def get_data_loader(): # 训练配置参数 batch_size = CONFIG['batch_size'] thread_num = CONFIG['thread_num'] # Dataset 参数 train_csv = CONFIG['train_csv'] val_csv = CONFIG['val_csv'] audio_root = CONFIG['audio_root'] cache_root = CONFIG['cache_root'] # Dataset 基础参数 mix_name = CONFIG['mix_name'] instrument_list = CONFIG['instrument_list'] sample_rate = CONFIG['sample_rate'] channels = CONFIG['channels'] frame_length = CONFIG['frame_length'] frame_step = CONFIG['frame_step'] segment_length = CONFIG['segment_length'] frequency_bins = CONFIG['frequency_bins'] train_dataset = MusicDataset(mix_name, instrument_list, train_csv, audio_root, cache_root, sample_rate, channels, frame_length, frame_step, segment_length, frequency_bins) train_dataloader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=thread_num, drop_last=True, collate_fn=collate_fn, worker_init_fn=lambda work_id: random.seed(torch.initial_seed() & 0xffffffff))#worker_init_fn=lambda work_id: random.seed(torch.initial_seed() & 0xffffffff)) val_dataset = MusicDataset(mix_name, instrument_list, val_csv, audio_root, cache_root, sample_rate, channels, frame_length, frame_step, segment_length, frequency_bins) val_dataloader = data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=thread_num, drop_last=False, collate_fn=collate_fn, worker_init_fn=lambda work_id: random.seed(torch.initial_seed() & 0xffffffff))#worker_init_fn=lambda work_id: random.seed(torch.initial_seed() & 0xffffffff)) return train_dataloader, val_dataloader 这段代码有问题吗
时间: 2024-04-16 11:25:15 浏览: 239
这段代码看起来是一个获取数据加载器的函数 `get_data_loader()`。根据代码,它接受一些配置参数,并返回训练集和验证集的数据加载器。
在函数中,首先根据配置参数获取训练和验证集的 CSV 文件路径、音频文件根目录、缓存根目录等。然后,根据这些参数创建了两个 `MusicDataset` 对象,分别用于训练集和验证集。
接下来,使用 `torch.utils.data.DataLoader` 创建了训练集和验证集的数据加载器。在创建加载器时,指定了批量大小 `batch_size`、线程数量 `num_workers`、是否打乱数据 `shuffle`、是否丢弃最后一个不完整的批次 `drop_last`、以及一个自定义的数据处理函数 `collate_fn`。此外,还设置了 `worker_init_fn` 参数,用于初始化每个工作线程的随机种子。
最后,将训练集和验证集的数据加载器作为结果返回。
从代码上看,并没有明显的问题。但是,你需要确保你的 `MusicDataset` 类和 `collate_fn` 函数已经正确实现,并且根据你的数据集格式和需求进行适当的调整。
如果你遇到了报错,请提供报错信息以便我可以更好地帮助你解决问题。
相关问题
data_iter = data_loader.get_loader(batch_size=args.batch_size)
这行代码应该是使用了一个 data_loader 对象的 get_loader 方法,返回了一个名为 data_iter 的迭代器对象,用于迭代数据集中的批量数据。其中,batch_size 参数来自 args 对象,可能是从命令行参数或配置文件中读取的超参数,用于指定每个批次中包含的样本数量。
具体实现可以参考以下示例代码:
```python
class DataLoader:
def __init__(self, dataset, batch_size):
self.dataset = dataset
self.batch_size = batch_size
def get_loader(self):
return iter(torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size))
# 构建数据集对象
train_dataset = MyDataset(train_data)
test_dataset = MyDataset(test_data)
# 构建数据加载器对象
train_loader = DataLoader(train_dataset, batch_size=args.batch_size)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size)
# 获取数据迭代器对象
train_iter = train_loader.get_loader()
test_iter = test_loader.get_loader()
```
在这个示例中,我们首先定义了一个名为 DataLoader 的类,用于包装 PyTorch 的 DataLoader 类。该类接受一个数据集对象和一个批量大小参数,并提供了一个 get_loader 方法,用于返回 PyTorch 的 DataLoader 对象的迭代器。
然后,我们使用自定义的 MyDataset 类来构建训练集和测试集对象,并使用 DataLoader 类来构建数据加载器对象。最后,我们使用 data_loader 对象的 get_loader 方法来获取训练集和测试集的迭代器对象。
def train(dataset): global epoch # Training step data_loader = DataLoader(dataset, batch_size=config['batch_size'], shuffle=True, num_workers=config['data_threads'], pin_memory=True )是什么意思
这段代码定义了一个名为`train`的函数,用于进行训练。
函数接受一个名为`dataset`的参数,表示用于训练的数据集。
在函数内部,首先使用`DataLoader`类创建一个数据加载器`data_loader`。数据加载器用于将数据集划分为小批量进行训练。`DataLoader`的参数包括:
- `dataset`: 要加载的数据集。
- `batch_size`: 每个小批量的样本数量。
- `shuffle`: 是否在每个时代(epoch)之前对数据进行洗牌,以增加随机性。
- `num_workers`: 加载数据的线程数。
- `pin_memory`: 是否将加载的数据存储在固定内存中,这样可以加快数据传输速度。
创建完数据加载器后,可以在训练过程中使用`data_loader`来迭代获取小批量的训练样本。
这段代码的作用是设置数据集的批处理大小、洗牌和并行加载等参数,并创建一个数据加载器,以便在训练过程中使用。
阅读全文
相关推荐










