决策树算法python示例
时间: 2024-12-26 21:14:08 浏览: 57
决策树是一种常用的机器学习算法,它通过构建一系列规则来模拟人类做决策的过程。Python中可以使用sklearn库来创建决策树模型。下面是一个简单的例子:
```python
from sklearn import tree
import pandas as pd
# 假设我们有鸢尾花数据集
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
column_names = ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)', 'class']
data = pd.read_csv(url, names=column_names)
# 数据预处理(这里假设类别变量已编码)
X = data.iloc[:, :-1] # 特征(前4列)
y = data.iloc[:, -1] # 目标变量(最后一列)
# 划分训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 使用sklearn构建决策树分类器
clf = tree.DecisionTreeClassifier()
clf.fit(X_train, y_train)
# 预测
predictions = clf.predict(X_test)
# 打印一棵可视化决策树
tree.plot_tree(clf, filled=True) # 这需要安装graphviz库
阅读全文
相关推荐














