生成一个基于pytorch深度学习框架,数据集采用fashion-mnist,模型使用Diffusion模型,添加数据可视化的,用Python语言写的完整代码
时间: 2025-01-29 08:16:10 浏览: 51
以下是一个基于PyTorch深度学习框架,使用Diffusion模型处理Fashion-MNIST数据集,并添加数据可视化的完整Python代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 超参数
batch_size = 128
epochs = 20
learning_rate = 1e-3
image_size = 28
channels = 1
n_steps = 1000
beta_start = 1e-4
beta_end = 0.02
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 加载数据集
train_dataset = datasets.FashionMNIST(root='./data', train=True, transform=transform, download=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 定义扩散模型
class DiffusionModel(nn.Module):
def __init__(self):
super(DiffusionModel, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Flatten(),
nn.Linear(128 * 7 * 7, 1024),
nn.ReLU(),
nn.Linear(1024, 128 * 7 * 7),
nn.ReLU(),
nn.Unflatten(1, (128, 7, 7)),
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.Conv2d(64, 1, kernel_size=3, stride=1, padding=1),
nn.Tanh()
)
def forward(self, x):
return self.model(x)
# 初始化模型、损失函数和优化器
model = DiffusionModel().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练循环
for epoch in range(epochs):
for i, (images, _) in enumerate(train_loader):
images = images.to(device)
# 生成时间步
t = torch.randint(0, n_steps, (batch_size,), device=device).long()
# 计算beta
betas = torch.linspace(beta_start, beta_end, n_steps).to(device)
alpha = 1 - betas
alpha_hat = torch.cumprod(alpha, dim=0)
# 获取噪声
noise = torch.randn_like(images).to(device)
# 计算noisy images
sqrt_alpha_hat = torch.sqrt(alpha_hat[t].reshape(-1, 1, 1, 1))
sqrt_one_minus_alpha_hat = torch.sqrt(1 - alpha_hat[t].reshape(-1, 1, 1, 1))
noisy_images = sqrt_alpha_hat * images + sqrt_one_minus_alpha_hat * noise
# 前向传播
outputs = model(noisy_images)
loss = criterion(outputs, noise)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}")
# 可视化结果
with torch.no_grad():
# 生成随机噪声
sample = torch.randn(64, channels, image_size, image_size).to(device)
# 反向扩散过程
for i in range(n_steps):
betas_t = beta_end * torch.ones(batch_size, device=device)
alpha_t = 1 - betas_t
alpha_hat_t = torch.cumprod(alpha_t, dim=0)[-1]
sqrt_recip_alpha_t = torch.sqrt(1 / alpha_t)
sqrt_one_minus_alpha_hat_t = torch.sqrt(1 - alpha_hat_t)
noise = torch.randn_like(sample).to(device)
# 模型预测
model_input = sample
model_output = model(model_input)
# 更新样本
sample = sqrt_recip_alpha_t * (model_input - (1 - alpha_t) / torch.sqrt(1 - alpha_hat_t) * model_output) + torch.sqrt(betas_t) * noise
# 显示生成的图片
grid = utils.make_grid(sample.cpu(), nrow=8)
plt.figure(figsize=(8,8))
plt.imshow(grid.permute(1, 2, 0).squeeze(), cmap='gray')
plt.axis('off')
plt.show()
```
这段代码实现了一个基本的Diffusion模型,用于处理Fashion-MNIST数据集,并包含了数据可视化功能。
阅读全文