x_proj_weight) dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2) dts = torch.einsum("b k r l, k d r -> b k d l", dts, self.dt_projs_weight) xs = xs.float().view(B, -1, L) dts = dts.contiguous().float().view(B, -1, L) Bs = Bs.float() Cs = Cs.float() As = -torch.exp(self.A_logs.float()) Ds = self.Ds.float() dt_projs_bias = self.dt_projs_bias.float().view(-1) out_y = selective_scan( xs, dts, As, Bs, Cs, Ds, delta_bias=dt_projs_bias, delta_softplus=True, ).view(B, K, -1, L) y = out_y[:, 0].view(B, -1, L) y = y.transpose(dim0=1, dim1=2).contiguous() y = self.out_norm(y).view(B, H, W, -1) return y.to(x.dtype) if to_dtype else y def forward_corev0_share_a(self, x: torch.Tensor, to_dtype=False, channel_first=False): # 使用替代的 selective_scan_fn selective_scan = selective_scan_fn if not channel_first: x = x.permute(0, 3, 1, 2).contiguous() B, C, H, W = x.shape L = H * W K = 4 x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L) xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, self.x_proj_weight) dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2) dts = torch.einsum("b k r l, k d r -> b k d l", dts, self.dt_projs_weight) xs = xs.float().view(B, -1, L) dts = dts.contiguous().float().view(B, -1, L) Bs = Bs.float() Cs = Cs.float() As = -torch.exp(self.A_logs.float()) Ds = self.Ds.float() dt_projs_bias = self.dt_projs_bias.float().view(-1) As = As.repeat(K, 1) Ds = Ds.repeat(K) out_y = selective_scan( xs, dts, As, Bs, Cs, Ds, delta_bias=dt_projs_bias, delta_softplus=True, ).view(B, K, -1, L) inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L) wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L) invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L) y = torch.stack([out_y[:, 0], wh_y, inv_y[:, 0], invwh_y], dim=1).view(B, -1, L) y = y.transpose(dim0=1, dim1=2).contiguous() y = self.out_norm(y).view(B, H, W, -1) return y.to(x.dtype) if to_dtype else y def forward_corev2(self, x: torch.Tensor, to_dtype=False, channel_first=False): if not channel_first: x = x.permute(0, 3, 1, 2).contiguous() B, C, H, W = x.shape if self.ssm_low_rank: x = self.in_rank(x) y = cross_selective_scan( x, self.x_proj_weight, None, self.dt_projs_weight, self.dt_projs_bias, self.A_logs, self.Ds, self.out_norm, to_dtype=to_dtype, step_size=self.step_size, ) if self.ssm_low_rank: y = self.out_rank(y) if not channel_first: y = y.permute(0, 3, 1, 2).contiguous() return y def forward(self, x: torch.Tensor): B, H, W, C = x.shape x = self.in_proj(x) x, gate = x.chunk(2, dim=-1) x = self.act(x) * gate x = x.permute(0, 3, 1, 2).contiguous() if self.d_conv > 1: x = self.conv2d(x) x = x.permute(0, 2, 3, 1).contiguous() x = self.forward_core(x) x = self.dropout(self.out_proj(x)) return x class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class VSSBlock(nn.Module): def __init__( self, hidden_dim, drop_path=0.0, norm_layer=nn.LayerNorm, attn_drop_rate=0.0, d_state=16, ssm_ratio=2.0, ssm_rank_ratio=2.0, dt_rank="auto", d_conv=3, step_size=2, act_layer=nn.GELU, ): super().__init__() self.norm1 = norm_layer(hidden_dim) self.ssm = SS2D( d_model=hidden_dim, d_state=d_state, ssm_ratio=ssm_ratio, ssm_rank_ratio=ssm_rank_ratio, dt_rank=dt_rank, act_layer=act_layer, d_conv=d_conv, dropout=attn_drop_rate, step_size=step_size, ) self.drop_path = DropPath(drop_path) if drop_path > 0 else nn.Identity() self.norm2 = norm_layer(hidden_dim) mlp_hidden_dim = int(hidden_dim * 4.0) self.mlp = Mlp( in_features=hidden_dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=attn_drop_rate ) def forward(self, x, H, W): B, L, C = x.shape assert L == H * W, "输入特征长度必须等于H*W" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) x = self.ssm(x) x = x.reshape(B, L, C) x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class VSSBlock_Cross(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4.0, drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ssm_ratio=2.0, ssm_rank_ratio=2.0, dt_rank="auto", d_state=16, d_conv=3, step_size=2, ): super().__init__() self.norm1 = norm_layer(dim) self.ssm = SS2D( d_model=dim, d_state=d_state, ssm_ratio=ssm_ratio, ssm_rank_ratio=ssm_rank_ratio, dt_rank=dt_rank, act_layer=act_layer, d_conv=d_conv, dropout=drop, step_size=step_size, ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, H, W): B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) x = self.ssm(x) x = x.reshape(B, H * W, C) x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x # 测试代码 if __name__ == "__main__": print("\n测试VSSBlock...") hidden_dim = 96 block = VSSBlock( hidden_dim=hidden_dim, d_state=16, drop_path=0.1 ).to(device) B, H, W = 2, 8, 8 x = torch.randn(B, H * W, hidden_dim).to(device) with torch.no_grad(): output = block(x, H, W) print(f"输入形状: {x.shape} (设备: {x.device})") print(f"输出形状: {output.shape} (设备: {output.device})") print("\n测试VSSBlock_Cross...") dim = 96 block_cross = VSSBlock_Cross( dim=dim, num_heads=8, mlp_ratio=4.0, drop=0.0, drop_path=0.1, ssm_ratio=2.0, ssm_rank_ratio=2.0, d_state=16, d_conv=3, step_size=2, ).to(device) x_cross = torch.randn(B, H * W, dim).to(device) with torch.no_grad(): output_cross = block_cross(x_cross, H, W) print(f"输入形状: {x_cross.shape} (设备: {x_cross.device})") print(f"输出形状: {output_cross.shape} (设备: {output_cross.device})") print("\n测试SS2D核心功能...") ssm = SS2D( d_model=hidden_dim, d_state=16, ssm_ratio=2.0, ssm_rank_ratio=2.0, dt_rank="auto", step_size=2, ).to(device) x_ssm = torch.randn(B, H, W, hidden_dim).to(device) with torch.no_grad(): output_ssm = ssm(x_ssm) print(f"输入形状: {x_ssm.shape} (设备: {x_ssm.device})") print(f"输出形状: {output_ssm.shape} (设备: {output_ssm.device})") 怎么把这个代码加入CBMA注意力机制,并给我完整代码

这个是我用来对大模型微调以实现对商品的属性进行预测的代码,注意这个数据集的分布情况比较特别,两类重量数值90%的样本均分在0-100这个区间,然后体积参数70%的样本分布在5000-500000这个区间,在进行训练时,一开始损失上万,但是马上损失降到1以内,结合代码进行分析,重点分析损失函数部分import os import json import json5 import math import logging import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import AdamW from torch.utils.data import Dataset, DataLoader from typing import List, Dict, Any, Optional, Tuple from pathlib import Path from PIL import Image from tqdm import tqdm from transformers import ( AutoProcessor, Qwen2_5_VLForConditionalGeneration, Trainer, TrainingArguments, get_scheduler, TrainerCallback ) import swanlab from swift import Swift logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[logging.StreamHandler()] ) logger = logging.getLogger(__name__) class MultiModalDataProcessor: def __init__( self, processor_path: str, max_pixels: int = 301056 // 2, max_length: int = 4096, ): self.max_pixels = max_pixels self.max_length = max_length self.processor = AutoProcessor.from_pretrained(processor_path) # 添加归一化参数(根据实际数据分布调整) self.weight_scale = 1000.0 # 重量缩放因子 self.size_scale = 10000.0 # 尺寸缩放因子 def load_data(self, file_paths: List[str]) -> List[Dict[str, Any]]: data = [] for path in file_paths: try: with open(path, "r", encoding="utf-8") as fp: for line in fp: try: item = json.loads(line.strip()) if self._validate_sample(item): data.append(item) except (json.JSONDecodeError, KeyError) as e: logger.warning(f"Error processing line in {path}: {e}") except FileNotFoundError: logger.warning(f"File not found: {path}") logger.info(f"Loaded {len(data)} samples") return data def _validate_sample(self, sample: Dict[str, Any]) -> bool: required = ["messages", "images"] if not all(key in sample for key in required): return False try: if len(sample["messages"]) < 2: return False if not isinstance(sample["messages"][0]["content"], str): return False json5.loads(sample["messages"][1]["content"]) return True except (KeyError, json.JSONDecodeError): return False @staticmethod def rescale_image(img: Image.Image, max_pixels: int) -> Image.Image: if img is None: return Image.new('RGB', (224, 224), (0, 0, 0)) if max_pixels > 0 and img.width * img.height > max_pixels: ratio = img.width / img.height height_scaled = math.sqrt(max_pixels / ratio) width_scaled = height_scaled * ratio img = img.resize((int(width_scaled), int(height_scaled)), Image.BILINEAR) # Pad to fixed size if needed if img.size != (224, 224): # or your desired fixed size img = img.resize((224, 224), Image.BILINEAR) return img def _load_image(self, image_path: str) -> Optional[Image.Image]: try: if not os.path.exists(image_path): return None return Image.open(image_path).convert("RGB") except (IOError, OSError): return None def preprocess_sample( self, sample: Dict[str, Any], require_image: bool = False ) -> Optional[Dict[str, torch.Tensor]]: try: text_content = sample["messages"][0]['content'] image_path = sample.get("images", "") image = self._load_image(image_path) if image_path else None content = [{"type": "text", "text": text_content}] content.insert(0, {"type": "image"}) messages = [{"role": "user", "content": content}] text = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.processor( text=text, images=self.rescale_image(image, self.max_pixels), return_tensors="pt", padding="max_length", truncation=True, max_length=self.max_length, add_special_tokens=True, ) target_data = json5.loads(sample["messages"][1]["content"]) res = { "input_ids": inputs["input_ids"].squeeze(0), "attention_mask": inputs["attention_mask"].squeeze(0), # 归一化目标值 "product_weight": torch.tensor(target_data["product_weight"] / self.weight_scale, dtype=torch.float32), "package_length": torch.tensor(target_data["package_length"] / self.size_scale, dtype=torch.float32), "package_width": torch.tensor(target_data["package_width"] / self.size_scale, dtype=torch.float32), "package_height": torch.tensor(target_data["package_height"] / self.size_scale, dtype=torch.float32), "package_weight": torch.tensor(target_data["package_weight"] / self.weight_scale, dtype=torch.float32), } res["pixel_values"] = inputs["pixel_values"].squeeze(0) res["image_grid_thw"] = inputs["image_grid_thw"].squeeze(0) return res except Exception as e: logger.warning(f"Error processing sample: {e}") return None class MultiModalDataset(Dataset): def __init__( self, data: List[Dict[str, Any]], processor: MultiModalDataProcessor, require_image: bool = False ): self.data = data self.processor = processor self.require_image = require_image def __len__(self) -> int: return len(self.data) def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]: sample = self.data[idx] processed = self.processor.preprocess_sample(sample, self.require_image) if processed is None: return self.__getitem__(torch.randint(0, len(self), (1,)).item()) return processed class MultiOutputPredictionHead(nn.Module): def __init__(self, hidden_size: int, intermediate_size: int = 1024, dropout: float = 0.2): # 增加中间层大小 super().__init__() self.dtype = torch.bfloat16 # 分离重量和尺寸的特征提取 self.weight_feature = nn.Sequential( nn.Linear(hidden_size, intermediate_size, dtype=self.dtype), nn.GELU(), nn.Dropout(dropout), nn.LayerNorm(intermediate_size, dtype=self.dtype) ) self.size_feature = nn.Sequential( nn.Linear(hidden_size, intermediate_size, dtype=self.dtype), nn.GELU(), nn.Dropout(dropout), nn.LayerNorm(intermediate_size, dtype=self.dtype) ) # 任务特定头 self.weight_heads = nn.ModuleDict({ name: nn.Sequential( nn.Linear(intermediate_size, intermediate_size // 2, dtype=self.dtype), nn.GELU(), nn.Dropout(dropout), nn.Linear(intermediate_size // 2, 1, dtype=self.dtype), nn.Softplus() ) for name in ['product_weight', 'package_weight'] }) self.size_heads = nn.ModuleDict({ name: nn.Sequential( nn.Linear(intermediate_size, intermediate_size // 2, dtype=self.dtype), nn.GELU(), nn.Dropout(dropout), nn.Linear(intermediate_size // 2, 1, dtype=self.dtype), nn.Softplus() ) for name in ['package_length', 'package_width', 'package_height'] }) # 初始化权重 for module in self.modules(): if isinstance(module, nn.Linear): nn.init.kaiming_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) def forward(self, hidden_states: torch.Tensor) -> Dict[str, torch.Tensor]: weight_features = self.weight_feature(hidden_states) size_features = self.size_feature(hidden_states) outputs = {} for name in ['product_weight', 'package_weight']: outputs[name] = self.weight_heads[name](weight_features).squeeze(-1) for name in ['package_length', 'package_width', 'package_height']: outputs[name] = self.size_heads[name](size_features).squeeze(-1) return outputs class WeightAdaptiveLoss(nn.Module): def __init__(self, weight_threshold=100.0, huber_delta=1.0, logscale_factor=0.5): super().__init__() self.weight_threshold = weight_threshold self.huber_delta = huber_delta self.logscale_factor = logscale_factor self.huber_loss = nn.HuberLoss(reduction='none', delta=self.huber_delta) def forward(self, predictions, targets): losses = {} for name in ['product_weight', 'package_weight']: pred = predictions[name] target = targets[name] low_weight_mask = target < self.weight_threshold high_weight_mask = ~low_weight_mask if torch.any(low_weight_mask): losses[f"{name}_low"] = self.huber_loss(pred[low_weight_mask], target[low_weight_mask]).mean() if torch.any(high_weight_mask): log_pred = torch.log1p(pred[high_weight_mask]) log_target = torch.log1p(target[high_weight_mask]) losses[f"{name}_high"] = F.mse_loss(log_pred, log_target) * self.logscale_factor return losses class DynamicHuberLoss(nn.Module): """动态调整delta的Huber损失,适应不同尺度""" def __init__(self, base_delta=1.0, scale_factor=0.01): super().__init__() self.base_delta = base_delta self.scale_factor = scale_factor def forward(self, input, target): # 根据目标值动态调整delta delta = self.base_delta + self.scale_factor * target.abs().mean() loss = 0.5 * (input - target)**2 * (torch.abs(input - target) <= delta).float() + delta * (torch.abs(input - target) - 0.5 * delta) * (torch.abs(input - target) > delta).float() return loss.mean() class PhysicsAwareLoss(nn.Module): def __init__(self, weight=1.0, size=1.0, constraint=0.1): super().__init__() self.weight_factor = weight self.size_factor = size self.constraint_factor = constraint def forward(self, predictions, targets): total_loss = 0 # 1. 重量损失 - 分层处理 for name in ['product_weight', 'package_weight']: # 小值样本 (0-50) small_mask = targets[name] < 50 if torch.any(small_mask): small_loss = F.mse_loss( predictions[name][small_mask], targets[name][small_mask] ) total_loss += self.weight_factor * small_loss # 中值样本 (50-100) medium_mask = (targets[name] >= 50) & (targets[name] < 100) if torch.any(medium_mask): medium_loss = F.huber_loss( predictions[name][medium_mask], targets[name][medium_mask], delta=5.0 ) total_loss += self.weight_factor * medium_loss # 大值样本 (100+) large_mask = targets[name] >= 100 if torch.any(large_mask): log_pred = torch.log1p(predictions[name][large_mask]) log_target = torch.log1p(targets[name][large_mask]) large_loss = F.mse_loss(log_pred, log_target) total_loss += self.weight_factor * large_loss * 2.0 # 增加权重 # 2. 尺寸损失 - 分层处理 for name in ['package_length', 'package_width', 'package_height']: # 小尺寸样本 (0-5000) small_mask = targets[name] < 5000 if torch.any(small_mask): small_loss = F.huber_loss( predictions[name][small_mask], targets[name][small_mask], delta=50.0 ) total_loss += self.size_factor * small_loss # 大尺寸样本 (5000+) large_mask = targets[name] >= 5000 if torch.any(large_mask): log_pred = torch.log1p(predictions[name][large_mask]) log_target = torch.log1p(targets[name][large_mask]) large_loss = F.mse_loss(log_pred, log_target) total_loss += self.size_factor * large_loss * 1.5 # 增加权重 # 3. 物理约束(降低权重) weight_constraint = F.relu(predictions['product_weight'] - predictions['package_weight']) total_loss += self.constraint_factor * torch.mean(weight_constraint) # 4. 尺寸合理性约束 size_constraint = F.relu(-predictions['package_length']) + \ F.relu(-predictions['package_width']) + \ F.relu(-predictions['package_height']) total_loss += self.constraint_factor * torch.mean(size_constraint) # 5. 体积一致性约束(显著降低权重) volume_pred = (predictions['package_length'] * predictions['package_width'] * predictions['package_height']) volume_target = (targets['package_length'] * targets['package_width'] * targets['package_height']) volume_loss = F.huber_loss(volume_pred, volume_target, delta=5000) relative_volume_loss = torch.mean( torch.abs(volume_pred - volume_target) / (volume_target + 1e-6) ) total_loss += 0.02 * (volume_loss + relative_volume_loss) return total_loss class MultiModalModel(nn.Module): def __init__(self, base_model_path: str): super().__init__() self.base_model = Qwen2_5_VLForConditionalGeneration.from_pretrained( base_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True ) for param in self.base_model.parameters(): param.requires_grad = False hidden_size = self.base_model.config.hidden_size self.prediction_head = MultiOutputPredictionHead(hidden_size) self.layer_selector = nn.Sequential( nn.Linear(hidden_size, 128, dtype=torch.bfloat16), nn.GELU(), nn.Linear(128, 4, dtype=torch.bfloat16), nn.Softmax(dim=-1) ) self.base_model = Swift.prepare_model(self.base_model, config={}) # 添加梯度检查点支持 if hasattr(self.base_model, "gradient_checkpointing_enable"): self.gradient_checkpointing_enable = self.base_model.gradient_checkpointing_enable if hasattr(self.base_model, "gradient_checkpointing_disable"): self.gradient_checkpointing_disable = self.base_model.gradient_checkpointing_disable def forward(self, input_ids, attention_mask, pixel_values=None, image_grid_thw=None, **kwargs): outputs = self.base_model( input_ids=input_ids, attention_mask=attention_mask, pixel_values=pixel_values, image_grid_thw=image_grid_thw, output_hidden_states=True ) last_4_layers = outputs.hidden_states[-4:] layer_weights = self.layer_selector(outputs.hidden_states[-1][:, 0]) weighted_features = torch.zeros_like(last_4_layers[0]) for i in range(4): # 正确广播权重以匹配特征维度 weight_expanded = layer_weights[:, i].view(-1, 1, 1).expand_as(last_4_layers[i]) weighted_features += weight_expanded * last_4_layers[i] return self.prediction_head(weighted_features[:, -1, :]) class CustomTrainer(Trainer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.loss_fn = PhysicsAwareLoss(weight=1.0, size=0.8, constraint=0.5) def compute_loss(self, model, inputs, return_outputs=False, **kwargs): targets = { 'product_weight': inputs["product_weight"], 'package_length': inputs["package_length"], 'package_width': inputs["package_width"], 'package_height': inputs["package_height"], 'package_weight': inputs["package_weight"] } model_inputs = {k: v for k, v in inputs.items() if k not in targets} predictions = model(**model_inputs) total_loss = self.loss_fn(predictions, targets) if return_outputs: return (total_loss, predictions) return total_loss def compute_metrics(eval_pred): predictions, labels = eval_pred metrics = {} output_names = ['product_weight', 'package_length', 'package_width', 'package_height', 'package_weight'] for i, name in enumerate(output_names): pred = predictions[i].squeeze() label = labels[i].squeeze() abs_error = np.abs(pred - label) squared_error = (pred - label) ** 2 metrics.update({ f"{name}_mse": float(np.mean(squared_error)), f"{name}_mae": float(np.mean(abs_error)), f"{name}_r2": float(1 - np.sum(squared_error)/np.sum((label - np.mean(label)) ** 2)), f"{name}_max_error": float(np.max(abs_error)), f"{name}_median_error": float(np.median(abs_error)), f"{name}_std_error": float(np.std(abs_error)), f"{name}_correlation": float(np.corrcoef(pred, label)[0, 1]) }) for metric in ['mse', 'mae', 'r2', 'max_error', 'median_error', 'std_error', 'correlation']: values = [metrics[f"{name}_{metric}"] for name in output_names] metrics[f"avg_{metric}"] = float(np.mean(values)) return metrics def train(): TRAIN_FILES = ["./data/train_26.4k_20250703.jsonl"] VAL_FILES = ['./data/test_1.0k_20250703.jsonl'] CONFIG = { "model_path": '/nas_data/xiao/models/Qwen2.5-VL-7B-Instruct', "processor_path": '/nas_data/xiao/models/Qwen2.5-VL-7B-Instruct', "train_files": TRAIN_FILES, "val_files": VAL_FILES, "max_pixels": 301056, "max_length": 4096, "output_dir": "./output", "learning_rate": 1e-5, "batch_size": 4, "grad_accum_steps": 2, "num_epochs": 1, "warmup_ratio": 0.05, "weight_decay": 0.1, "logging_steps": 5, "eval_steps": 500, "save_steps": 500, "save_total_limit": 5, "fp16": False, "bf16": True, "gradient_checkpointing": True, "deepspeed_config": { "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": "auto", "optimizer": { "type": "AdamW", "params": { "lr": "auto", "weight_decay": "auto", "betas": "auto", } }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 1e-4, "warmup_num_steps": "auto", "total_num_steps": "auto", } }, "fp16": { "enabled": "auto", }, "bf16": { "enabled": "auto", }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "none", "pin_memory": True }, "allgather_partitions": True, "allgather_bucket_size": 2e8, "overlap_comm": True, "reduce_scatter": True, "reduce_bucket_size": 2e8, "contiguous_gradients": True }, "gradient_clipping": 1.0, "steps_per_print": 5, "wall_clock_breakdown": False } } # 初始化数据处理器和数据集 logger.info("Initializing data processor...") data_processor = MultiModalDataProcessor( processor_path=CONFIG["processor_path"], max_pixels=CONFIG["max_pixels"], max_length=CONFIG["max_length"], ) logger.info("Loading training data...") train_data = data_processor.load_data(CONFIG["train_files"]) logger.info("Loading validation data...") val_data = data_processor.load_data(CONFIG["val_files"]) logger.info("Creating datasets...") train_dataset = MultiModalDataset(train_data, data_processor) val_dataset = MultiModalDataset(val_data, data_processor) logger.info("Loading model...") model = MultiModalModel(CONFIG["model_path"]) # 计算总步数和1%的步数 batch_size = CONFIG["batch_size"] grad_accum_steps = CONFIG["grad_accum_steps"] num_epochs = CONFIG["num_epochs"] total_steps = (len(train_dataset) * num_epochs) // (batch_size * grad_accum_steps) logging_steps = max(1, total_steps // 100) # 每1%打印一次 logger.info(f"Total training steps: {total_steps}") logger.info(f"Logging every {logging_steps} steps") # 训练参数 - 添加自动日志步长 training_args = TrainingArguments( output_dir=CONFIG["output_dir"], remove_unused_columns=False, learning_rate=CONFIG["learning_rate"], per_device_train_batch_size=batch_size, gradient_accumulation_steps=grad_accum_steps, num_train_epochs=num_epochs, weight_decay=CONFIG["weight_decay"], warmup_ratio=CONFIG["warmup_ratio"], # 关键修改:设置日志记录策略 logging_strategy="steps", logging_steps=logging_steps, # 使用计算出的步数 save_steps=CONFIG["save_steps"], save_total_limit=CONFIG["save_total_limit"], fp16=CONFIG["fp16"], bf16=CONFIG["bf16"], gradient_checkpointing=CONFIG["gradient_checkpointing"], logging_first_step=True, save_strategy="steps", eval_strategy="steps", dataloader_num_workers=16, data_seed=42, greater_is_better=False, deepspeed=CONFIG["deepspeed_config"], eval_steps=CONFIG["eval_steps"], load_best_model_at_end=True, metric_for_best_model="eval_avg_mae", ) # 自定义回调类 class ProgressCallback(TrainerCallback): def __init__(self, total_steps): self.total_steps = total_steps self.last_reported = 0 def on_log(self, args, state, control, logs=None, **kwargs): if state.global_step == 0 or self.total_steps is None: return # 计算当前训练进度百分比 progress_percent = (state.global_step / self.total_steps) * 100 completed_percent = int(progress_percent) # 每1%打印一次 if completed_percent > self.last_reported: logger.info(f"Training progress: {completed_percent}% complete") logger.info(f"Current metrics: {logs}") self.last_reported = completed_percent # 创建训练器 logger.info("Creating trainer...") trainer = CustomTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, compute_metrics=compute_metrics, callbacks=[ProgressCallback(total_steps)] # 添加自定义回调 ) # 开始训练 logger.info("Starting training...") try: train_result = trainer.train() trainer.save_model("./saved_models") logger.info(f"Training completed successfully. Metrics: {train_result.metrics}") except Exception as e: logger.error(f"Training failed: {e}") raise if __name__ == "__main__": train()

import torch import torch.nn as nn import torch.nn.functional as F def get_batch(split): # 选择训练或验证数据集 data = train_data if split == 'train' else val_data # 动态从数据集中选择位置索引 ix = torch.randint(len(data) - block_size, (batch_size,)) # [0,103846]随机生成位置索引,向后截取block_size字符训练 x = torch.stack([data[i:i+block_size] for i in ix]) y = torch.stack([data[i+1:i+block_size+1] for i in ix]) return x.to(device),y.to(device) class Head(nn.Module): """单头 self-attention """ def __init__(self, n_embd): super().__init__() self.key = nn.Linear(n_embd, n_embd, bias=False) self.query = nn.Linear(n_embd, n_embd, bias=False) self.value = nn.Linear(n_embd, n_embd, bias=False) def forward(self, input_x): B, T, C = input_x.shape k = self.key(input_x) q = self.query(input_x) v = self.value(input_x) wei = q @ k.transpose(-2,-1) * C ** -0.5 T = wei.shape[-1] tril = torch.tril(torch.ones(T,T, device=device)) wei = wei.masked_fill(tril == 0, float('-inf')) wei = wei.softmax(dim=-1) out = wei @ v return out class BingramLanguageModel(nn.Module): def __init__(self, block_size, vocab_size, n_embd): super().__init__() # 每个token都直接从Embedding中查询对应的logits值 以进行下一个token的推理 self.token_embedding_table = nn.Embedding(vocab_size, n_embd) # 位置编码 self.position_embedding_table = nn.Embedding(block_size, n_embd) # one head self-attention self.sa_head = Head(n_embd) # larg model forward self.lm_head = nn.Linear(n_embd, vocab_size) def forward(self, idx, targets=None): B,T = idx.shape # idx值和targets值都是整型张量 (B,T) tok_emb = self.token_embedding_table(idx) # (B,T,C) pos_emb = self.position_embedding_table(torch.arange(T, device=device)) x = tok_emb + pos_emb x = self.sa_head(x) logits = self.lm_head(x) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B*T, C) targets = targets.view(-1) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens): # idx指当前语料集(B,T)中的索引 for _ in range(max_new_tokens): # 限定索引列的取值范围 idx_cond = idx[:, -block_size:] # 推理 logits, loss = self(idx_cond) # 只提取最后一个时间步的结果 logits = logits[:, -1, :] # (B,C) # 通过softmax转换为概率值 probs = F.softmax(logits, dim=-1) # (B,C) # 随机采样 idx_next = torch.multinomial(probs, num_samples=1) # (B,1) # 把采样的索引追加在当前解码序列末尾 idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) return idx if __name__ == '__main__': # 模型训练数据集 block_size = 8 batch_size = 32 max_iter = 1500 learn_rate = 1e-3 device = 'cuda' if torch.cuda.is_available() else 'cpu' n_embd = 32 eval_interval = 500 eval_iters = 200 with open('网游之命轮之主_命给你行不行.txt',encoding='UTF-8') as f: text = f.read() # 字典、编码器(函数)、解码器(函数) chars = sorted(list(set(text))) vocab_size = len(chars) stoi = {ch:i for i,ch in enumerate(chars)} #str_to_index itos = {i:ch for i,ch in enumerate(chars)} #index_to_str encode = lambda s: [stoi[c] for c in s] decode = lambda l: ''.join([itos[i] for i in l]) # 文本转换token index data = torch.tensor(encode(text), dtype=torch.long) # 拆分数据集 n = int(len(data) * .9) train_data = data[:n] val_data = data[n:] # 模型训练 model = BingramLanguageModel(block_size, vocab_size, n_embd) model.to(device) optimizer = torch.optim.AdamW(model.parameters(), lr=learn_rate) @torch.no_grad() def estimate_loss(): out = {} model.eval() for split in ['train', 'val']: losses = torch.zeros(eval_iters) for k in range(eval_iters): X, Y = get_batch(split) logits, loss = model(X, Y) losses[k] = loss.item() out[split] = losses.mean() model.train() return out for iter in range(max_iter): if iter % eval_interval == 0: losses = estimate_loss() print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") # 批次样本 xb, yb = get_batch('train') logits, loss = model(xb, yb) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() # 模型生成 idx = torch.zeros((1,1), dtype=torch.long, device=device) print(decode(model.generate(idx, max_new_tokens=500)[0].tolist())) 这个模型为什么效果不好

(e:\myself_ai\pytorch310_env) E:\Myself_AI\pretrain_model>python simple_text_model.py 读取到的config: {'random_seed': 42, 'data_path': 'e:/Myself_AI/data/data.csv', 'pretrained_model_path': 'e:/Myself_AI/nlp_models/cc.zh.300.bin', 'best_model_path': 'best_cnn_model.pt', 'log_dir': 'e:/Myself_AI/logging', 'vocab_path': 'e:/Myself_AI/vocab/vocab.pkl', 'stopwords': ['的', '了', '在', '是', '我', '有', '和', '就', '不', '人', '都', '一', '一个', '上', '也', '很', '到', '说', '要', '去', '你', '会', '着', '没有', '看', '好', '自己', '这'], 'max_seq_length': 50, 'batch_size': 4, 'embedding_dim': 300, 'num_filters': 100, 'filter_sizes': [3, 4, 5], 'output_dim': 2, 'dropout': 0.5, 'num_epochs': 10, 'patience': 3, 'learning_rate': 0.001, 'lr_factor': 0.5, 'lr_patience': 2} 2025-05-13 20:35:53,412 - INFO - 配置加载完成:{'random_seed': 42, 'data_path': 'e:/Myself_AI/data/data.csv', 'pretrained_model_path': 'e:/Myself_AI/nlp_models/cc.zh.300.bin', 'best_model_path': 'best_cnn_model.pt', 'log_dir': 'e:/Myself_AI/logging', 'vocab_path': 'e:/Myself_AI/vocab/vocab.pkl', 'stopwords': ['的', '了', '在', '是', '我', '有', '和', '就', '不', '人', '都', '一', '一个', '上', '也', '很', '到', '说', '要', '去', '你', '会', '着', '没有', '看', '好', '自己', '这'], 'max_seq_length': 50, 'batch_size': 4, 'embedding_dim': 300, 'num_filters': 100, 'filter_sizes': [3, 4, 5], 'output_dim': 2, 'dropout': 0.5, 'num_epochs': 10, 'patience': 3, 'learning_rate': 0.001, 'lr_factor': 0.5, 'lr_patience': 2} Using device: cpu 成功从data.csv加载25604条数据 Building prefix dict from the default dictionary ... Loading model from cache C:\Users\willi\AppData\Local\Temp\jieba.cache Loading model cost 0.267 seconds. Prefix dict has been built successfully. 保存词汇表失败: 'NoneType' object is not subscriptable 词汇表大小: 16583 开始训练模型... 做预训练的时候,需要保存词汇表文件,但是一直失败怎么搞?程序是跑完的,并且是可以正常判断的!

最新推荐

recommend-type

Comsol声子晶体能带计算:六角与三角晶格原胞选取及布里渊区高对称点选择 - 声子晶体 v1.0

内容概要:本文详细探讨了利用Comsol进行声子晶体能带计算过程中,六角晶格和三角晶格原胞选取的不同方法及其对简约布里渊区高对称点选择的影响。文中不仅介绍了两种晶格类型的基矢量定义方式,还强调了正确设置周期性边界条件(特别是相位补偿)的重要性,以避免计算误差如鬼带现象。同时,提供了具体的MATLAB代码片段用于演示关键步骤,并分享了一些实践经验,例如如何通过观察能带图中的狄拉克锥特征来验证路径设置的准确性。 适合人群:从事材料科学、物理学研究的专业人士,尤其是那些正在使用或计划使用Comsol软件进行声子晶体模拟的研究人员。 使用场景及目标:帮助研究人员更好地理解和掌握在Comsol环境中针对不同类型晶格进行精确的声子晶体能带计算的方法和技术要点,从而提高仿真精度并减少常见错误的发生。 其他说明:文章中提到的实际案例展示了因晶格类型混淆而导致的问题,提醒使用者注意细节差异,确保模型构建无误。此外,文中提供的代码片段可以直接应用于相关项目中作为参考模板。
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强
recommend-type

MATLAB整段注释快捷键

<think>首先,用户的问题是:“MATLAB整段注释快捷键”,意思是“MATLAB整段注释快捷键”。我需要用中文回答。 根据规则: - 回答必须用中文。 - 回答完问题后,必须在末尾输出“§§相关问题§§”,然后提出3-5个相关问题。 - “§§相关问题§§”必须完整输出在第一行,禁止换行分散。 - 相关问题必须基于用户的问题和我的回答。 现在,回忆MATLAB的快捷键:在MATLAB中,整段注释通常使用快捷键Ctrl + R来注释选中的代码行,使用Ctrl + T来取消注释。用户问的是“整段注释”,所以我应该确认快捷键。 在MATLAB中: - 注释选中的行:Ctrl + R -
recommend-type

Eclipse Jad反编译插件:提升.class文件查看便捷性

反编译插件for Eclipse是一个专门设计用于在Eclipse集成开发环境中进行Java反编译的工具。通过此类插件,开发者可以在不直接访问源代码的情况下查看Java编译后的.class文件的源代码,这在开发、维护和学习使用Java技术的过程中具有重要的作用。 首先,我们需要了解Eclipse是一个跨平台的开源集成开发环境,主要用来开发Java应用程序,但也支持其他诸如C、C++、PHP等多种语言的开发。Eclipse通过安装不同的插件来扩展其功能。这些插件可以由社区开发或者官方提供,而jadclipse就是这样一个社区开发的插件,它利用jad.exe这个第三方命令行工具来实现反编译功能。 jad.exe是一个反编译Java字节码的命令行工具,它可以将Java编译后的.class文件还原成一个接近原始Java源代码的格式。这个工具非常受欢迎,原因在于其反编译速度快,并且能够生成相对清晰的Java代码。由于它是一个独立的命令行工具,直接使用命令行可以提供较强的灵活性,但是对于一些不熟悉命令行操作的用户来说,集成到Eclipse开发环境中将会极大提高开发效率。 使用jadclipse插件可以很方便地在Eclipse中打开任何.class文件,并且将反编译的结果显示在编辑器中。用户可以在查看反编译的源代码的同时,进行阅读、调试和学习。这样不仅可以帮助开发者快速理解第三方库的工作机制,还能在遇到.class文件丢失源代码时进行紧急修复工作。 对于Eclipse用户来说,安装jadclipse插件相当简单。一般步骤包括: 1. 下载并解压jadclipse插件的压缩包。 2. 在Eclipse中打开“Help”菜单,选择“Install New Software”。 3. 点击“Add”按钮,输入插件更新地址(通常是jadclipse的更新站点URL)。 4. 选择相应的插件(通常名为“JadClipse”),然后进行安装。 5. 安装完成后重启Eclipse,插件开始工作。 一旦插件安装好之后,用户只需在Eclipse中双击.class文件,或者右键点击文件并选择“Open With Jadclipse”,就能看到对应的Java源代码。如果出现反编译不准确或失败的情况,用户还可以直接在Eclipse中配置jad.exe的路径,或者调整jadclipse的高级设置来优化反编译效果。 需要指出的是,使用反编译工具虽然方便,但要注意反编译行为可能涉及到版权问题。在大多数国家和地区,反编译软件代码属于合法行为,但仅限于学习、研究、安全测试或兼容性开发等目的。如果用户意图通过反编译获取商业机密或进行非法复制,则可能违反相关法律法规。 总的来说,反编译插件for Eclipse是一个强大的工具,它极大地简化了Java反编译流程,提高了开发效率,使得开发者在没有源代码的情况下也能有效地维护和学习Java程序。但开发者在使用此类工具时应遵守法律与道德规范,避免不当使用。
recommend-type

【进阶Python绘图】:掌握matplotlib坐标轴刻度间隔的高级技巧,让你的图表脱颖而出

# 摘要 本文系统地探讨了matplotlib库中坐标轴刻度间隔的定制与优化技术。首先概述了matplotlib坐标轴刻度间隔的基本概念及其在图表中的重要性,接
recommend-type

降帧是什么意思

<think>首先,用户的问题是:“我想了解降帧的含义 请问降帧是什么意思”。我需要用中文回答,并确保回答结构清晰,帮助用户逐步解决问题。 关键点是“降帧”。在视频处理、动画或游戏上下文中,“降帧”通常指的是帧率下降或丢帧(frame drop)。结合系统提供的引用,我可以看到相关概念。 回顾提供的引用: - 引用[1]:讨论了帧率和丢帧分析,提到应用丢帧导致帧率下降,造成卡顿。例如,在60Hz刷新率下,每帧需要在16.7ms内完成,否则可能丢帧。 - 引用[2]:提到掉帧(Frame Drop),与CPU和GPU相关。CPU或GPU处理不及时会导致帧无法按时渲染。 - 引用[3]: