vgg 图像风格迁移
时间: 2025-05-19 09:05:28 浏览: 16
### 如何使用 VGG 实现图像风格迁移
#### 准备工作
为了实现基于VGG网络的图像风格迁移,需先安装必要的库并加载预训练的VGG19模型。此过程依赖于Python编程语言以及TensorFlow框架来构建和运行模型[^1]。
```bash
pip install tensorflow numpy matplotlib scipy pillow h5py
```
接着导入所需模块:
```python
import numpy as np
from keras.applications import vgg19
from keras.preprocessing.image import load_img, img_to_array
from scipy.optimize import fmin_l_bfgs_b
from PIL import Image
import time
```
定义一些辅助函数用于读取、显示和保存图片:
```python
def preprocess_image(image_path):
img = load_img(image_path, target_size=(img_nrows, img_ncols))
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = vgg19.preprocess_input(img)
return img
def deprocess_image(x):
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
```
设置输入参数,包括原始图片路径、样式图片路径以及其他配置项:
```python
content_image_path = 'path/to/content/image.jpg'
style_reference_image_path = 'path/to/style/reference/image.jpg'
width, height = load_img(content_image_path).size
img_nrows = 400
img_ncols = int(width * img_nrows / height)
total_variation_weight = 1e-4
style_weight = 1.
content_weight = 0.025
iterations = 10
```
创建Keras张量表示内容图片、样式图片及组合后的目标图片,并通过`vgg19.VGG19()`方法获取不带分类层(`include_top=False`)且已在ImageNet数据集上预先训练好的VGG19实例[^3]:
```python
input_tensor = backend.concatenate([
backend.variable(preprocess_image(content_image_path)),
backend.variable(preprocess_image(style_reference_image_path)),
backend.placeholder((1, img_nrows, img_ncols, 3))
], axis=0)
model = vgg19.VGG19(input_tensor=input_tensor,
weights='imagenet',
include_top=False)
print('Model loaded.')
```
计算损失函数及其梯度,优化器将尝试最小化这个总损失值以获得最佳的艺术效果[^2]:
```python
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
content_layer = 'block5_conv2'
style_layers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1']
loss = backend.variable(0.)
layer_features = outputs_dict[content_layer]
target_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]
loss += content_weight * content_loss(target_image_features,
combination_features)
for layer_name in style_layers:
layer_features = outputs_dict[layer_name]
style_reference_features = layer_features[1, :, :, :]
combination_features = layer_features[2, :, :, :]
sl = style_loss(style_reference_features, combination_features)
loss += (style_weight / len(style_layers)) * sl
grads = backend.gradients(loss, input_tensor[-1])
fetch_loss_and_grads = backend.function([input_tensor], [loss]+grads)
class Evaluator(object):
def __init__(self):
self.loss_value = None
self.grad_values = None
def loss(self, x):
assert self.loss_value is None
x = x.reshape((1, img_nrows, img_ncols, 3))
outs = fetch_loss_and_grads([x])
loss_value = outs[0]
grad_values = outs[1].flatten().astype('float64')
self.loss_value = loss_value
self.grad_values = grad_values
return self.loss_value
def grads(self, x):
assert self.loss_value is not None
grad_values = np.copy(self.grad_values)
self.loss_value = None
self.grad_values = None
return grad_values
evaluator = Evaluator()
```
最后一步是执行迭代更新操作直至达到预定次数或满足收敛条件为止,在每次循环结束时可以查看当前合成的结果以便及时调整参数设定[^4]:
```python
x = preprocess_image(content_image_path)
x = x.flatten()
for i in range(iterations):
print('Start of iteration', i+1)
start_time = time.time()
x, min_val, info = fmin_l_bfgs_b(evaluator.loss,
x,
fprime=evaluator.grads,
maxfun=20)
print('Current loss value:', min_val)
end_time = time.time()
print('Iteration %d completed in %ds' % (i+1, end_time-start_time))
result_img = x.copy().reshape((img_nrows, img_ncols, 3))
result_img = deprocess_image(result_img)
fname = result_prefix + '_at_iteration_%d.png' % (i+1)
save_img(fname, result_img)
display(Image.open(fname))
```
上述代码展示了完整的流程,从准备环境到最终生成带有指定艺术风格的新图像。值得注意的是,实际应用过程中可能还需要根据具体需求微调超参如权重比例等,从而得到更理想的效果。
阅读全文
相关推荐

















