python读取matlab中的datetime
时间: 2025-03-01 21:54:28 浏览: 69
### 使用Python读取Matlab文件中的Datetime数据
为了处理来自Matlab的数据,特别是其中的时间戳或`datetime`对象,可以利用SciPy库来加载`.mat`文件,并通过Pandas或其他工具解析这些时间信息。下面展示了一个具体实例:
#### 加载并转换Matlab的Datetime到Python
首先安装必要的包(如果尚未安装),可以通过pip完成此操作。
```bash
pip install scipy pandas numpy matplotlib
```
接着编写一段脚本来演示如何从Matlab `.mat` 文件中提取 `datetime` 数据并将其转化为易于使用的Python格式。
```python
import scipy.io as sio
import numpy as np
from datetime import timedelta, datetime
import pandas as pd
def convert_matlab_datenum(dn):
"""Convert MATLAB datenum into Python datetime.
Args:
dn (float): A scalar representing a date in the MATLAB serial day number format.
Returns:
dt (datetime.datetime): Corresponding Python datetime object.
Note that this conversion assumes all dates are after year 0 AD and before Oct 15, 1582,
when the Gregorian calendar was introduced. For more accurate conversions involving these edge cases,
additional logic would be required.[^1]
"""
ordinals = dn - 366 # Remove one day because MATLAB starts counting days from Jan 0, Year 0 instead of Jan 1, Year 1
try:
start = datetime.fromordinal(int(ordinals))
fractional_day = float('%.9f' % (ordinals % 1)) * 24*60*60 # Convert fraction part to seconds
delta_t = timedelta(seconds=fractional_day)
result_dt = start + delta_t
return result_dt
except ValueError:
raise Exception("Invalid input value for converting MATLAB datenums.")
# Load .mat file containing datetime information
file_path = 'example.mat'
data_dict = sio.loadmat(file_path)
# Assuming there's an array named 'dates' inside example.mat which contains MATLAB datenums
if isinstance(data_dict['dates'], np.ndarray):
converted_dates = [convert_matlab_datenum(date_item) for date_item in data_dict['dates'].flatten()]
else:
converted_dates = []
# Create DataFrame with processed datetime objects
df = pd.DataFrame(converted_dates, columns=['Converted_Datetime'])
print(df.head())
```
这段代码定义了一个辅助函数`convert_matlab_datenum()`用于将MATLAB特有的datenum数值转为标准的Python `datetime` 对象。之后展示了怎样运用Scipy IO模块加载包含有日期字段的`.mat`文件,并最终创建一个带有已转换日期的新DataFrame。
阅读全文
相关推荐


















