AUXR equ 8EH ORG 0000H LJMP main ORG 0023H LJMP RSU ORG 0100H main: MOV P0,#11H MOV P2,#88H MOV R0,#0 MOV R1,#0 MOV R2,#0 MOV SCON,#50H ;8位数据, ,晶振频率11.0592MHz,波特率9600 ANL AUXR,#0BFH ;定时器1时钟为Fosc/12,即12T ANL AUXR,#0FEH ;串口1选择定时器1为波特率发生器 MOV TMOD,#20H ;设定定时器1为8位自动重装方式 MOV TL1,#0FDH ;设定定时初值 MOV TH1,#0FDH ;设定定时初值 CLR ET1 ;禁止定时器1中断 SETB TR1 ;启动定时器1 SETB EA ;开启总中断允许 SETB ES ;开启串口中断 SJMP $ ;等待中断 RSU: CLR RI ;中断服务子程序 MOV A, SBUF MOV R3, A ANL A, #0FH MOV DPTR, #TAB0 MOVC A, @A+DPTR MOV P0, A MOV A, R3 SWAP A ANL A,#0FH MOV DPTR, #TAB2 MOVC A,@A+DPTR MOV P2, A RETI TAB0: DB 11H,0D7H,32H,92H,0D4H,98H,18H,0D3H,10H,90H,50H,1CH,39H,16H,38H,78H TAB2:DB 88H,0EBH,4CH,49H,2BH,19H,18H,0CBH,08H,09H,0AH,38H,9CH,68H,1CH,1EH END 根据以上代码编写正确程序接受由PC机通过串口助手向单片机发送的从00到99的一个字节的压缩BCD数据,并将数据在数码管上正确显示(例如输入04个位是4十位是0)。且单片机向PC机发送数据,按键S1控制数码管从00到99加计数循环显示,按下按键S2将当前显示的数字发送到串口调试助手的接收缓存区。

时间: 2025-07-01 15:33:38 浏览: 6
### 优化后的单片机程序设计 以下是一个基于用户需求的单片机程序优化方案,包括串口中断处理逻辑、按键扫描部分的具体实现以及数码管显示控制。代码使用C语言编写,并假设单片机为常见的8位微控制器(如51系列)。 #### 1. 程序框架与功能模块划分 程序分为以下几个主要模块: - **串口中断接收模块**:用于接收PC机发送的压缩BCD数据。 - **数码管显示模块**:将接收到的数据或加计数结果在数码管上正确显示。 - **按键扫描模块**:实现S1和S2按键的功能控制。 - **串口发送模块**:当按下S2时,将当前数字发送到串口助手。 #### 2. 具体实现代码 ```c #include <reg52.h> sbit S1 = P3^0; // 定义按键S1 sbit S2 = P3^1; // 定义按键S2 unsigned char currentNumber = 0; // 当前显示的数字 unsigned char receiveBuffer = 0; // 接收缓冲区 // 数码管段码表 const unsigned char codeTable[] = { 0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x90 }; // 初始化串口 void UART_Init() { TMOD = 0x20; // 设置定时器模式为方式2 TH1 = 0xFD; // 波特率设置为9600bps SCON = 0x50; // 8位数据,1位停止位,允许接收 TR1 = 1; // 启动定时器1 EA = 1; // 开启总中断 ES = 1; // 开启串口中断 } // 数码管显示函数 void Display_Number(unsigned char num) { unsigned char tens = num / 10; // 十位 unsigned char units = num % 10; // 个位 P0 = codeTable[tens]; // 显示十位 P2_7 = 0; // 选择十位数码管 delay(5); // 延时 P0 = codeTable[units]; // 显示个位 P2_7 = 1; // 选择个位数码管 delay(5); // 延时 } // 按键扫描函数 void Key_Scan() { if (!S1) { // 检测S1按键 while (!S1); // 消抖 currentNumber++; // 加计数 if (currentNumber > 99) { // 循环显示 currentNumber = 0; } } if (!S2) { // 检测S2按键 while (!S2); // 消抖 SBUF = currentNumber / 10 + '0'; // 发送十位 while(TI == 0); // 等待发送完成 TI = 0; SBUF = currentNumber % 10 + '0'; // 发送个位 while(TI == 0); // 等待发送完成 TI = 0; } } // 串口中断服务程序 void Uart_ISR() interrupt 4 { if(RI) { // 接收中断 RI = 0; // 清除接收标志 receiveBuffer = SBUF; // 读取接收数据 currentNumber = ((receiveBuffer >> 4) * 10) + (receiveBuffer & 0x0F); // 解析压缩BCD } } // 延时函数 void delay(unsigned int time) { unsigned int i, j; for(i = 0; i < time; i++) { for(j = 0; j < 120; j++); } } void main() { UART_Init(); // 初始化串口 while(1) { Key_Scan(); // 扫描按键 Display_Number(currentNumber); // 显示当前数字 } } ``` #### 3. 关键点说明 - **串口中断处理逻辑**:通过串口中断接收来自PC机的压缩BCD数据,并将其解析为十进制数值[^1]。压缩BCD数据中,高4位表示十位,低4位表示个位。 - **数码管显示控制**:使用查表法获取对应数字的段码值,并通过分时复用技术交替显示十位和个位数字[^2]。 - **按键扫描实现**:通过检测S1和S2的状态实现加计数循环显示及当前数字发送功能。为了消除按键抖动,加入简单的消抖处理[^3]。 - **串口发送模块**:当按下S2时,先发送当前数字的十位字符,再发送个位字符。确保数据以ASCII格式发送到串口调试助手[^4]。 ####
阅读全文

相关推荐

Build target 'Target 1' compiling main.c... DS18B20.H(7): error C132: 'Tempreture_Col': not in formal parameter list main.c(8): error C132: 'buf': not in formal parameter list main.c(9): error C132: 'dot': not in formal parameter list main.c(10): error C132: 'keybroad': not in formal parameter list main.c(12): error C132: 'key_ms': not in formal parameter list main.c(13): error C132: 'ad_ms': not in formal parameter list main.c(14): error C132: 'tem_ms': not in formal parameter list main.c(16): error C132: 'a': not in formal parameter list main.c(16): error C132: 'tempr': not in formal parameter list main.c(17): error C132: 'DAC': not in formal parameter list main.c(18): error C132: 'led': not in formal parameter list main.c(20): error C132: 'xianshi': not in formal parameter list main.c(21): error C244: 'canshu': can't initialize, bad type or class main.c(21): error C132: 'canshu': not in formal parameter list main.c(22): error C244: 'mode': can't initialize, bad type or class main.c(22): error C132: 'mode': not in formal parameter list main.c(24): error C132: 'Timer0_Init': not in formal parameter list main.c(24): error C141: syntax error near '{', expected ';' main.c(25): error C136: 'AUXR': 'void' on variable main.c(25): error C132: 'AUXR': not in formal parameter list main.c(26): error C136: 'TMOD': 'void' on variable main.c(26): error C132: 'TMOD': not in formal parameter list main.c(27): error C136: 'TL0': 'void' on variable main.c(27): error C244: 'TL0': can't initialize, bad type or class main.c(27): error C136: 'TL0': 'void' on variable main.c(27): error C132: 'TL0': not in formal parameter list main.c(28): error C244: 'TH0': can't initialize, bad type or class main.c(28): error C132: 'TH0': not in formal parameter list main.c(29): error C244: 'TF0': can't initialize, bad type or class main.c(29): error C132: 'TF0': not in formal parameter list main.c(30): error C244: 'TR0': can't initialize, bad type or class main.c(30): error C132: 'TR0': not in formal p

/*---------------------------------------------------------------------*/ /* --- Web: www.STCAI.com ---------------------------------------------*/ /*---------------------------------------------------------------------*/ /************* 功能说明 ************** 本例程基于AI8051U为主控芯片的实验箱进行编写测试。 使用Keil C51编译器,为了达到比较高的效率,一般建议选择"Small"模式。 当编译器出现 "error C249: 'DATA': SEGMENT TOO LARGE" 错误时,则需要手动将部分比较大的数组通过"xdata" 强制分配到 XDATA 区域(例如: char xdata buffer [256];) 高级PWM定时器 PWM1P/PWM1N,PWM2P/PWM2N,PWM3P/PWM3N,PWM4P/PWM4N 每个通道都可独立实现PWM输出,或者两两互补对称输出. 8个通道PWM设置对应P0的8个端口. 通过P0口上连接的8个LED灯,利用PWM实现呼吸灯效果. PWM周期和占空比可以根据需要自行设置,最高可达65535. 下载时, 选择时钟 24MHz (用户可自行修改频率). ******************************************/ #include "..\comm\AI8051U.h" #include "stdio.h" #include "intrins.h" typedef unsigned char u8; typedef unsigned int u16; typedef unsigned long u32; #define MAIN_Fosc 24000000UL /****************************** 用户定义宏 ***********************************/ #define Timer0_Reload (65536UL -(MAIN_Fosc / 1000)) //Timer 0 中断频率, 1000次/秒 #define PWM1_0 0x00 //P:P1.0 N:P1.1 #define PWM1_1 0x01 //P:P0.0 N:P0.1 #define PWM1_2 0x02 //P:P2.0 N:P2.1 #define PWM2_0 0x00 //P:P1.2 N:P1.3 #define PWM2_1 0x04 //P:P0.2 N:P0.3 #define PWM2_2 0x08 //P:P2.2 N:P2.3 #define PWM3_0 0x00 //P:P1.4 N:P1.5 #define PWM3_1 0x10 //P:P0.4 N:P0.5 #define PWM3_2 0x20 //P:P2.4 N:P2.5 #define PWM4_0 0x00 //P:P1.6 N:P1.7 #define PWM4_1 0x40 //P:P0.6 N:P0.7 #define PWM4_2 0x80 //P:P2.6 N:P2.7 #define ENO1P 0x01 #define ENO1N 0x02 #define ENO2P 0x04 #define ENO2N 0x08 #define ENO3P 0x10 #define ENO3N 0x20 #define ENO4P 0x40 #define ENO4N 0x80 /*****************************************************************************/ /************* 本地常量声明 **************/ #define PWM_PERIOD 10000 //设置周期值 /************* 本地变量声明 **************/ bit B_1ms; //1ms标志 u16 PWM1_Duty; u16 PWM2_Duty; u16 PWM3_Duty; u16 PWM4_Duty; bit PWM1_Flag; bit PWM2_Flag; bit PWM3_Flag; bit PWM4_Flag; void UpdatePwm(void); /********************* 主函数 *************************/ void main(void) { WTST = 0; //设置程序指令延时参数,赋值为0可将CPU执行指令的速度设置为最快 EAXSFR(); //扩展寄存器(XFR)访问使能 CKCON = 0; //提高访问XRAM速度 P0M1 = 0x00; P0M0 = 0x00; //设置为准双向口 P1M1 = 0x00; P1M0 = 0x00; //设置为准双向口 P2M1 = 0x00; P2M0 = 0x00; //设置为准双向口 P3M1 = 0x00; P3M0 = 0x00; //设置为准双向口 P4M1 = 0x00; P4M0 = 0x00; //设置为准双向口 P5M1 = 0x00; P5M0 = 0x00; //设置为准双向口 P6M1 = 0x00; P6M0 = 0x00; //设置为准双向口 P7M1 = 0x00; P7M0 = 0x00; //设置为准双向口 PWM1_Flag = 0; PWM2_Flag = 0; PWM3_Flag = 0; PWM4_Flag = 0; PWM1_Duty = 3000; PWM2_Duty = 2560; PWM3_Duty = 5120; PWM4_Duty = 1024; // Timer0初始化 AUXR = 0x80; //Timer0 set as 1T, 16 bits timer auto-reload, TH0 = (u8)(Timer0_Reload / 256); TL0 = (u8)(Timer0_Reload % 256); ET0 = 1; //Timer0 interrupt enable TR0 = 1; //Tiner0 run PWMA_CCER1 = 0x00; //写 CCMRx 前必须先清零 CCxE 关闭通道 PWMA_CCER2 = 0x00; PWMA_CCMR1 = 0x60; //通道模式配置 PWMA_CCMR2 = 0x60; PWMA_CCMR3 = 0x60; PWMA_CCMR4 = 0x60; PWMA_CCER1 = 0x55; //配置通道输出使能和极性 PWMA_CCER2 = 0x55; PWMA_CCMR1 |= 0x08; //开启PWMA_CCR1预转载功能(需要CC1E=1才可写) PWMA_CCMR2 |= 0x08; PWMA_CCMR3 |= 0x08; PWMA_CCMR4 |= 0x08; PWMA_ARRH = (u8)(PWM_PERIOD >> 8); //设置周期时间 PWMA_ARRL = (u8)PWM_PERIOD; PWMA_ENO = 0x00; PWMA_ENO |= ENO1P; //使能输出 PWMA_ENO |= ENO1N; //使能输出 PWMA_ENO |= ENO2P; //使能输出 PWMA_ENO |= ENO2N; //使能输出 PWMA_ENO |= ENO3P; //使能输出 PWMA_ENO |= ENO3N; //使能输出 PWMA_ENO |= ENO4P; //使能输出 PWMA_ENO |= ENO4N; //使能输出 PWMA_PS = 0x00; //高级 PWM 通道输出脚选择位 PWMA_PS |= PWM1_2; //选择 PWM1_1 通道 PWMA_PS |= PWM2_2; //选择 PWM2_1 通道 PWMA_PS |= PWM3_2; //选择 PWM3_1 通道 PWMA_PS |= PWM4_2; //选择 PWM4_1 通道 PWMA_BKR = 0x80; //使能主输出 PWMA_CR1 |= 0x81; //使能ARR预装载,开始计时 EA = 1; //打开总中断 while (1); } /********************** Timer0 1ms中断函数 ************************/ void timer0(void) interrupt 1 { UpdatePwm(); } //======================================================================== // 函数: UpdatePwm(void) // 描述: 更新PWM占空比. // 参数: none. // 返回: none. // 版本: V1.0, 2012-11-22 //======================================================================== void UpdatePwm(void) { PWMA_CCR1H = (u8)(PWM1_Duty >> 8); //设置占空比时间 PWMA_CCR1L = (u8)(PWM1_Duty); PWMA_CCR2H = (u8)(PWM2_Duty >> 8); //设置占空比时间 PWMA_CCR2L = (u8)(PWM2_Duty); PWMA_CCR3H = (u8)(PWM3_Duty >> 8); //设置占空比时间 PWMA_CCR3L = (u8)(PWM3_Duty); PWMA_CCR4H = (u8)(PWM4_Duty >> 8); //设置占空比时间 PWMA_CCR4L = (u8)(PWM4_Duty); }

数码管功能代码: ////////////////////////////////////////////////////////////////////////////////// //本程序只供学习使用,未经作者许可,不得用于其它任何用途 /*************************************** * STC8A8K64D4 * 硬件连接:------------------------MCU--74HC573---数码管显示控制 // 说明: 2个74HC573,第一个用于控制段选,第二个用于控制位选(带时钟的,需要使用位选中的2个输出) // ---------------------------------------------------------------- // 数码管段选: // MCU--------74HC573---------数码管 // P0.0--------D0---O0---------A // P0.1--------D1---O1---------B // P0.2--------D2---O2---------C // P0.3--------D3---O3---------D // P0.4--------D4---O4---------E // P0.5--------D5---O5---------F // P0.6--------D6---O6---------G // P0.7--------D7---O7---------DP // ---------------------------------------------------------------- // 数码管控制位选: // MCU--------74HC573---------数码管 // P2.7--------D0---O0---------DIG1 // P2.6--------D1---O1---------DIG2 // P2.5--------D2---O2---------DIG3 // P2.4--------D3---O3---------DIG4 // ---------------------------------------------------------------- * 库版本 :V3.5.0 ******************************************************************************/ #include "stc8a8k64d4.h" #include <string.h> #include <math.h> #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <delay.h> #include <uart.h> #include "digtal_led.h" //定义一个变量,系统启动时显示此变量数值 static uint16_t a = 0; void EXIT0_irq_handler(void) __interrupt (0) __using (0) { if(a > 0) { a--; } else { a=0; } } void EXIT1_irq_handler(void) __interrupt (2) __using (2) { if(a == 9999) { a=9999; } else { a++; } } int main() { //配置外部中断0为下降沿触发 IT0 = 1; //使能外部中断0 EX0 = 1; //配置外部中断1为下降沿触发 IT1 = 1; //使能外部中断1 EX1 = 1; //打开中断总开关 EA = 1; //配置数码管引脚为输出模式 P0M1 &= 0x00; P0M0 |= 0xFF; P2M1 &= 0x0F; P2M0 |= 0xF0; //初始化数码管引脚的电平 P0 = 0; P2 |= 0xF0; while(1) { show_digtal_four_segment(a); } } 定时器1中断代码: #include "stc8a8k64d4.h" #include <string.h> #include <math.h> #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <delay.h> #include <uart.h> void tm1_isr(void) __interrupt (3) __using (3) { P0_0 = !P0_0; } void main(void) { //配置定时器1为模式0 TMOD |= 0x00; //用TH1和TL1控制定时器1的时间 TH1 = 0x0F; TL1 = 0x1B; //打开定时器1 TR1 = 1; //使能定时器1的中断 ET1 = 1; //使能总中断开关 EA = 1; //配置P0.0为输出模式 P0M1 &= ~(PIN_0); P0M0 |= PIN_0; P0_0 = 0; while(1); } 基于STC8A8K64D4,四位共阴极数码显示器 ,和上面的代码实现下面的要求,其中N为74,给出完整的且符合要求的数码管功能代码,不省略内容 1. 右边两位数码管显示N进制自动计数器,N与本人学号有关。若本人学号XY>=10,则N=XY;若N<10,则N=100-XY。计数脉冲由定时器T2给出,周期为0.2秒,采用中断方式。 2. 左边两位数码管实现N进制的按键计数,N的要求与前项相同。按一下“增加”键,则计数值加1,加到“n-1”时再按一下按键则回到“0”重新计数;按一下“减少”键,则计数值减1,减到“0”时再按一下按键则跳到“N-1”。

MicroLIBmotor.h(17): error C141: syntax error near 'dir', expected ')'lcd1602.h(8): error C231: 'uchar': redefinitionlcd1602.h(9): error C141: syntax error near 'uint', expected 'hdata'main.c(10): error C321: missing '"'motor.h(17): error C141: syntax error near 'dir', expected ')'motor.c(17): error C202: 'P1_0': undefined identifiermotor.c(18): error C202: 'P1_1': undefined identifiermotor.c(19): error C202: 'P1_2': undefined identifiermotor.c(20): error C202: 'P1_3': undefined identifiermotor.h(17): error C141: syntax error near 'dir', expected ')'motor.h(17): error C141: syntax error near 'dir', expected ')'motor.h(17): error C141: syntax error near 'dir', expected ')'lcd1602.h(8): error C231: 'uchar': redefinitionlcd1602.h(9): error C141: syntax error near 'uint', expected 'hdata'lcd1602.c(38): error C236: '_lcd_show_str': different length of parameter listslcd1602.c(73): error C231: 'decimal': redefinitionlcd1602.c(74): error C202: 'decimal_places': undefined identifierlcd1602.c(81): error C202: 'decimal_places': undefined identifier#include "motor.h" #include "delay.h" #include "key.h" #include "typedefs.h" // ??????(???????????) extern uchar speed_level; // ???????? // ????????(???motor.h????,???) #ifndef MOTOR_A #define MOTOR_A P1_0 #define MOTOR_B P1_1 #define MOTOR_C P1_2 #define MOTOR_D P1_3 #endif void motor_init(void) { MOTOR_A = 0; MOTOR_B = 0; MOTOR_C = 0; MOTOR_D = 0; } void motor_step(bool dir); { static uchar phase = 0; const uchar phase_table[8] = {0x08, 0x0C, 0x04, 0x06, 0x02, 0x03, 0x01, 0x09}; if (dir) phase = (phase + 1) % 8; // ?? else phase = (phase + 7) % 8; // ?? MOTOR_A = (phase_table[phase] & 0x01); MOTOR_B = (phase_table[phase] & 0x02); MOTOR_C = (phase_table[phase] & 0x04); MOTOR_D = (phase_table[phase] & 0x08); delay_ms(200 / speed_level); // ?????????? } #ifndef __MOTOR_H__ #define __MOTOR_H__ #include <STC89C5xRC.H> #include "typedefs.h" // ???????? #ifndef MOTOR_A #define MOTOR_A P1_0 #define MOTOR_B P1_1 #define MOTOR_C P1_2 #define MOTOR_D P1_3 #endif // ???? void motor_init(void); void motor_step(uint8_t dir); #endif#include "lcd1602.h" #include "delay.h" #include <STC89C5xRC.H> // ?????????? // ?????? extern uchar mode; extern uchar speed_level; extern float angle; extern float pressure; extern float target_angle; void lcd_init(void) { lcd_write_cmd(0x38); // 8???,2???,5x7?? delay_ms(5); lcd_write_cmd(0x0C); // ???,??? delay_ms(5); lcd_write_cmd(0x06); // ????,?????1 delay_ms(5); lcd_write_cmd(0x01); // ?? delay_ms(5); } void lcd_write_cmd(uchar cmd) { RS = 0; RW = 0; P0 = cmd; EN = 1; delay_us(5); EN = 0; delay_ms(2); } void lcd_write_dat(uchar dat) { RS = 1; RW = 0; P0 = dat; EN = 1; delay_us(5); EN = 0; delay_ms(2); } // ????? void lcd_show_str(uchar *str) { while(*str != '\0') { lcd_write_dat(*str++); } } // ???? void lcd_show_num(uint num, uchar len) { uchar buf[10]; uchar i = 0; if(num == 0) { lcd_write_dat('0'); return; } while(num > 0) { buf[i++] = num % 10 + '0'; num /= 10; } while(i < len) buf[i++] = '0'; // ??????,?????? for(i = i - 1; i != 255; i--) { lcd_write_dat(buf[i]); } } // ????? void lcd_show_float(float num, uchar decimal) { uint integer = (uint)num; float decimal_part = num - integer; uchar i; // ????????? // ??????????????? uint decimal = 1; for(i = 0; i < decimal_places; i++) { decimal_part *= 10; decimal *= 10; } lcd_show_num(integer, 3); lcd_write_dat('.'); lcd_show_num((uint)decimal_part, decimal_places); } // ?????? void update_display() { lcd_write_cmd(0x80); // ?????????? lcd_show_str("M:"); lcd_write_dat(mode ? 'A' : 'S'); // ??:A-??,S-?? lcd_show_str(" S:"); lcd_write_dat(speed_level + '0'); // ?????? lcd_write_cmd(0xC0); // ?????????? lcd_show_str("A:"); lcd_show_float(angle, 2); // ????,??2??? lcd_show_str(" P:"); lcd_show_float(pressure, 2); // ????,??2??? // ??????(???????) if (mode == 1) { lcd_write_cmd(0x8C); lcd_show_str("Ta:"); lcd_show_float(target_angle, 2); } }// lcd1602.h #ifndef __LCD1602_H__ #define __LCD1602_H__ #include <STC89C5xRC.H> #include "motor.h" #include "typedefs.h" typedef unsigned char uchar; typedef unsigned int uint; // ??LCD?? sbit RS = P2^0; sbit RW = P2^1; sbit EN = P2^2; // ????????(????????????) void lcd_init(void); void lcd_write_cmd(uchar cmd); void lcd_write_dat(uchar dat); void lcd_show_str(uchar x, uchar y, const uchar *str); void lcd_show_float(float num, uchar decimal); #endif

#include <STC15F2K60S2.H> #include <IIC.H> #include <key.H> #include <smg.H> #include <led.H> #include <shaosheng.H> #include <onewire.H> #include <chuanko.H> #include <init.H> #include <DS1302.H> #include "stdio.h" #include "intrins.h" #define SCK P35 #define MISO P36 float t[29]; unsigned char i=1; unsigned int ma[40]; float ma2[20]; unsigned char l; unsigned char n=1; unsigned int a=20,shang,xia; unsigned int upper=10; unsigned int lower=10; unsigned int jiesho[30]={20,20,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30}; float max, min; unsigned char q; void find_max_min(float arr[], int siz, int* max, int* min) ; void Delay500ms(void) { unsigned char data i, j, k; _nop_(); _nop_(); i = 23; j = 205; k = 120; do { do { while (--k); } while (--j); } while (--i); } // SPI ????,??24?CS?? unsigned int SPI_Read(unsigned char csIndex) { unsigned int dat = 0; unsigned char i; // ?????SPI?? switch(csIndex) { case 0: CS0 = 0; break; case 1: CS1 = 0; break; case 2: CS2 = 0; break; case 3: CS3 = 0; break; case 4: CS4 = 0; break; case 5: CS5 = 0; break; case 6: CS6 = 0; break; case 7: CS7 = 0; break; case 8: CS8 = 0; break; case 9: CS9 = 0; break; case 10: CS10 = 0; break; case 11: CS11 = 0; break; case 12: CS12 = 0; break; case 13: CS13 = 0; break; case 14: CS14 = 0; break; case 15: CS15 = 0; break; case 16: CS16 = 0; break; case 17: CS17 = 0; break; case 18: CS18 = 0; break; case 19: CS19 = 0; break; case 20: CS20 = 0; break; case 21: CS21 = 0; break; case 22: CS22 = 0; break; case 23: CS23 = 0; break; default: break; } // ??16??? for (i = 0; i < 16; i++) { SCK = 1; // ????? dat <<= 1; if (MISO == 1) { dat |= 0x01; // ???? } SCK = 0; // ????? } // ?????SPI?? switch(csIndex) { case 0: CS0 = 1; break; case 1: CS1 = 1; break; case 2: CS2 = 1; break; case 3: CS3 = 1; break; case 4: CS4 = 1; break; case 5: CS5 = 1; break; case 6: CS6 = 1; break; case 7: CS7 = 1; break; case 8: CS8 = 1; break; case 9: CS9 = 1; break; case 10: CS10 = 1; break; case 11: CS11 = 1; break; case 12: CS12 = 1; break; case 13: CS13 = 1; break; case 14: CS14 = 1; break; case 15: CS15 = 1; break; case 16: CS16 = 1; break; case 17: CS17 = 1; break; case 18: CS18 = 1; break; case 19: CS19 = 1; break; case 20: CS20 = 1; break; case 21: CS21 = 1; break; case 22: CS22 = 1; break; case 23: CS23 = 1; break; default: break; } // ??????????? if (dat == 0) { return 0; // ?????0,?????????? } return dat; // ?????16??? } // ?????? float Get_Temperature(unsigned char ma) { unsigned int dat = 0; unsigned int sum = 0; unsigned char i; // ????????? for (i = 0; i < 10; i++) { dat = SPI_Read(ma); // ?????????????SPI?? if (dat >4000) { return 0; // ???????0,??0.0???????? } dat >>= 3; // ???? sum += dat; } dat = sum / 10; // ????? return (float)(dat * 0.25); // ?????? } void Timer0_Init(void) //[email protected] { AUXR &= 0x7F; //?????12T?? TMOD &= 0xF0; //??????? TL0 = 0x60; //??????? TH0 = 0x1f; //??????? TF0 = 0; //??TF0?? TR0 = 1; //???0???? ET0=1; EA=1; }分析下

#include "all.h" void Timer0_Init(void) //100微秒@24.000MHz.定时器0, { AUXR |= 0x80; //定时器时钟1T模式 TMOD &= 0xF0; //设置定时器模式 TL0 = 0xA0; //设置定时初始值 TH0 = 0xF6; //设置定时初始值 TF0 = 0; //清除TF0标志 TR0 = 1; //定时器0开始计时 ET0 = 1; // 开启定时器0中断 } void Timer1_Init(void) //10微秒@24.000MHz.定时器1 { AUXR |= 0x40; //定时器时钟1T模式 TMOD &= 0x0F; //设置定时器模式 TL1 = 0x10; //设置定时初始值 TH1 = 0xFF; //设置定时初始值 TF1 = 0; //清除TF1标志 TR1 = 1; //定时器1开始计时 ET1 = 1; // 开启定时器0中断 // TMOD = 0x00; // TL1 = 0x10; //65536-11.0592M/12/1000 // TH1 = 0xff; // TR1 = 1; //启动定时器 // ET1 = 1; //使能定时器中断 // EA = 1; } void UART_Init(void) //定时器2,波特率9600,用来做串口中断 { SCON=0x50; T2L=0x8f; T2H=0xfd; AUXR= 0x15; ES=1; EA=1; } void Timer3_Init(void) //100微秒@24.000MHz.定时器3 { T4T3M |= 0x02; //定时器时钟1T模式 T3L = 0xA0; //设置定时初始值 T3H = 0xF6; //设置定时初始值 T4T3M |= 0x08; //定时器3开始计时 }#include "all.h" unsigned char u8time=255; unsigned char u8timing=0; void TM1_Isr() interrupt 3 //定时器中断1每10uS执行一次 { //测试端口 u8timing++; if(u8timing==50000) { P_LED0= !P_LED0; } } //void TM3_Isr() interrupt 19 //定时器中断3每100uS执行一次 //{ // P_LED1 = !P_LED1; //测试端口 // if(u8timing<u8time) // { // u8time=u8timing; // } //}#include <ai8h.h> #include "intrins.h" #include "all.h" unsigned char receiveFlag = 0; unsigned int receiveData = 0; void main() { unsigned char i; // unsigned char len; P_SW2 |=0x80; UART_Init(); Init(); Timer0_Init(); Timer1_Init(); Timer3_Init(); while(1) { SysClk_Scan(); if(ms1==50) { receiveFlag=1; } if(receiveFlag) { EA = 0; // len = byte; // byte = 0; receiveFlag = 0; EA = 1; for(i=0; i<byte; i++) { receiveBuffer[i] += 1; } SendPacket(receiveBuffer, byte); byte = 0; } } } #include "all.h" bit F1ms,F10ms,F01s,F1s; unsigned char U8_TimingTo1ms; unsigned char ms1; unsigned int timeoutCounter = 0; void teme(void) interrupt 1 //10毫秒@24.000MHz,定时器0中断 { U8_TimingTo1ms++; ms1++; } void SysClk_Scan(void) { unsigned char timing1ms; unsigned int timing10ms; F01s=0; F10ms=0; if(U8_TimingTo1ms>=10) //1ms { U8_TimingTo1ms=U8_TimingTo1ms-10; timing1ms++; // ms1++; if(timing1ms>=10) //10ms { timing1ms=0; F10ms=1; timing10ms++; if(timing10ms>=10) //01s { timing10ms=0; F01s=1; } } } }不会进入定时器中断1是什么原因

大家在看

recommend-type

CCF-CSP必学知识

有关CCF的CSP认证 一、CSP认证考点的知识要求 在数据结构中,线性表是基础,树是常考点,集合和映射要夕纪学。 背包问题(动态规划) 考试要求 二、考试题型 第一题:一般为水题,把C学扎实便可以过 第二题:难度比第一题大,比较多陷阱 第三题:题目很长但是思维难度不会比第二题大 第四题、第五题:难度大,变态题 三、知识点分布 1、字符串 对于字符串的以上处理要做到熟练,并且能够快速讲码打出。 例题分析(2013年12月第二题) C(有越界风险,可用c++的动态数组来写): 问题:输入后只是跳过了‘-’,但是无法判断到底这个符号是在哪里,如果输入“067-0-821162-4”同样会输出“Right”。但是考试系统不管这个,只检查输出即可。(漏洞) 2、数论 重要算法思想: 素数筛选的两种方法,排列组合(可暴力穷举),快速幂 3、STL数据结构 尤其熟悉map,wector,string 对于map的介绍(会用就可以了): map容器中常用的函数: ps:不可以对map使用sort函数,输入是无序的,会自动排序,输出是有序的 4、排序 论稳定性,越低
recommend-type

瑞星卡卡kaka小狮子(不含杀软) For Mac,情怀小程序,有动画有声,亲测可用

MAC专用,解压放到「应用程序」里面即可,只有小狮子,不含杀毒软件;有动画有声音;体积小,占用内存小,适合对瑞星狮子有情怀的朋友下载玩,做个存档都是不错的。
recommend-type

NFC_Reader.rar

通过nfc读取雅培数据,发送nfc指定 ,读取 数据块,解析nfc数据
recommend-type

开心小闹钟 V2.8 Beta 3 注册版

开心小闹钟 V2.8 Beta 3 注册版 个人觉得这款电脑闹钟是我用过最好的一个闹钟软件 最牛X的是你可以任意修改它的界面 已经注册好了 不用麻烦了
recommend-type

ipmitool v1.8.18 for windows

服务器BMC访问控制工具,windows版,自己编译的,用着还不错。基于github最新版1.8.18编译。

最新推荐

recommend-type

电厂厂级实时监控信息系统网络安全问题的分析.docx

电厂厂级实时监控信息系统网络安全问题的分析.docx
recommend-type

深入解析PetShop4.0电子商务架构与技术细节

标题和描述中提到的是PetShop4.0,这是一个由微软官方发布的示例电子商务应用程序,它使用ASP.NET构建,并且遵循三层架构的设计模式。在这个上下文中,“三层架构”指的是将应用程序分为三个基本的逻辑组件:表示层、业务逻辑层和数据访问层。 ### ASP.NET三层架构 ASP.NET是微软推出的一个用于构建动态网站、Web应用程序和Web服务的服务器端技术。ASP.NET能够运行在.NET框架上,为开发者提供了编写Web应用程序的丰富控件和库。 #### 表示层(用户界面层) 表示层是用户与应用程序交互的界面,通常包括Web页面。在PetShop4.0中,这包括了购物车界面、产品展示界面、用户登录和注册界面等。ASP.NET中的Web表单(.aspx文件)通常用于实现表示层。 #### 业务逻辑层(中间层) 业务逻辑层负责处理应用程序的业务规则和逻辑。在PetShop4.0中,这一层可能包括订单处理、产品管理、用户管理等功能。在ASP.NET中,业务逻辑通常被封装在类和方法中,可以通过Web服务(.asmx)或Web API(.asmx)暴露给客户端或前端。 #### 数据访问层 数据访问层负责与数据库进行交互,如执行SQL命令、存储过程等。PetShop4.0使用了数据访问组件来实现数据的读取、写入等操作。在.NET框架中,通常使用ADO.NET来实现数据访问层的功能,包括数据库连接、数据读取和写入等。 ### PetShop4.0技术详解 PetShop4.0的架构和技术实现是学习ASP.NET电子商务应用程序开发的理想案例,其技术特性如下: 1. **三层架构**:PetShop4.0清晰地展示了如何将应用程序分为三个层次,每一层都有清晰的职责。这为开发者提供了一个良好的架构模式,可以有效地组织代码,提高可维护性。 2. **ASP.NET Web Forms**:这一版本的PetShop使用ASP.NET Web Forms来构建用户界面。Web Forms允许开发者通过拖放服务器控件来快速开发网页,并处理回发事件。 3. **ADO.NET**:数据访问层使用ADO.NET来与数据库进行通信。ADO.NET提供了一套丰富的数据访问API,可以执行SQL查询和存储过程,以及进行数据缓存等高级操作。 4. **C# 编程语言**:PetShop4.0使用C#语言开发。C#是.NET框架的主要编程语言之一,它提供了面向对象、类型安全、事件驱动的开发能力。 5. **企业库(Enterprise Library)**:企业库是.NET框架中的一套设计良好的应用程序块集合,用于简化常见企业级开发任务,比如数据访问、异常管理等。PetShop4.0可能集成了企业库,用以提高代码的可靠性与易用性。 6. **LINQ(语言集成查询)**:在更高版本的.NET框架中,LINQ提供了一种将查询直接集成到C#等.NET语言中的方式,可以用来查询和操作数据。尽管PetShop4.0可能未直接使用LINQ,但是了解其如何工作对于理解数据访问层设计是非常有益的。 ### PetShop4.0安装和部署 通过标题中提到的文件名“Microsoft .NET Pet Shop 4.0.msi”,我们知道这是一个安装程序文件,用于将PetShop4.0安装到系统中。安装时,该安装包将引导用户完成必要的步骤,包括配置数据库连接(通常是SQL Server),并安装所需的.NET框架组件。 ### 学习PetShop4.0的意义 作为电子商务网站的开发人员,学习PetShop4.0可以带来以下好处: - **架构理解**:通过分析PetShop4.0的代码和架构,开发者可以深入理解三层架构模式的实际应用。 - **代码实践**:可以直接研究和修改源代码,了解ASP.NET应用程序的工作机制。 - **技术熟练**:通过部署和维护PetShop4.0,开发者能够提升在ASP.NET平台上的实际操作能力。 - **最佳实践**:作为一个示例项目,PetShop4.0展示了微软推荐的开发方法和模式,有助于遵循最佳实践。 总之,PetShop4.0不仅是一个电子商务应用的示例,它也是一个学习和练习ASP.NET开发技能的优秀平台。通过对这一范例的深入学习和研究,开发者能够掌握构建复杂的Web应用程序所需的架构设计、编程实践和系统维护等多方面知识。
recommend-type

【技术揭秘】:7步打造YOLOv8人员溺水检测告警监控系统

# 摘要 本论文详细介绍了YOLOv8人员溺水检测系统的构建与优化策略。首先概述了该系统的设计理念及理论基础,深入解析了YOLOv8模型的架构及其在溺水检测领域的应用。
recommend-type

stm32CAN总线

<think>我们正在处理一个关于STM32 CAN总线配置和使用的问题。用户要求提供配置和使用指南,因此我们需要系统地介绍CAN总线的配置步骤、关键参数设置以及常见使用场景。 根据引用内容,STM32的CAN总线配置主要涉及两个部分:CAN初始化和过滤器配置。我们将按照以下结构组织回答: 1. CAN总线基本概念(简要介绍) 2. CAN总线配置步骤(重点) a. CAN初始化结构体配置(包括工作模式、位时序、波特率等) b. CAN过滤器配置(标识符过滤规则) 3. 发送和接收消息的基本流程 4. 常见问题及解决方法 注意:引用中提供的代码片段是配置示例,我
recommend-type

毕业设计资料分享与学习方法探讨

标题和描述提供了两个主要线索:毕业设计和网上购物。结合标题和描述,我们可以推断出该毕业设计很可能是与网上购物相关的项目或研究。同时,请求指导和好的学习方法及资料也说明了作者可能在寻求相关领域的建议和资源。 【网上购物相关知识点】 1. 网上购物的定义及发展: 网上购物指的是消费者通过互联网进行商品或服务的浏览、选择、比较、下单和支付等一系列购物流程。它依托于电子商务(E-commerce)的发展,随着互联网技术的普及和移动支付的便捷性增加,网上购物已经成为现代人生活中不可或缺的一部分。 2. 网上购物的流程: 网上购物的基本流程包括用户注册、商品浏览、加入购物车、填写订单信息、选择支付方式、支付、订单确认、收货、评价等。了解这个流程对于设计网上购物平台至关重要。 3. 网上购物平台的构成要素: 网上购物平台通常由前端展示、后端数据库、支付系统、物流系统和客户服务等几大部分组成。前端展示需要吸引用户,并提供良好的用户体验;后端数据库需要对商品信息、用户数据进行有效管理;支付系统需要确保交易的安全性和便捷性;物流系统需要保证商品能够高效准确地送达;客户服务则需处理订单问题、退换货等售后服务。 4. 网上购物平台设计要点: 设计网上购物平台时需要注意用户界面UI(User Interface)和用户体验UX(User Experience)设计,保证网站的易用性和响应速度。此外,平台的安全性、移动适配性、搜索优化SEO(Search Engine Optimization)、个性化推荐算法等也都是重要的设计考量点。 5. 网上购物的支付方式: 目前流行的支付方式包括信用卡支付、电子钱包支付(如支付宝、微信支付)、银行转账、货到付款等。不同支付方式的特点和使用频率随着国家和地区的不同而有所差异。 6. 网上购物中的数据分析: 在设计网上购物平台时,数据分析能力至关重要。通过收集和分析用户的购买行为数据、浏览行为数据和交易数据,商家可以更好地理解市场趋势、用户需求、优化商品推荐,提高转化率和客户忠诚度。 7. 网上购物的法律法规: 网上购物平台运营需遵守相关法律法规,如《中华人民共和国电子商务法》、《消费者权益保护法》等。同时,还需了解《数据安全法》和《个人信息保护法》等相关隐私保护法律,确保用户信息的安全和隐私。 8. 网上购物的网络营销策略: 网络营销包括搜索引擎优化(SEO)、搜索引擎营销(SEM)、社交媒体营销、电子邮件营销、联盟营销、内容营销等。一个成功的网上购物平台往往需要多渠道的网络营销策略来吸引和维持客户。 9. 网上购物的安全问题: 网络安全是网上购物中一个非常重要的议题。这涉及到数据传输的加密(如SSL/TLS)、个人信息保护、交易安全、抗DDoS攻击等方面。安全问题不仅关系到用户的财产安全,也直接关系到平台的信誉和长期发展。 10. 毕业设计的选题方法和资料搜集: 在进行毕业设计时,可以围绕当前电子商务的发展趋势、存在的问题、未来的发展方向等来选题。资料搜集可以利用图书馆资源、网络学术资源、行业报告、相关书籍和专业论文等途径。同时,实际参与网上购物平台的使用、调查问卷、访谈等方式也是获取资料的有效途径。 根据标题、描述和文件名,可以认为毕业设计资料信息的内容可能围绕“网上购物”的相关概念、技术、市场和法律法规进行深入研究。上述知识点的总结不仅包括了网上购物的基础知识,也涵盖了设计和运营网上购物平台的多个关键方面,为有志于在这个领域的学生提供了理论和实践的参考。
recommend-type

模式识别期末复习精讲:87个问题的全面解析与策略

# 1. 模式识别基础概念与理论框架 ## 1.1 定义与应用范围 模式识别是一门关于如何使机器能够自动识别数据模式和规律的交叉学科。其核心在
recommend-type

import torch import numpy as np def a2t(): np_data = np.array([[1, 2],[3,4]]) #/********** Begin *********/ #将np_data转为对应的tensor,赋给变量torch_data torch_data = torch.tensor(np_data) #/********** End *********/ return(torch_data)

<think>我们正在处理用户关于PyTorch张量操作和与NumPy数组转换的代码检查请求。根据用户需求,我们需要: 1. 展示如何在PyTorch中将张量转换为NumPy数组,以及反向转换。 2. 提供一些常见的张量操作示例。 3. 对代码进行解释和检查。 注意:由于用户要求生成相关问题,我们将在回答后生成相关问题。 步骤: 1. 导入必要的库(torch和numpy)。 2. 创建示例张量。 3. 展示张量转NumPy数组(注意:共享内存问题,即修改一个可能影响另一个)。 4. 展示NumPy数组转张量(同样注意共享内存问题)。 5. 展示一些基本张量操作(如加减乘除、矩阵乘法、形状
recommend-type

电脑垃圾清理专家:提升系统运行效率

标题“电脑垃圾清理专家(精)”所指的知识点,是对一款以清理电脑垃圾文件为专项功能的软件的描述。在IT领域中,电脑垃圾清理是维护计算机系统性能和安全性的常规操作。这类软件通常被称作系统清理工具或优化工具。 1. **电脑垃圾的定义**:在计算机系统中,垃圾文件通常指那些无用的、过时的、临时的或损坏的文件。这些文件可能包括系统缓存、日志文件、临时文件、无用的程序安装文件、重复文件等。它们会占用磁盘空间,影响系统性能,并可能对系统安全构成潜在威胁。 2. **清理垃圾文件的目的**:清理这些垃圾文件有多重目的。首先,它可以释放被占用的磁盘空间,提升电脑运行速度;其次,它可以帮助系统更高效地运行,避免因为垃圾文件过多导致的系统卡顿和错误;最后,它还有助于维护数据安全,因为一些过时的临时文件可能会包含敏感信息。 3. **电脑垃圾清理方法**:电脑垃圾清理可以手动进行,也可以使用第三方的清理软件来自动执行。手动清理需要用户打开文件资源管理器,检查特定目录(如Windows临时文件夹、回收站、下载文件夹等),并手动删除不需要的文件。这通常较为繁琐,且容易出错。 4. **第三方清理软件的特点**:相较于手动清理,第三方电脑垃圾清理软件可以提供更为方便快捷的清理体验。这类软件通常具备用户友好的界面,能够自动扫描、识别并清除系统垃圾文件,有时还能对注册表、浏览器历史记录等进行清理。此外,一些高级的清理工具还可以提供系统优化、启动项管理、软件卸载和隐私保护等功能。 5. **清理软件的潜在风险**:虽然清理软件能够带来便利,但也存在潜在风险。不当的清理可能会误删重要文件,导致系统不稳定或某些应用程序无法正常工作。因此,使用这类软件需要用户具有一定的计算机知识,能够辨别哪些文件是安全可删除的。 6. **专业清理工具的优势**:标题中的“专家”二字暗示该软件可能具备一些高级功能。专业级的清理工具往往具备更复杂的算法和更广泛的清理范围,它们可以深入分析系统文件,甚至进行深度扫描,找到隐藏较深的无效文件和系统垃圾。它们还可能具备诸如智能判断、快速扫描、安全删除等功能,确保在高效清理的同时不会影响系统的正常运作。 从描述内容来看,该文件只重复了“电脑垃圾清理专家”这一关键词,没有提供其他具体信息。这可能是为了强调软件的功能定位或品牌口号。而从标签“电脑,垃圾,清理,专家”可以提炼出与电脑垃圾清理相关的关键点,如电脑维护、系统性能提升、安全隐私保护等。 在【压缩包子文件的文件名称列表】中,只有一个文件“电脑垃圾清理专家.exe”,这表明了该压缩文件包中仅包含一个可执行文件,即用户下载后可以直接运行的清理工具程序。 总结而言,电脑垃圾清理专家是帮助用户管理和清除电脑系统垃圾,提升电脑性能和安全性的实用软件。专业的清理工具通常能够提供更为全面和安全的清理服务,但用户在使用过程中需要小心谨慎,避免误删除重要文件。
recommend-type

模式识别期末复习必备:掌握87个知识点的速成秘籍

# 1. 模式识别基础概念 模式识别是计算机科学、人工智能和机器学习领域的一个重要分支,它的基本任务是识别数据模式。模式可以是任何事物,例如文字、图像、声音、基因序列等等。模式识别的主要应用包括:图像识别、语音识别、文本分类、数据挖掘等。 模式识别的基本步骤包括:数据预处理、特征提取、分类或回归、结果评估。在这个过程中,我们需要使用一些数学模型和算法来进行数据分析和决策。模式识别的关键在于找到正确的特征和合适的模型,这对
recommend-type

redis集群模式配置

<think>我们正在配置Redis集群模式。根据引用内容,配置Redis集群需要以下步骤: 1. **修改配置文件**:在每个Redis节点的配置文件中启用集群模式,并设置相关参数。 - `cluster-enabled yes`:启用集群模式。 - `cluster-config-file nodes-xxxx.conf`:指定集群配置文件(xxxx通常用端口号区分)。 - `cluster-node-timeout 15000`:设置集群节点超时时间(毫秒)。 - `appendonly yes`:启用AOF持久化(可选,但推荐)。 例如,对于端口637