python实现WOA-CNN-LSTM-Attention
时间: 2025-05-10 11:20:31 浏览: 29
### 实现WOA-CNN-LSTM-Attention模型
对于多变量时间序列预测,WOA-CNN-LSTM-Attention模型融合了多种技术的优势来提高预测精度。该模型通过鲸鱼优化算法(WOA)[^1]调整超参数并优化LSTM网络结构;利用卷积神经网络(CNN)提取局部特征;采用注意力机制(Attention)聚焦于重要信息。
#### Python实现框架搭建
为了构建此复杂架构,在Python环境中需安装必要的库:
```bash
pip install numpy pandas tensorflow scikit_learn matplotlib seaborn
```
接着定义各组件函数与类:
```python
import numpy as np
from keras.models import Model
from keras.layers import Input, Dense, Conv1D, MaxPooling1D, Flatten, LSTM, concatenate, Attention
from sklearn.preprocessing import MinMaxScaler
from whaloa import WhaleOptimizationAlgorithm # 假设已有一个可用的WOA包
def create_cnn_model(input_shape):
inputs = Input(shape=input_shape)
conv_out = Conv1D(filters=64, kernel_size=3, activation='relu')(inputs)
pool_out = MaxPooling1D(pool_size=2)(conv_out)
flat_out = Flatten()(pool_out)
return inputs, flat_out
def create_lstm_model(input_shape):
inputs = Input(shape=input_shape)
lstm_out = LSTM(units=50, return_sequences=True)(inputs)
return inputs, lstm_out
def build_attention_layer(lstm_output):
attention_probs = Dense(1, activation='softmax')(lstm_output)
attention_mul = multiply([attention_probs, lstm_output])
return attention_mul
input_data = ... # 加载数据集
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_input = scaler.fit_transform(input_data)
cnn_inputs, cnn_outputs = create_cnn_model((timesteps, features_num))
lstm_inputs, lstm_outputs = create_lstm_model((timesteps, features_num))
combined_features = concatenate([Flatten()(cnn_outputs), lstm_outputs])
attention_applied = build_attention_layer(combined_features)
final_dense = Dense(output_dim)(attention_applied)
model = Model(inputs=[cnn_inputs, lstm_inputs], outputs=final_dense)
woa_instance = WhaleOptimizationAlgorithm()
optimized_params = woa_instance.optimize(model.get_weights())
model.compile(optimizer='adam', loss='mean_squared_error')
history = model.fit(
[scaled_input, scaled_input],
target,
epochs=epochs,
batch_size=batch_size,
validation_split=validation_ratio
)
```
上述代码片段展示了如何组合CNN、LSTM以及Attention层创建一个混合模型,并使用WOA来进行权重初始化或调优[^3]。
阅读全文
相关推荐


















