yolov8引入cbam
时间: 2025-02-12 14:15:25 浏览: 65
### 如何在 YOLOv8 中集成 CBAM 模块
#### 集成思路概述
为了增强YOLOv8的目标检测能力,在网络架构中引入CBAM(Convolutional Block Attention Module),可以显著提升特征表达的能力。通过加入通道注意力和空间注意力机制,使得模型能够更聚焦于重要的区域。
#### 修改后的 YOLOv8 类定义
下面展示了修改过的 `YOLOv8` 类,其中包含了对原始类的扩展以支持CBAM模块:
```python
import torch.nn as nn
class YOLOv8(nn.Module):
def __init__(self, num_classes):
super(YOLOv8, self).__init__()
self.num_classes = num_classes
# 定义基础的YOLOv8网络结构...
# 添加CBAM模块
self.cbam = CBAM(channels=512)[^1]
# 输出层保持不变
self.yolo_output = nn.Conv2d(512, num_classes * 3, kernel_size=1)
def forward(self, x):
# 前向传播过程中应用CBAM注意力机制
x = self.backbone(x) # 这里假设有一个名为backbone的基础网络处理输入图像
x = self.cbam(x)
x = self.yolo_output(x)
return x
```
需要注意的是,上述代码中的某些细节可能需要根据实际使用的框架版本做适当调整。例如,如果是在PyTorch环境中,则应确保所有组件都兼容当前环境下的API调用方式。
#### CBAM 模块的具体实现
对于CBAM本身而言,其具体实现在另一个文件或同一文件的不同位置给出如下所示:
```python
from functools import partial
from torch import Tensor
from torchvision.ops.misc import ConvNormActivation
class ChannelAttention(nn.Module):
def __init__(self, channels: int, reduction_ratio: int = 16):
super(ChannelAttention, self).__init__()
mid_channels = max(int(channels / reduction_ratio), 8)
self.avg_pool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
self.max_pool = nn.AdaptiveMaxPool2d(output_size=(1, 1))
self.shared_mlp = nn.Sequential(
nn.Linear(in_features=channels, out_features=mid_channels),
nn.ReLU(),
nn.Linear(in_features=mid_channels, out_features=channels)
)
def forward(self, inputs: Tensor) -> Tensor:
avg_out = self.shared_mlp(self.avg_pool(inputs).view(inputs.size(0), -1)).unsqueeze(-1).unsqueeze(-1)
max_out = self.shared_mlp(self.max_pool(inputs).view(inputs.size(0), -1)).unsqueeze(-1).unsqueeze(-1)
scale = torch.sigmoid(avg_out + max_out)
return inputs * scale
class SpatialAttention(nn.Module):
def __init__(self, kernel_size: int = 7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv_layer = ConvNormActivation(
in_channels=2,
out_channels=1,
kernel_size=kernel_size,
stride=1,
padding=padding,
norm_layer=None,
activation_layer='sigmoid',
)
def forward(self, inputs: Tensor) -> Tensor:
avg_mask = torch.mean(inputs, dim=1, keepdim=True)
max_mask, _ = torch.max(inputs, dim=1, keepdim=True)
mask = torch.cat([avg_mask, max_mask], dim=1)
attention_map = self.conv_layer(mask)
return inputs * attention_map
class CBAM(nn.Module):
"""Convolutional Block Attention Module."""
def __init__(self, c1, kernel_size=7):
"""
Initialize CBAM with given input channel (`c1`) and kernel size.
"""
super().__init__()
self.channel_attention = ChannelAttention(c1=c1)
self.spatial_attention = SpatialAttention(kernel_size=kernel_size)
def forward(self, x):
"""
Applies the forward pass through this module.
"""
attended_x = self.channel_attention(x)
final_attended_x = self.spatial_attention(attended_x)
return final_attended_x
```
这段代码实现了完整的CBAM功能,包括通道注意力(`ChannelAttention`) 和 空间注意力(`SpatialAttention`)两个子模块,并最终组合在一起形成整个CBAM模块[^2]。
阅读全文
相关推荐


















